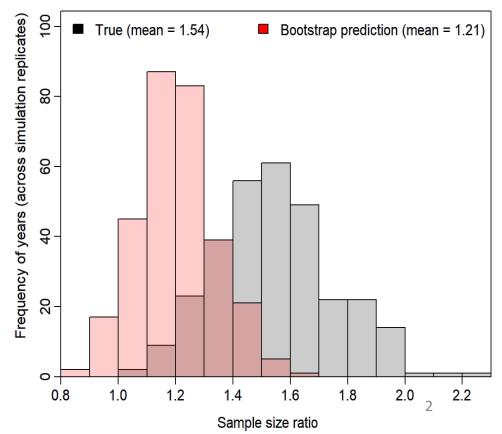
Optimizing age-reading efforts Goal:

Optimally allocate age-reading efforts across samples and species

Approach:


- Break pipeline into four pieces
 - 1. Number of ages $n_{nominal}$ to input sample size n_{input}
 - 2. n_{input} affects effective sample size, $n_{effective}$
 - 3. $n_{effective}$ affects stock-assessment variance Var(X)
 - 4. Var(X) affects management performance
- Bootstrap simulation for step #1
 - Simulation-test using age-structured operating model
- Theoretical result for step #2
 - Simulation-test using population-dynamics model

Thorson, Bryan, Hulson, Punt. 2020. Simulation testing a new multi-stage process to measure the effect of increased sampling effort on effective sample size for age and length data. ICES Journal of Marine Science 77:1728–1737.

Optimizing age-reading efforts

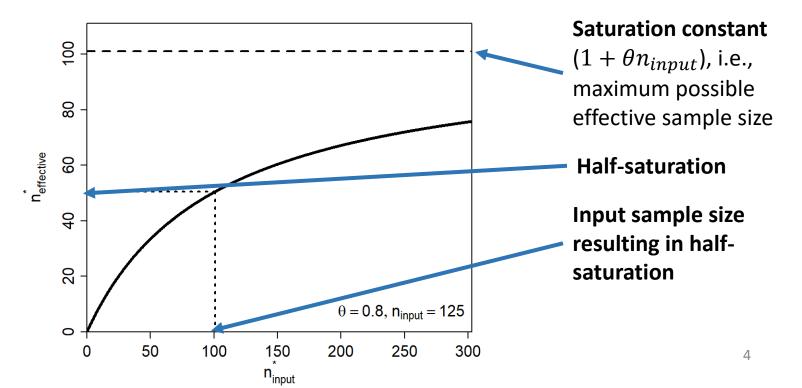
Step #1 approach – Simulation evaluation

- Fit age-structured spatio-temporal model to walleye Pollock and use as operating model
- Simulate proportions using operating model
- Sample age-reads and calculate input-sample size
- Bootstrap with twice as many ages per tow, and use as predicted change
- Compare with true value when sampling twice as many age-reads

Optimizing age-reading efforts

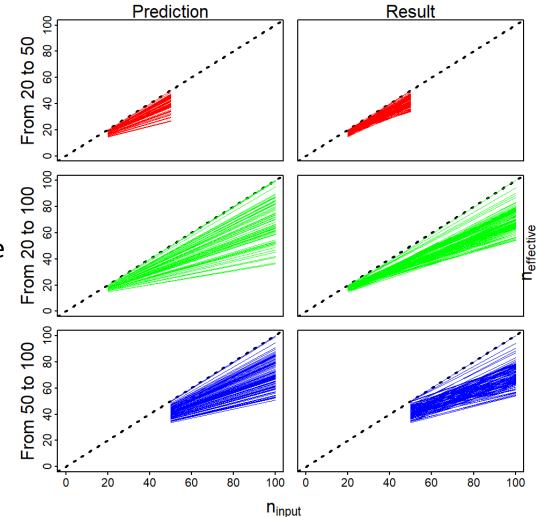
Step #2 approach – Theoretical relationship

1. Based on "linear" Dirichlet-multinomial approach to weighting age/length data


$$n_{effective}(t) = \frac{1}{1+\theta} + n_{input}(t)\frac{\theta}{1+\theta}$$

2. Decompose variance into model and sampling error $Var_{total} = Var_{sampling} + Var_{model \, mis-specification}$... and plug in estimates... $\frac{C}{n_{effective}} = \frac{C}{n_{input}} + \sigma_{model}^{2}$... and predict effective sample size $n_{effective}^{*}$ under a new input sample size n_{input}^{*} $\frac{C}{n_{effective}^{*}} = \frac{1}{n_{input}^{*}} + \sigma_{model}^{2}$

3. Predict effective sample size $n_{eff,ective}^*$ given new input sample size n_{input}^* $n_{effective}^*(t) = \frac{n_{input}^*(t)(1 + \theta n_{input}(t))}{n_{input}^*(t) + (1 + \theta n_{input}(t))}$ ³ Optimizing age-reading efforts Step #2 approach – Theoretical relationship


$$n_{effective}^{*}(t) = \frac{\alpha n_{input}^{*}(t)}{n_{input}^{*}(t) + \beta}$$

• a.k.a. Michaelis-Menten relationship with saturation and halfsaturation constant $\alpha = \beta = 1 + \theta n_{input}(t)$

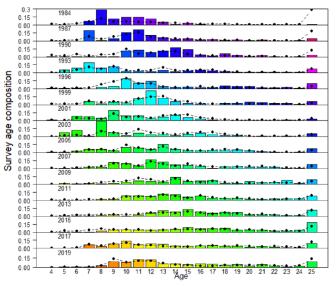
Optimizing age-reading efforts Step #2 approach – Simulation evaluation

- Simulate age-structured dynamics with age-andtime varying selectivity
- Fit age-structured model with Dirichlet-multinomial and constant selectivity
 - Age data downweighted due to model mis-specification
- Predict change in effective sample size
- Compare with effective sample size given larger input sample size

The impact of changes to otolith field-sampling and ageing effort on input sample sizes and catch recommendation uncertainty

Project Team

- Jim Thorson
- Andre Punt
- Pete Hulson
- Jim Ianelli
- Meaghan Bryan


Questions for plan team:

- Important EBS stocks to apply this to?
- Is it useful to have this type of analysis become a routine part of assessments?
- Should AFSC have a formal process to evaluate which stocks need more/less ageing effort?

Future research questions:

- Corroborate w/ model-based approach to generate N_{Input}
- How does reduction in tows affect designed-based index generation?
 What is this effect relative to age comps?

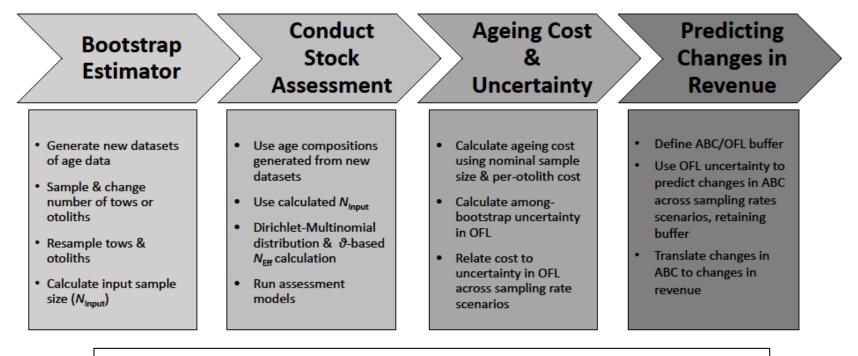
Background

Dusky Rockfish; Fenske et al. (2020)

Diri Multi

- Can otolith sampling efforts be redistributed across species w/o increasing survey effort or catch recommendation uncertainty?
 - What are the tradeoffs re: sampling cost & revenue?
- How would changes to sampling affect data weighting?
 - Multinomial vs. Dirichlet-Multinomial (D-M) likelihood
 - Multinomial typically paired w/ iterative tuning
 - D-M provides similar estimates of N_{Eff} w/o iterative process
 - Estimate θ (governs ratio of $N_{\text{Input}} \& N_{\text{Eff}}$)

Sample Sizes


- Nominal (NomSS): # of otoliths collected & aged
- <u>Input (N_{Input})</u>: initial relative weighting of comps data in model; upper bound on D-M weighting
- <u>Effective (N_{Eff})</u>: estimated weighting based on fit of comps data in model

chlet
nomial
$$\mathcal{L}(\widetilde{\mathbf{\pi}}_t; \mathbf{\pi}_t, \theta, n_t) = \frac{\Gamma(n_t + 1)}{\prod_{i=1}^{n_i} \Gamma(n_t \widetilde{\pi}_{a,t} + 1)} \frac{\Gamma(\theta n_t)}{\Gamma(n_t + \theta n_t)} \prod_{a=1}^{n_a} \frac{\Gamma(n_t \widetilde{\pi}_{a,t} + \theta n_t \pi_{a,t})}{\Gamma(\theta n_t \pi_{a,t})}$$

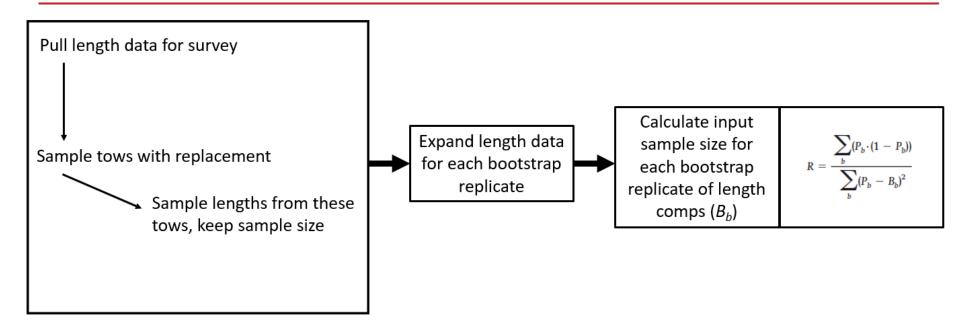
<u>Objectives</u>

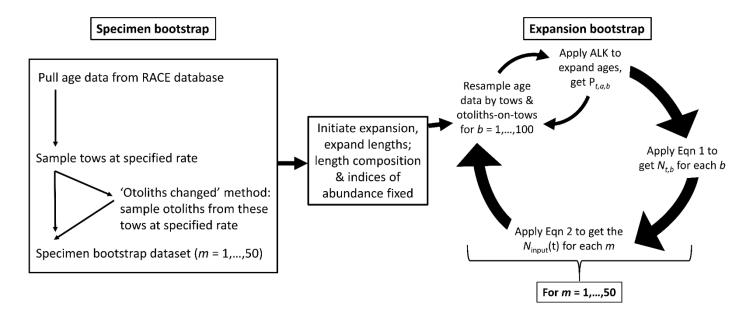
- 1. Identify the effect of re-distributing otolith sampling & ageing efforts among data-rich, data-moderate, and data-poor species on N_{Input} calculations
- 2. Associate a monetary cost to changes in otolith sampling & ageing efforts; define relationship between cost & uncertainty in catch recommendations from stock assessment models
- 3. Determine potential changes in revenue as a function of changing catch recommendation uncertainty across sampling rate scenarios

Work Flow

<u>Bootstrap Sampling Methods</u>:

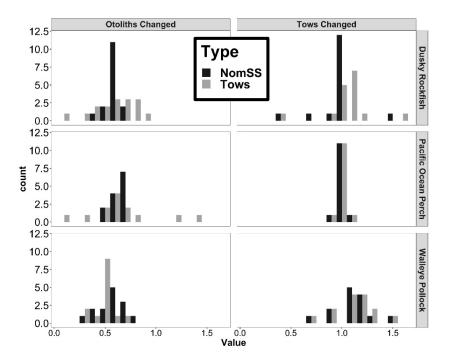
- Changing the number of otoliths for each tow ('Otoliths Changed')
- Changing the number of tows ('Tows Changed')
- <u>Bootstrap Sampling Scenarios</u>:
 - ± 0%, ± 33%, ± 67%

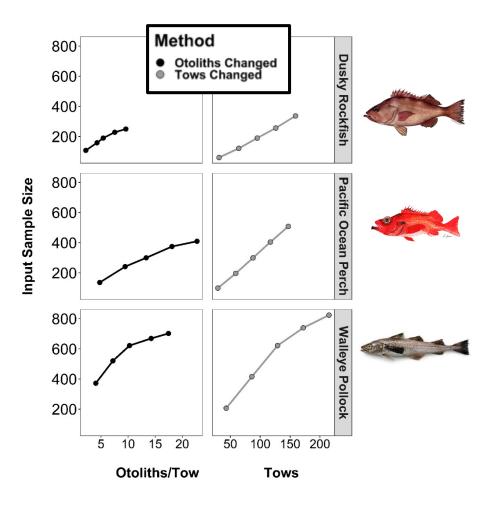

Bootstrap Estimator



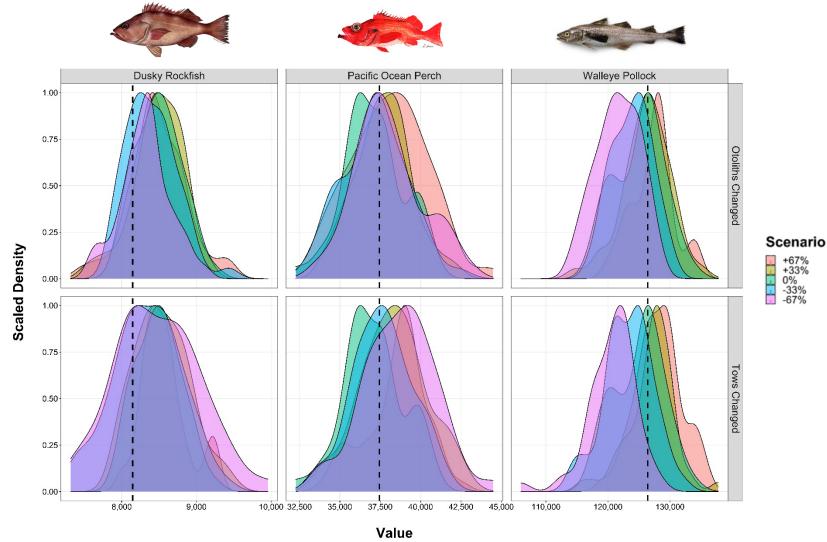
Bootstrapping of sample sizes for length- or age-composition data used in stock assessments

Ian J. Stewart and Owen S. Hamel



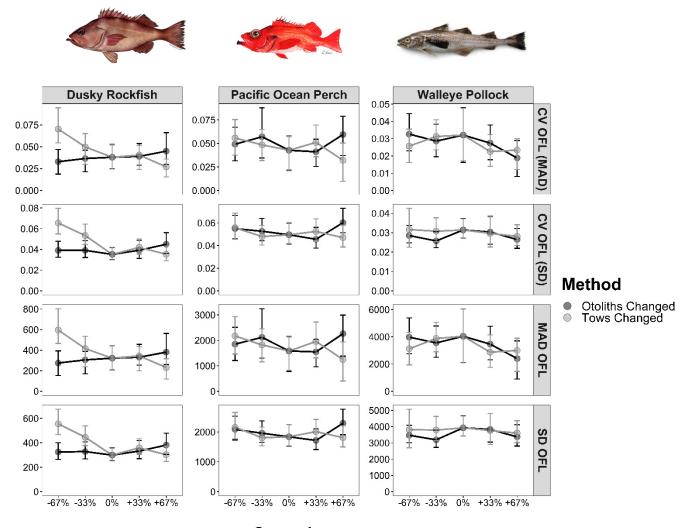

Bootstrap Estimator

Equation 1	$N_{t,b} = \frac{\sum_{a=1} P_{t,a,b} \times (1 - P_{t,a,b})}{\sum_{a=1} (P_{t,a,b} - \hat{P}_{t,a})^2}$	Variance in bootstrapped comps
Equation 2	$N_{\text{Input}}(t) = \left(\frac{\sum_{b=1}^{N_{t,b}} N_{t,b}^{-1}}{100}\right)^{-1}$	Harmonic mean


Bootstrap Estimator

Model Output (OFL):

- Model runs cycled through
 - **N**_{Input}(t) from bootstrap estimator
 - All bootstrap replicates of **P**_{t,a,b}



– – Original Model

Uncertainty in OFL

Metric

• 0% scenario is just resampled

Scenario

Cost-Revenue

P-star approach:

٠

•

٠

٠

Cost-Revenue		s rockfish ocean perch	\$USD/lb 0.442 0.196	\$USD/mt 974.4 432.1	\$USD millions 0.94 10.18	Ν	Method	
		/e pollock	0.130	304.2	36.12		 Otoliths Changed Tows Changed 	
star approach:		_	MAD log	(OFL)	SD log(OFL)			
Define log(ABC/OFL) buffer		_		-		Du		
Among-bootstrap OFL uncerta Reported \$USD/mt revenue	iinty	(asu	?		?	sky Rockfish	Dusky Rockfish	
Calculate new ABCs for each sampling scenario based on buffer & OFL uncertainty		Change in Revenue (Million USD)	Ş		?	Pacific Ocean		
Per-otolith sampling cost appl to # of otoliths from each ±% sampling scenario	ied	nge in Re				1 Perch		
		Cha	?		?	Walleye Pollock		

Jim's Acknowledgements

Co-authors

• Meaghan Bryan, Pete Hulson, Haikun Xu, André E. Punt

Reviewers

- Tom Helser, Ian Stewart, Jim Ianelli
- Alaska Fisheries Science Center program support
- Chris Lunsford, Tom Helser, Anne Hollowed, Stan Kotwicki Journal input
- Shijie Zhou (editor) and two anonymous reviewers
 Funding
- HEPR-MESA-SSMA activity plan on age reductions

The impact of changes to otolith field-sampling and ageing effort on input sample sizes and catch recommendation uncertainty

Project Team

- Jim Thorson
- Andre Punt
- Pete Hulson
- Jim Ianelli
- Meaghan Bryan

Questions for plan team:

- Important EBS stocks to apply this to?
- Is it useful to have this type of analysis become a routine part of assessments?
- Should AFSC have a formal process to evaluate which stocks need more/less ageing effort?

Future research questions:

- Corroborate w/ model-based approach to generate N_{Input}
- How does reduction in tows affect designed-based index generation?
 What is this effect relative to age comps?