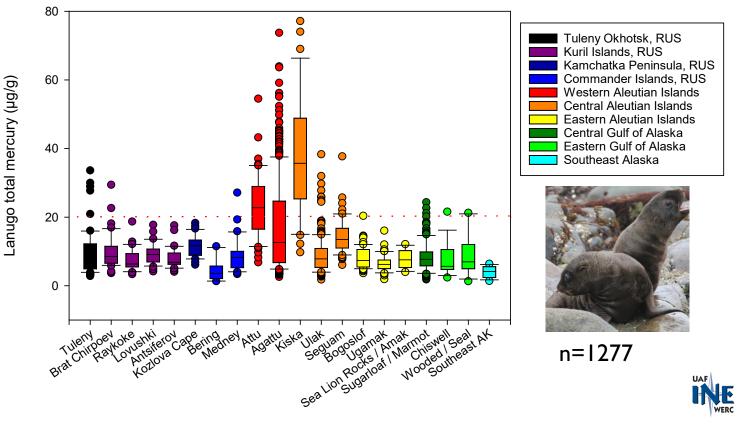
MERCURY RISING...

IN SOME STELLER SEA LIONS: IS IT CHANGE IN ALEUTIAN FOOD WEBS?

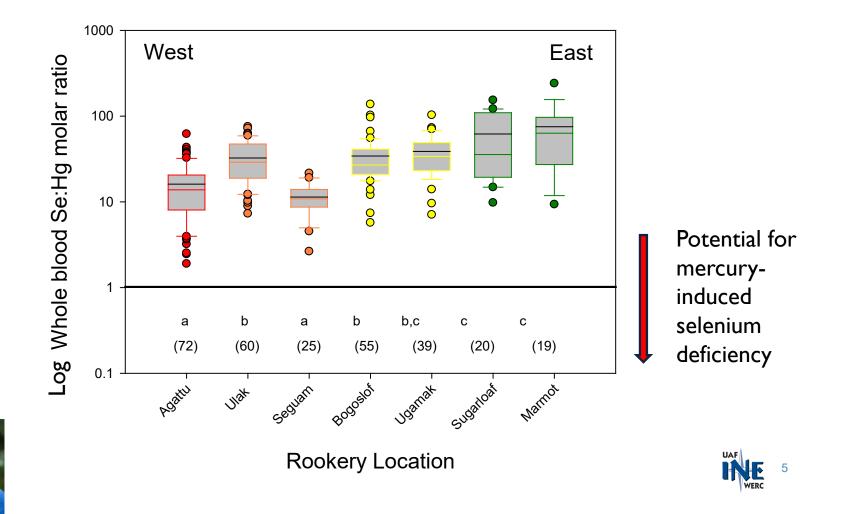
MERCURY HAS BEEN SHOWN TO:

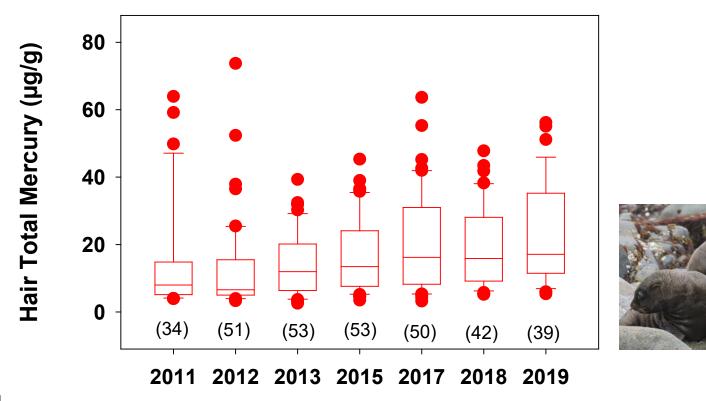
- Bioaccumulate and biomagnify
- Be toxic to humans and other fish-eating mammals
- Act on the nervous system (nerves and brain)
- Cause neurochemical changes that impact mammalian health and survival
- Lower reproductive rates (e.g., mink)
- Transfer across the placenta to expose fetus

YOUNG STELLER SEA LION PUPS IN LANUGO


- Lanugo (natal hair) is grown in utero and so reflects the mercury concentrations the fetus is exposed to during development
- Index of maternal total mercury concentrations
- Stable isotope ratios of carbon and nitrogen also measured in lanugo and whiskers and used to model diet of adult female SSL

HIGHEST MERCURY IN W AND C ALEUTIAN IS.

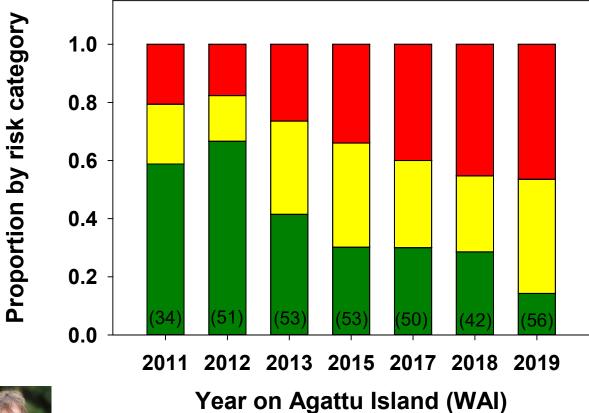

Rangewide young Steller sea lion pups (1998 - 2019)



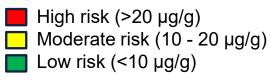
Rookery Location

DIETARY SELENIUM IS NOT ENOUGH

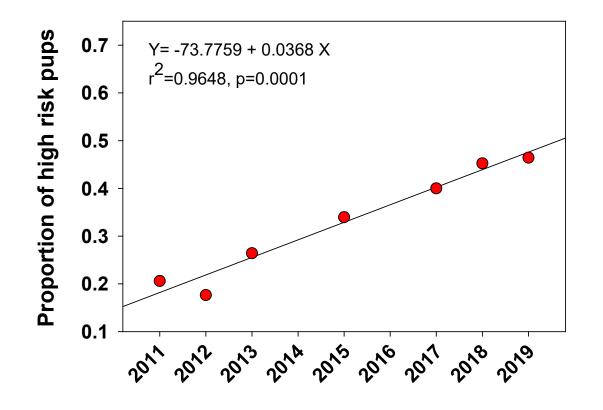
MERCURY RISING



Year on Agattu Island (WAI)

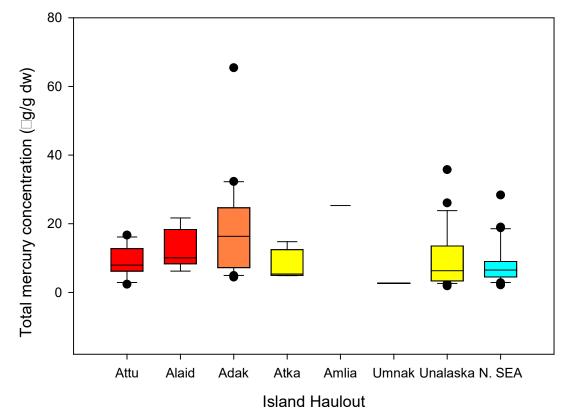


INCREASING PROPORTION OF PUPS AT RISK


Risk category based on THg concentrations in lanugo

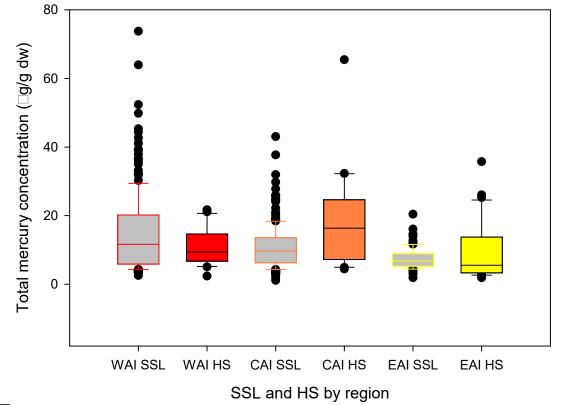
INCREASING PROPORTION OF PUPS AT RISK

Year on Agattu Island (WAI)


Proportion of pups in the high risk category ([THg] in lanugo >20 µg/g) increased more than 2-fold between 2011 & 2019

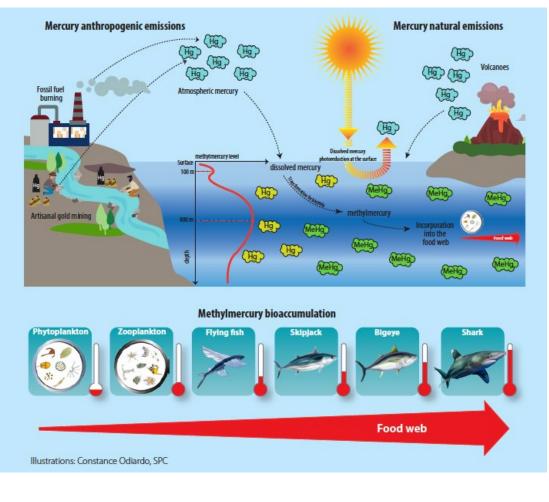
Annual rate of increase is **3.7%**

MERCURY IN HARBOR SEALS

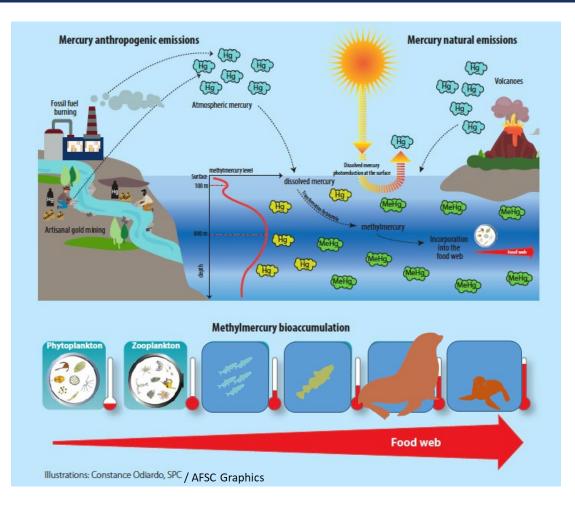

Harbor seals (n=123) sampled by NOAA between 2014 and 2016 in western (red), central (orange) and eastern (yellow) Aleutian Islands and northern Southeast Alaska (cyan).

Caution: mixed ages.

MERCURY IN HARBOR SEALS

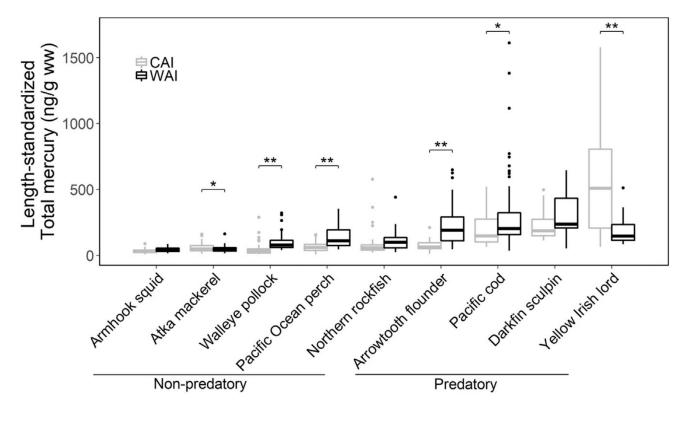

Harbor seals (n=80) sampled by NOAA between 2014 and 2016 in western (red), central (orange) and eastern (yellow) Aleutian Islands.

Caution: SSL pups vs HS mixed ages.


MERCURY IN THE MARINE FOOD WEB

Lorrain et al. 2019. SPC Fisheries Newsletter #158

MERCURY IN THE MARINE FOOD WEB



Lorrain et al. 2019. SPC Fisheries Newsletter #158 (Fadely et al. 2022)

12

ALEUTIAN ISLAND FISH AND CEPHALOPS

A. Cyr et al. / Science of the Total Environment 664 (2019) 761–770

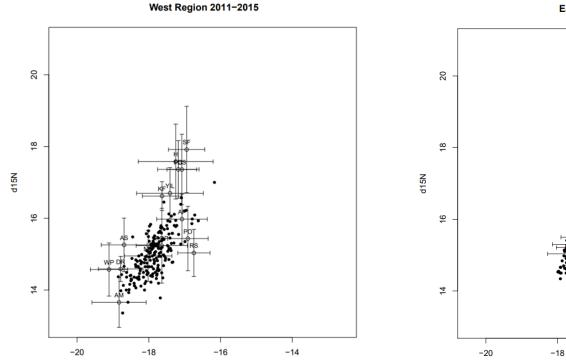
13

ALEUTIAN ISLAND FISH AND CEPHALOPS

- Previous study included 2013-2015 collections by Ocean Peace (n=1105)
- Expanded fish investigations to include additional collections in 2011, 2020 and 2021 (n=506)
- Master's student Scott Chandler began Fall 2021 under Ocean Peace Research Partnership funding
- Model temporal changes in mercury concentrations with spatial delineation based on 5 major passes (central and western Aleutian Islands)
- Total number of fish: 1611
- Total number of species: 14 with >5 specimen
- Of 1611 fish measured, 13 have total mercury concentrations above 1 ppm (11 Yellow Irish Lord, 1 Pacific Ocean perch, 1 walleye pollock)

ADULT FEMALE STELLER SEA LION DIET

- Is higher mercury in the west due to diet differences in adult female Steller sea lions?
- Has diet of adult females changed over time, potentially leading to increase of mercury transferred *in utero* to their pups?
- Diet modeling led by Brian Taras (ADF&G) and supported through NOAA funds to Rea, O'Hara and Taras (2019-2022).
- Using carbon and nitrogen bulk isotope ratio and total mercury concentration data supported through several projects (NOAA, PCCRC and Ocean Peace).
- Includes fish 2011-2015 matched to SSL pups sampled 2011-2015 and fish sampled 2020-2021 matched to SSL pups sampled 2017-2019.



ISOTOPE SPACE FOR FISH AND SSL PUPS

West of Amchitka Pass

d13C

East of Amchitka Pass

East Region 2011-2015

-16

d13C

-14

ADULT FEMALE STELLER SEA LION DIET

Preliminary data: MixSIAR model of proportion of adult female Steller sea lion diet contributed by 14 potential prey species. Fish and pups sampled west of Amchitka Pass 2011-2015.

Predatory Non Predatory

	AF	AM	AS	DR	DS	Н	KF	NR	РС	РО	POP	RS	SF	WP	YIL	Predatory
H11	0.10	0.12	0.03	0.04	0.04	0.08	0.03	0.07	0.05	0.11	0.08	0.13	0.05	0.03	0.05	0.64
H12	0.18	0.08	0.03	0.05	0.04	0.11	0.05	0.05	0.05	0.08	0.04	0.08	0.05	0.03	0.09	0.72
H13	0.06	0.25	0.03	0.08	0.02	0.03	0.02	0.09	0.02	0.09	0.06	0.17	0.02	0.04	0.03	0.45
H15	0.06	0.46	0.02	0.03	0.03	0.04	0.02	0.06	0.03	0.05	0.05	0.05	0.03	0.02	0.04	0.35
M11	0.07	0.18	0.03	0.06	0.03	0.04	0.03	0.08	0.03	0.10	0.07	0.20	0.03	0.03	0.03	0.57
M12	0.12	0.14	0.04	0.07	0.03	0.06	0.05	0.06	0.04	0.08	0.05	0.13	0.03	0.04	0.06	0.61
M13	0.03	0.33	0.02	0.09	0.01	0.01	0.01	0.08	0.01	0.08	0.04	0.23	0.01	0.04	0.01	0.41
M15	0.03	0.58	0.02	0.03	0.02	0.02	0.02	0.06	0.02	0.04	0.04	0.07	0.02	0.02	0.02	0.26
L11	0.05	0.15	0.03	0.05	0.02	0.03	0.02	0.15	0.02	0.13	0.14	0.12	0.02	0.03	0.03	0.45
L12	0.09	0.14	0.05	0.08	0.03	0.05	0.05	0.11	0.04	0.08	0.08	0.09	0.03	0.05	0.05	0.51
L13	0.03	0.28	0.03	0.09	0.01	0.01	0.01	0.14	0.01	0.10	0.09	0.14	0.01	0.04	0.01	0.33
L15	0.03	0.53	0.02	0.04	0.01	0.02	0.02	0.09	0.02	0.06	0.07	0.05	0.01	0.02	0.02	0.22

0.46 mean

PRELIMINARY SEA LION DIET MODELING

2011-2015

Prey Type	Min	Max
AF	0.028	0.179
DS	0.010	0.037
Н	0.012	0.109
KF	0.013	0.051
PC	0.010	0.053
PO	0.044	0.131
RS	0.048	0.226
SF	0.009	0.048
YIL	0.014	0.091
AM	0.077	0.584
AS	0.015	0.049
DR	0.027	0.091
NR	0.049	0.147
POP	0.039	0.138
WP	0.016	0.048

Table 1: West top model: Minimum and Maximum Prey Proportions across Year and THg Categories. Last 6 (AF-YIL) are predatory first 6 (Ssp-WP) are non predatory.

Prey Type	Min	Max			
SSp	0.039	0.055			
$\mathbf{A}\mathbf{M}$	0.082	0.281			
LS	0.022	0.057			
\mathbf{NR}	0.054	0.104			
POP	0.077	0.225			
WP	0.097	0.385			
AF	0.040	0.093			
DS	0.020	0.053			
KF	0.037	0.076			
PC	0.030	0.174			
PO	0.035	0.139			
YIL	0.026	0.115			

PRELIMINARY SEA LION DIET MODELING

2011-2015

2017-2019

Prey Type	Min	Max
AF	0.028	0.179
DS	0.010	0.037
Н	0.012	0.109
KF	0.013	0.051
PC	0.010	0.053
PO	0.044	0.131
RS	0.048	0.226
SF	0.009	0.048
YIL	0.014	0.091
AM	0.077	0.584
AS	0.015	0.049
DR	0.027	0.091
NR	0.049	0.147
POP	0.039	0.138
WP	0.016	0.048

Prey Type	Min	Max
SSp	0.039	0.055
$\mathbf{A}\mathbf{M}$	0.082	0.281
\mathbf{LS}	0.022	0.057
NR	0.054	0.104
POP	0.077	0.225
WP	0.097	0.385
AF	0.040	0.093
DS	0.020	0.053
KF	0.037	0.076
PC	0.030	0.174
PO	0.035	0.139
YIL	0.026	0.115

PRELIMINARY CONCLUSIONS: DIET MODELS

- Is higher mercury in the west due to diet differences in adult female Steller sea lions?
- Standard errors are relatively large so hard to interpret data for individual prey contributions to diet.
- In general the percentage of predatory prey decreases from High, to Medium to Low total mercury concentration categories.
- Depending on the year and total mercury concentration category, contribution of predatory fish ranged from 0.21 to 0.6 of the diet in the west region for animals sampled 2017-2019. During this time non-predatory prey dominated the diet of animals from the east. In the earlier time period (2011-2015) contribution of predatory fish ranged from 0.22 to 0.72 of the diet in the west region.

ALEUTIAN ISLAND INVERTEBRATES

Total mercury concentrations (µg/kg dw or **ppb**; mean, standard deviation (sd), minimum and maximum values) in 3 species of algae and 9 species of marine invertebrate collected near Kiska Island in 2014 (n=97).

Species	Common Name	n	mean	sd	minimu	maximu
					m	m
Alaria marginata	winged kelp	2	9.59	0.64	9.13	10.04
Fucus gardneri	rockweed	2	12.25	3.51	9.77	14.73
Hedophyllum sessile	sea cabbage	2	61.40	35.77	36.11	86.69
Katharina tunicata	black Katy chiton	22	36.34	13.96	15.87	64.81
Leptasterias sp.	genus of seastar in	12	155.69	78.77	65.33	347.49
	family Asteriidae					
Littorina	periwinkle	3	52.66	5.82	45.98	56.66
Lottia pelta	shield limpet	8	30.38	5.84	23.10	30.38
Mytilus sp.	Mussel	24	124.76	57.22	59.57	287.89
Nucella lima	File dog winkle	2	55.09	13.28	45.70	64.48
Semibalanus cariosus	thatched barnacle	9	81.11	21.84	51.15	114.88
Strongylocentrotus	green sea urchin	4	37.69	5.50	34.66	45.93
droebachiensis						
Tectura persona	masked limpet	8	42.98	19.04	20.45	74.51

ALEUTIAN ISLAND INVERTEBRATES

Importance: relatively immobile species compared to pinnipeds and fish which we hope will help us determine if there is a "point source" of mercury in the Aleutian Islands

- Also important prey for the southwest stock of sea otters
- We have partnered with USFWS to further study invertebrates in the western and central Aleutian Islands
- In August 2021 USFWS and USGS biologists collected 697 invertebrates from 12 genera at 9 islands (between Adak and Attu)
- Funding to measure total mercury, methylmercury, stable isotopes of C and N, and trace elements including selenium in up to 250 of these

ACKNOWLEDGEMENTS

We thank the members of our field collection teams at Alaska Department of Fish and Game (ADF&G), The Marine Mammal Laboratory/NOAA, the Alaska SeaLife Center and in Russia and the vessel crews who brought them all home safely. We also acknowledge tireless hours of mercury analysis in the laboratory by L. Correa, A. Gastaldi, J. Harding, J. Harley, G. Johnson, S. Kennedy, T. Lamken, L. O'Hara, S. Rouse, and M. Templeton.

Research funding was provided through NOAA Cooperative Agreements NA17FX1079, NA04NMF4390170, NA08NMF4390544, the State of Alaska, UAF (INE and URSA), PCCRC and Ocean Peace Research Partnership. ADF&G research conducted under MMPA permit #358-1564, 358-1769, 358-1888 and 14325 and ADF&G ACUC #03-002, 06-07, 09-28, 2010-14R, 2011-025Routine and 2012-15Routine. UAF research conducted under IACUC Protocol #594759-2.

ALEUTIAN ISLAND INVERTEBRATES

							ISLAND					
	Genus	Species	Adak	Agattu	Alaid	Amchitka	Attu	Kiska	Nizki	Ogliuga	Shemya	SPECIES TOTALS
Crustacean	Pugettia	spp	6	2			4		2		1	15
	Evasterias	spp	1									1
	Evasterias	troschelli			5							5
Echinoderm	Leptasterias	spp	11	10	5	9	16	10		6		67
	Strongylocentrotus	polyacanthus		22			16					38
	Strongylocentrotus	spp	46		4	28	12	32		24	25	171
	Cryptochiton	stelleri				4				8		12
	Fusitron	spp	11				1			5		17
	Katharina	spp			9		5					14
	Katharina	tunicata		4								4
Mollusc	Lottia	pelta	5	1	3	2	5	3		2		21
wonusc	Lottia	spp	15	2	8	8	13	5		12		63
	Modiolus	spp	9			12		1		28		50
	Mytilus	spp	37	26	25	26		26		1		141
	Pododesmus	spp	11			19	1	7		11		49
	Tonicella	spp	16			12				1		29
		ISLAND TOTALS	168	67	59	120	73	84	2	98	26	697

