2023 Tanner Crab Stock Assessment

William Stockhausen
AFSC/NMFS/NOAA
Sept 14, 2023

Overview

- ADFG manages fishery in two areas

- fishery open in both areas
- East: TAC: 528 t . RC: 528 t
- West: TAC: $386 \mathrm{t} . \mathrm{RC}: 384 \mathrm{t}$
- Last year: TAC: 499 t. RC: 494 t (W only)
- 2023 NMFS EBS Shelf Survey Biomass

- male biomass: $35 \mathrm{kt}(-\mathrm{E},+\mathrm{W},+\mathrm{T})$
- IP male biomass: 6kt ($-\mathrm{E},+\mathrm{W}, \sim \mathrm{T}$)
- female biomass: $17 \mathrm{kt}(+\mathrm{E},+\mathrm{W},+\mathrm{T})$
- large recruitment event in W area
- 2022/23 OFL: 32,810 t
- Total catch mortality: $1,187 \mathrm{t}$
- overfishing not occurring
- 2023 assessment
- Tier 3a ($\mathrm{B}>\mathrm{B}_{\text {MSY }}$; not overfished)
- OFL: $36,200 \mathrm{t}, \mathrm{ABC}: 27,150 \mathrm{t}$

SSC Comments

Comment: The SSC highlights that the estimation of unrealistically high instantaneous fishing mortality rates appears to be an emergent property of several crab assessments...These estimates result in ABC recommendations that would remove virtually all legal sized crab from the population.

Response: The root cause of OFL recommendations that would remove all legal-sized crab is the combination of an industry-preferred size larger than the average size at maturity, and an SPR-based harvest control rule.

Comment: The SSC reiterates its support for transitioning this model, or a simplified version thereof, into the standardized GMACS platform. The SSC feels that transitioning this assessment into GMACS is a higher priority at this point than continued exploration of model alternatives...

Response: Transitioning the assessment to GMACS is the top priority for development in the fall.

SSC Comments

Comment: The SSC recommends that when "fallback" Tier 4 alternatives are provided, as recommended by the crab Simpler Modelling Workshop, plots that compare the OFLs predicted by the existing status quo Tier 3 model against the OFLs recommended by Tier 4 models for previous years be included.

Response: The Tier 4 model does not estimate OFLs for "previous years", which would require developing a retrospective analysis capability. If this is a priority, it could be addressed in the future.

Comment: In addition, when estimating biomass for Tier 4 models, the SSC recommends that the authors base these on the whole time series or develop justification for a better time block that represents current fishing potential for the stock.

Response: Results for $\mathrm{B}_{\text {MSY }}$ calculated using several alternative time blocks are presented.

Comment: The SSC also recommends that, for "fallback" Tier 4 models, the authors and CPT recommend an appropriate ABC buffer.

Response: The author recommends using the cv for terminal year survey biomass from the random walk model as a basis for the ABC buffer.

CPT Comments

Comment: Show plots for jitter analyses that could demonstrate (or rule out) bimodality in management quantities...
Response: Plots for jitter diagnostics are presented.
Comment: Provide a plot of the fits to male and female components separately when they are fit in an aggregated fashion (as in 22.03). Are the fits to either sex substantially degraded?

Response: Although this is a reasonable idea, it is currently not possible to provide such a plot.
Comment: Provide some discussion as to why there was an exceptionally small retrospective pattern in spite of the issues with recruitments that appear and then do not propagate through the population.

Response: The small retrospective pattern was with respect to MMB , while the pattern for recruitment was much larger. The larger retrospective pattern for recruitment occurs exactly as a result of the apparent recruitment events disappearing (new data reduces the estimated size of recruitment in any particular year).

Comment: Continue to explore ways to eliminate the overestimates of large crab (the interplay between growth estimates and non-parametric selectivity might be a useful avenue to explore)

Response: This suggestion will be explored as part of building a GMACS Tanner crab model.

Recent model explorations

- 1-mm size bins
- fixed growth
- fixed NMFS survey selectivity
- estimated BSFRF survey availability
- annually-varying M
- 1982 model start
- fit VAST time series
- fit aggregated total catch data
- bootstrapped effective sample sizes as input sample sizes for NMFS survey size comps
- compress size composition tails
- Dirichlet-multinomial likelihood used to estimate effective size comp sample sizes

Fleets-as-areas models

- ADFG two-area management
- Bycatch by groundfish gear type

Retained catch

Retained catch

Retained catch

Total catch mortality

Total catch mortality in the directed fishery

estimated numbers caught

individual components normalized
\square retained \square total male \square total temale

Total catch comparisons: bycatch in snow crab fishery

estimated numbers caught

individual components normalized

Total catch comparisons: bycatch in groundfish fisheries

estimated numbers caught

NOM-1гіலா둔
individual components normalized

NMFS EBS Survey Data

NMFS EBS Survey Data

Survey Data By Management Region

Survey Data By Management Region

NMFS EBS Survey Data: Industry-preferred males

Survey Size Comps

 East 166W
 West 166W

Survey Size Comps

Survey spatial patterns

NOAA FISHERIES

Survey spatial patterns

large (> 60 mm CW) males
mature females
CPUE
$(\mathrm{mt} / \mathrm{sq} . \mathrm{nmi})$

$2.5 \bigcirc 5.0 \bigcirc 7.5$
7.0
CPUE
$(\mathrm{mt} / \mathrm{sq} . \mathrm{nmi})$
$3 \bigcirc 12$

NOAA FISHERIES

Survey spatial patterns

$\underset{(\mathrm{mt} / \mathrm{sq} . \mathrm{nmi})}{\text { CPUE }} \bigcirc 2 \bigcirc 4 \bigcirc 6$

industry-preferred males

Survey-Fishery Comparisons

Assessment

- Tier 3 size-structured model
- Survey data
- NMFS EBS shelf survey: 1975-present
- BSFRF side-by-side haul studies
- Fishery data
- directed fishery (areas combined)
- retained catch
- total catch
- bycatch in
- snow crab fishery
- BBRKC fishery
- groundfish fisheries
- Estimates:
- Annual recruitment
- Annual numbers-at-size (M,F)
- mature biomass (MMB, MFB)
- Determines:
- $F_{\text {msy }}, B_{\text {msy }}, F_{\text {ofL }}, O F L, A B C$

Assessment time frames: data

Assessment time frames: model processes

Objective Function Values

AFISHERIE

Model Convergence

Fits to
 Male Maturity Ogive Data

2006
2007
2008

Fits to Retained Catch in Directed Fishery

Fits to Retained Catch in Directed Fishery

Fits to NMFS Survey Biomass

"Fits" to NMFS Survey Abundance

Fits to NMFS Survey Size Comps (males)

Residuals to NMFS Survey Size Comps (males)

Assessment: Estimated Quantities

NMFS survey selectivity

NMFS survey Q

Assessment: Estimated Quantities

natural mortality

Assessment: Estimated Quantities

Assessment: Estimated Quantities
case

Retrospective patterns

historical comparisons (different models)

Average recruitment time period

Author's recommendation

- Drop terminal year estimate
- larger uncertainty
- retro. pattern suggests estimate will decrease with time
- consistent with other assessments
- consistent with last year
- time period: 1982-2022 (year of entry into population)

Projections

NOAA FISHERI

Recommendations

- Tier 3a Model 22.03b
- Based on previously-adopted assessment model
- jitter analysis successful in identifying MLE
- small max gradient at MLE
- no parameter-at-bounds
- all results similar to 2022 assessment
- but not much improvement on previous assessment
- abundance of large crab overestimated
- terminal year recruitment consistently overestimated
- ABC buffer: 25\% (same as rec'd last year; SSC adopted 20\% last year)
- continuing concern over model inadequacies
- continuing concern over $\mathrm{F}_{35 \%}, \mathrm{~B}_{35 \%}$ as metrics for a sustainable fishery

Tier 4 "Fallback"

Tier 4 "Fallback"

time block	M	B	Bmsy	status	Fofl	OFL
$1975: 2023$	0.23	18.68	50.63	0.37	0.07	1.24
$1975: 1980$	0.23	18.68	110.42	0.17	NA	NA
$1982: 2023$	0.23	18.68	42.03	0.44	0.09	1.57
$1987: 1995,2005: 2009,2013: 2015$	0.23	18.68	65.64	0.28	0.05	0.86
$2005: 2009,2013: 2015$	0.23	18.68	60.21	0.31	0.05	0.98

ABC buffer

- recommend using cv on modelestimated terminal biomass (8.9\%) as basis
- buffer = 91.9\%

Future work (top priority)

- Complete GMACS model for Tanner crab
- start simple, build complexity
- Complete BSFRF/NMFS selectivity analysis
- 2018 BSFRF Tanner crab data provided last week

