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Coupled physical/biological models can be used to downscale global climate change to the ecology of
subarctic regions, and to explore the bottom-up and top-down effects of that change on the spatial
structure of subarctic ecosystems—for example, the relative dominance of large vs. small zooplankton in
relation to ice cover. Here we utilize a multivariate statistical approach to extract the emergent properties
of a coupled physical/biological hindcast of the Bering Sea for years 1970–2009, which includes multiple
episodes of warming and cooling (e.g. the recent cooling of 2005–2009), and a multidecadal regional
forecast of the coupled models, driven by an IPCC global model forecast of 2010–2040. Specifically, we
employ multivariate empirical orthogonal function (EOF) analysis to derive the spatial covariance among
physical and biological timeseries from our simulations. These are compared with EOFs derived from
spatially gridded measurements of the region, collected during multiyear field programs. The model
replicates observed relationships among temperature and salinity, as well as the observed inverse
correlation between temperature and large crustacean zooplankton on the southeastern Bering Sea shelf.
Predicted future warming of the shelf is accompanied by a northward shift in both pelagic and benthic
biomass.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The Bering Sea ecosystem

The hydrography and climatology of the Bering Sea result in a
highly productive ecosystem, with huge populations of plankton,
shellfish, finfish, marine birds and marine mammals. This ecosys-
tem supports major fisheries. Such intense production derives in
part from a broad shelf with strong tides, plentiful iron, and
seasonal stratification, adjacent to a deep, macronutrient-rich
basin. The southeastern shelf includes three biophysical domains:
a well-mixed inner region (∼0–50 m), a middle region which
is well-mixed in the winter and has two distinct layers in
the summer (∼50–100 m), and an outer region which is more
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gradually stratified (∼100–200 m) (Coachman, 1986; Kachel et al.,
2002). Within these regimes, the relative magnitude of pelagic vs.
benthic pathways of carbon flux varies interannually, and is
believed to be strongly influenced by the extent of seasonal ice
through its effects on stratification (Hunt et al., 2002). Recent
cooling trends in the Bering Sea (Stabeno et al., 2012a) have been
documented by the Bering Sea Ecosystem Program (BEST), the
Bering Sea Integrated Ecosystem Research Program (BSIERP), the
US Bering-Aleutian Salmon International Survey (BASIS), and the
North Pacific Climate Regimes and Ecosystem Productivity Pro-
gram (NPCREP). The relative importance of pelagic vs. benthic
pathways is likely to shift under the influence of global warming,
partially through its impact on seasonal ice extent in the Bering
Sea. Field data suggest that recent cold temperatures in the Bering
Sea have led to an increase in large crustacean zooplankton,
favored as food items by juvenile pollock in the fall season
(Coyle et al., 2011).

The revised “oscillating control hypothesis” (OCH) of Hunt
et al. (2011) relates temperature and seasonal ice cover in the
of observed and modeled biophysical variability on the Bering Sea
/j.dsr2.2013.04.007i
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southeastern Bering Sea to the production of zooplankton and fish.
This revised hypothesis may be summarized as follows.

Under warm conditions, the seasonal ice cover melts early
in the year (February–March). This releases freshwater at the
surface, but there is too much mixing and not enough sunlight
to support a phytoplankton bloom at this time. Instead, the bloom
occurs later (May–June), due to thermal stratification of relatively
warm waters. These conditions favor the growth of small neritic
copepods, as compared to large crustacean zooplankton (LCZ)
(mid- to large-sized copepods, e.g. Calanus marhallae, and euphau-
siids, e.g. Thysanoessa rashii and Thysanoessa inermis). In general,
these warm conditions promote energy flow into the pelagic (vs.
benthic) food chain.

Under cold conditions, the ice cover melts late in the year
(March–April), and an early bloom (April–May) follows due to the
enhanced stratification of the water column. These conditions do
not necessarily impede the growth of small neritic copepods, but
do enhance the production of larger copepods, which need the
early bloom to recruit from nauplii to copepodites in the south-
eastern Bering Sea. Less of this spring production goes into the
pelagic food chain, and more into the benthic food chain.

The OCH also includes the linkage of these lower trophic
dynamics to fish recruitment. These will not be considered in this
paper, since our model includes only physics through zooplankton.
Future research with a model including fish (Aydin et al.,
unpublished) will address these issues.

1.2. The multivariate analysis

Coupled physical/biological models can be used to downscale
global climate change to the ecology of subarctic regions, and to
explore the bottom-up and top-down effects of that change on the
spatial structure of subarctic ecosystems, such as those predicted
by the OCH. If an ice-free Bering is fundamentally different from
one with ice cover, we can expect biophysical “modes” to emerge
in a statistical analysis of models and data. Other atmospheric
factors, such as changing wind direction or the frequency of
storms, could likewise be expected to have widespread impact
on the system, and emerge as broad-scale patterns in multivariate
analyses. In the present work, we focus on temperature effects.

A cursory analysis of ocean model output typically reveals
broad-scale patterns which appear to strengthen and weaken
synchronously with a major forcing variable. In addition, we may
notice that certain physical and biological variables tend to rise
and fall together. A formal statistical evaluation of model output
can be used to quantify the response of single variables over the
entire model domain. An analysis of the spatial covariance in
gridded data is frequently accomplished using empirical orthogo-
nal functions (EOFs), which compactly include most of the total
variance of the system within a few dominant temporal and
spatial modes (Preisendorfer, 1988). However, for a complex
biophysical model, the covarying changes among different state
variables of the system may be of even greater interest (Allen and
Somerfield, 2009). With multivariate EOFs, we may examine the
covariance structure not only across space and time, but also
across state variables. The method deployed here is essentially a
form of combined principal component analysis (CPCA; Bretherton
et al., 1992). Where possible, a similar analysis can be applied to
real data, as a stringent test of model (and data) performance.
These methods will be explored more fully in Section 2.4.

1.3. Organization of this paper

We begin with a description of the methods used for the
physical and biological modeling of this ecosystem, the data used
for comparison with the models, and the statistical methods used
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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for the multivariate analysis of models and data. This is followed
by a description of basic features of the model output as compared
with data, a limited multivariate analysis over a 6-year period
where both model and data overlap, and the more extensive
multivariate analysis using multidecadal model runs.
2. Methods

2.1. The physical model

2.1.1. Model structure, forcing, and boundary conditions
The physical model used here is based on an implementation of

the regional ocean modeling system (ROMS) for the Northeast
Pacific (NEP-5) as described by Danielson et al. (2011; henceforth
referred to as DCHWS). ROMS is a sigma-coordinate model with
curvilinear horizontal coordinates; a description of basic features
and implementation can be found in Haidvogel et al. (2008) and
Shchepetkin and McWilliams (2005). The NEP-5 grid has approxi-
mately 10 km horizontal resolution, with 60 vertical levels. Fine-
scale bathymetry is based on ETOPO5 and supplementary datasets
as described in DCHWS; smoothing of that bathymetry was
utilized for numerical stability. Any regions shallower than 10 m
were set to be 10 m deep. Mixing is based on the algorithms of
Large et al. (1994). Both ice (Budgell, 2005) and tidal dynamics are
included in this model; the explicit inclusion of tidal flows allows
tidally generated mixing and tidal residual flows to develop.
Freshwater runoff was applied by freshening of the salinity field
within a few gridpoints of the coastline, using the monthly runoff
values of Dai et al. (2009). Bulk forcing, based on algorithms of
Large and Yeager (2008), was used to relate winds, air tempera-
ture, relative humidity, and downward shortwave and longwave
radiation to surface stress and the net transfers of sensible heat,
latent heat, net shortwave and net longwave radiation through the
sea surface. The simulation detailed in DCHWS covers the period
1970–2004, which includes substantial interannual and interde-
cadal variability.

For the present work we utilized three forcing datasets, with
the intent of spanning the years 1970–2009 (hindcast) and 2010–
2040 (forecast). The common ocean reference experiment reana-
lysis (CORE; Large and Yeager, 2008) was utilized for a hindcast of
years 1969–2004. The climate forecast system reanalysis (CFSR;
Saha et al., 2010) was utilized for a hindcast of years 2003–2009.
The coupled global climate model (CGCM3) from the Canadian
Centre for Climate Modelling and Analysis (Flato et al., 2000) was
utilized for a forecast of years 2003–2040. Note that CORE is a
global atmospheric reanalysis spanning 1950–2004, while CFSR is
a coupled atmospheric and oceanic reanalysis spanning 1979–
present. Use of the CORE product for most of our hindcast is based
on the availability of CORE forcing variables for the earlier decades,
as well as its broad acceptance within the oceanic community.
CORE products were not available for years beyond 2005 at the
time our analyses were begun, while CFSR products were not
available for years before 1979; hence both were employed for
different portions of our hindcast. Overlapping runs for 2003 and
2004 allowed a comparison of results using the two reanalyses;
these were used to adjust CFSR for compatibility with CORE.
Ultimately our “continuous” (i.e. concatenated) hindcast/forecast
series was composed of the CORE results for 1970–2004, CFSR
results for 2005–2009, and CGCM3 results for 2010–2040.

The CGCM3 forecast (specifically, CGCM3.1-t47, under emis-
sions scenario A1B) is one of the Intergovernmental Panel on
Climate Change (IPCC) models used to explore the coupled global
atmospheric and oceanic response to anticipated changes in
atmospheric CO2. CGCM3 makes use of the same ocean compo-
nent as that used in the earlier CGCM2 (Flato et al., 2000), but
of observed and modeled biophysical variability on the Bering Sea
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Fig. 1. Model domain with shaded bathymetry (m). The locations of biophysical
moorings M2 and M4 are shown.
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employs a substantially updated atmospheric component. Hind-
casts with the CGCM3 model have demonstrated fidelity to
present mean conditions in the Bering Sea (Wang et al., 2010);
hence it was selected as one of the several IPCC forecasts to use in
downscaling runs. Note that whereas CORE and CFSR are reana-
lyses based on the data, the CGCM3 is a free-running forecast
beyond 2001, and hence does not capture the details of inter-
annual variability during 2003–present. This necessarily results in
a degree of discontinuity between our CFSR and CGCM3 results at
the beginning of 2010.

For CORE- and CFSR-based runs, we utilized 6-hourly values for
wind speed, temperature, humidity and sea-level pressure, and
daily average values for shortwave and longwave radiation (the
model internally converts daily shortwave into instantaneous
values). CORE provided monthly values for rainfall; for CFSR we
used 6-hourly values. For CORE-based runs, the monthly runoff
estimates of Dai et al. (2009), available for 1948–2007, were used
near coastal boundaries. For CFSR, we utilized a monthly climatol-
ogy of runoff values based on the Dai et al. (2009) timeseries. For
CGCM3-based runs we utilized the available daily average values
of all atmospheric forcing values, and the same runoff climatology
as for CFSR. These attributes of the runs are summarized in Table 1.

A subset of the NEP-5 domain was utilized for our Bering Sea
biophysical simulations; this grid is henceforth referred to as
Bering10K. The domain is shown in Fig. 1. For the CORE-based
hindcast, initial and lateral boundary conditions were obtained
from the NEP-5 simulation of DCHWS (itself driven by CORE
forcing, with initial and boundary conditions from the SODA
v2.0.2 reanalysis, Carton and Giese, 2008). For the CFSR-based
hindcast, hourly values from the CFSR ocean model (http://
nomads.ncdc.noaa.gov/data.php#cfs-reanal) were filtered to 5-
day averages for use as boundary conditions. This is the same
time averaging used for the SODA BCs in DCHWS. For the CGCM3-
based forecast, monthly averaged properties from CGCM3 ocean
model were used as boundary conditions. All the boundary
conditions were enforced using the hybrid nudging/radiation
scheme of Marchesiello et al. (2001). The hindcast using CFSR
boundary and atmospheric forcing, and the forecast using CGCM3,
were both initialized in January 2003 from CORE output, so as to
overlap the CORE hindcast during 2003–2004. After calibration of
shortwave and longwave fluxes (see Section 2.1.2), no significant
differences were found between the CORE and CFSR hindcasts of
the Bering Sea during these 2 years. As in DCHWS, outflow
through the Bering Strait was fixed to a value of 0.8 sv.

The full 60-level vertical resolution of Bering10K has been used
for multiyear simulations of biophysical dynamics of the Bering
Sea (Gibson et al., unpublished). Here, to facilitate the execution of
long multidecadal biophysical runs, we have reduced the vertical
resolution from 60 to 10 levels. We fully recognize the desirability
of greater vertical resolution; the use of only 10 levels inevitably
degrades the resolution of features such as the seasonal pycnocline
and the subsurface chlorophyll maximum. However, as shown
in the Results section, this reduced version still retains most
of the essential physical and biological dynamics, as well as
Table 1
Time resolution of forcing and boundary variables for the three runs. Tair¼air tem
sward¼shortwave radiation (W m−2); lwrad¼ longwave radiation (W m−2); Uwind,
Runoff¼coastal runoff (m s−1); BCs¼physical oceanic boundary conditions.

Run Tair Pair Qair swrada

CORE (1969–2004) 6 h 6 h 6 h 1 da

CFSR (2003–2009) 6 h 6 h 6 h 1 da

CGCM3 (2003–2040) 1 d 1 d 1 d 1 da

a sward is converted to instantaneous values (based on solar altitude) in ROMS.
b CORE uses monthly runoff estimates; CFSR and CGCM3 use monthly climatology.

Please cite this article as: Hermann, A.J., et al., A multivariate analysis
shelf: Multidecadal.... Deep-Sea Res. II (2013), http://dx.doi.org/10.1016
model-generated relationships among physical and biological
qualities. This makes it a very useful (albeit imperfect) tool to
investigate the interannual variability of the entire system, the
covariance among different elements of the system, and the spatial
relationships of that covariance over multiple decades.
2.1.2. Calibration of the physical model
While our Bering10K physical model is very similar to that used

in DCHWS, certain aspects were calibrated to better fit the
observed temperature and salinity fields of the Bering Sea. These
include the following:
1.
per
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Sensible and latent heat fluxes, calculated through the Large
and Yeager (2009) algorithms, were increased by 25% each. This
was found necessary to keep the water column from over-
heating during the summer months, in response to absorption
by shortwave radiation (this bias was evident in both 60- and
10-layer versions of the model, e.g. see Fig. 8 of DCHWS).
Reasonable justifications for this change include the extreme
roughness of the sea surface in the Bering Sea, which could
result in significant heat transfer due to sea spray (Andreas
et al., 2008), and the fact that most bulk flux algorithms were
initially developed using equatorial and mid-latitude data,
rather than subpolar and polar data.
2.
 The latitude-dependent open-ocean albedo of the Bering Sea
surface was increased from ∼0.075 to ∼0.15. As in (1), this was
found necessary to reduce excessive summer temperatures,
which are largely driven by the shortwave flux. Reasonable
justifications for this change include the prevalence of white-
caps (which reflect sunlight) in the Bering Sea. In general,
observed open-ocean albedo is higher at high latitudes than in
the tropics (Large and Yeager, 2009). The adjustment of albedo,
ature (1C); Pair¼sea level pressure (mb); Qair¼specific humidity (kg kg−1);
nd¼eastward and northward wind velocity (m s−1); Rain¼rainfall (m s−1);

wrad Uwind, Vwind Rain Runoffb BCs

d 6 h 1 mo 1 mo 5 d
d 6 h 6 h 1 mo 5 d
d 1 d 1 d 1 mo 1 mo

bserved and modeled biophysical variability on the Bering Sea
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rather than incident shortwave radiation per se, was based on a
comparison of shortwave measurements at station M2 with the
downward shortwave forcing in CORE; the two were found in
good agreement, i.e. CORE does not appear to overestimate
shortwave as had been found with earlier NCEP results (Ladd
and Bond, 2002). A second possible factor, which could reduce
the conversion of incident shortwave radiation to heat in the
water column, is the absorption of photons via the intense
primary production of the Bering Sea. A rough calculation
suggests this may be a significant loss (as much as 10 W/m2

of energy in mid-summer), but further work is needed to
quantify this term.
3.
 Sea surface salinity is relaxed to climatological values as in
DCHWS, but with a slower timescale (in DCHWS 2 months;
here 1 year), to allow more interannual variability.
4.
 Water column thickness in ROMS is limited to be no thinner
than 0.1 m above the sea bottom, to ensure numerical stability.
5.
 A comparison of CFSR and CORE data for overlapping years
revealed small differences in both shortwave and longwave
components of the forcing. Based on a comparison of CORE and
CFSR values for 2002–2006, the CFSR downward shortwave
was attenuated by 10%, and the CFSR downward longwave was
attenuated by 3%, prior to its use as atmospheric forcing.
6.
 The DCHWS model utilized a time-invariant river discharge,
applied as a spatially dependent surface flux. Here, the monthly
and interannually varying discharge values of Dai et al. (2009)
were used for this purpose; these yield an improved fit with
salinity data. Where data were not available (beyond 2004), a
monthly climatology based on the available record was applied.
2.2. The biological model

The biological model used here is described in Gibson and Spitz
(2011). Univariate comparisons with temperature and nutrient
data will be described elsewhere (Gibson et al., unpublished).
The major components of this model are: nitrate, ammonium,
iron, small phytoplankton, large phytoplankton, microzooplank-
ton, small copepods, large copepods (e.g. Neocalanus spp.), krill
Fig. 2. Structure of the NPZ model used in this

lease cite this article as: Hermann, A.J., et al., A multivariate analysis
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(euphausiids), jellyfish, ice phytoplankton, iron, nitrate, ammo-
nium, slow sinking detritus, fast sinking detritus, benthic detritus,
and benthic infauna. These components are summarized in Fig. 2.
While the present work concerns only the lower trophic level
dynamics of the system, other simulations couple these with a
size- and age-structured fish model (FEAST; Aydin et al.,
unpublished) to examine both top-down and bottom-up control
of zooplankton.

As with surface salinity, a small relaxation term (1 year time-
scale) was utilized to guide iron, nitrate, and ammonium back to
climatological profiles, to prevent spurious long-term drift. Such
drift is due primarily to missing elements of the nitrogen and iron
cycles, which are not closed in this model. A comparison of
simulations with and without this relaxation term demonstrated
no appreciable difference over a 4-year period; at the same time,
this small corrective term proved essential for our multidecadal
runs.
2.3. Observations compared with the model

Three types of data were compared with the model: Eulerian
timeseries from biophysical moorings at stations M2 (56.87N,
164.05W) and M4 (57.85N, 168.87W) along the 70 m isobaths
(mid-shelf, Fig. 1), spatially gridded velocities derived from dro-
gued Lagrangian drifter data on the shelf, and spatially gridded
hydrographic and chlorophyll data from repeated surveys.

The biophysical mooring data have been described in a series of
papers by Stabeno et al. (2001, 2007, 2010, 2012a, 2012b). A nearly
continuous multiyear series of temperature, salinity, and currents,
spanning the water column, has been maintained at M2; similar
(albeit less complete) series have been maintained at locations
further north along the 70 m isobaths (e.g. M4). Winds and solar
insolation have been measured continuously at M2 during many of
these years. While salinometer data are sparser than thermistor
data, the combined data were sufficient to generate estimates of
water column stability. As in Ladd and Stabeno (2012), we used the
potential energy anomaly ϕ, which is the amount of energy
required to completely mix the water column (Simpson et al.,
study (from Gibson and Spitz, 2011).

of observed and modeled biophysical variability on the Bering Sea
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1978):

ϕ¼ 1
h

Z 0

−h
ðρ−ρÞgz dz; where ρ¼ 1

h

Z 0

−h
ρ dz: ð1Þ

The same formula was applied to model output, for comparison
with the Ladd and Stabeno (2012) values at M2.

Based on time- and depth-averaged temperature at M2, the
years are divided into three categories: cold (1995, 1997, 1999,
2007–2010); average (1996, 2000, 2006); and warm (1998, 2001–
2005). This classification is based on Stabeno et al. (2012a). Using
this classification of years, we compare measured velocities at M2
with their model equivalent at near-surface (10–15 m) and near-
bottom (50–55 m) locations.

We also compare climatological velocities from drogued drifter
data with their model equivalent on the Bering Sea shelf. Our basic
methodology for drifter data is similar to that described in Stabeno
and Reed (1994). Drifters were outfitted with holey-sock drogues
and tracked via satellite. Data were available for years 1995–2006;
hourly changes in drifter position were used to calculate the local
velocity. Model climatology was derived from 1986 to 2004 of the
CORE-forced hindcast. Both model and drifter data from May 15 to
October 15 of each year were binned using the same, regular
0.51�0.51 latitude–longitude grid. From the data, only those bins
with a total of at least 200 hourly drifter observations were
retained for comparison (note this can be from a single drifter
over 200 h, or many drifters over shorter periods). Further, only
those locations shallower than 200 m are compared; observations
were too sparse beyond the shelf break to obtain stable mean
values at the 0.51�0.51 resolution, due to intermittent shelf-break
eddies in both model and data.

Hydrographic surveys conducted under the BASIS program are
used in the multivariate analysis. BASIS data include observations
of temperature, salinity, nutrients, phytoplankton, zooplankton,
and fish, obtained between mid-August and early October from
2002 to present. In the present work, we utilize only the
temperature, salinity, and total chlorophyll data, which were
available as gridded fields for years 2003–2009. The sampling
grid covers the eastern Bering Sea shelf from 55N to 65N; grid
spacing is approximately 55 km. Station locations and other details
of BASIS methodology are described in Danielson et al. (2010,
2011).
2.4. The multivariate statistical analysis

While multivariate statistics are routinely applied to biological
data, with few exceptions (e.g. Allen and Somerfield, 2009) they
have not been applied to biophysical model output. Here we
provide a brief description of our multivariate method and its
potential value. In physical oceanography and meteorology, EOFs
are used as a standard tool to relate change in one part of the fluid
to changes in some other part—for example, a correlation in the
rise and fall of SSH in different parts of the ocean, driven by broad-
scale winds. EOFs are the most compact way of expressing the
common variance of a collection of timeseries, as they are the
eigenfunctions of the matrix of covariances among all the series
(Preisendorfer, 1988). Typically they are applied using timeseries
of a single variable at multiple locations:

Tðx1; t1Þ; Tðx1; t2Þ; Tðx1; t3Þ;……Tðx1; tNÞ ð2aÞ

Tðx2; t1Þ; Tðx2; t2Þ; Tðx2; t3Þ;……Tðx2; tNÞ ð2bÞ

TðxM; t1Þ; TðxM; t2Þ; TðxM; t3Þ;……TðxM ; tNÞ ð2cÞ

In biology, principal component analysis is frequently used
to establish the co-occurrence of species from a collection of
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
shelf: Multidecadal.... Deep-Sea Res. II (2013), http://dx.doi.org/10.1016
samples at one location:

Nðx1; t1Þ;Nðx1; t2Þ;Nðx1; t3Þ;……Nðx1; tNÞ ð3aÞ

Pðx1; t1Þ; Pðx1; t2Þ; Pðx1; t3Þ;……Pðx1; tNÞ ð3bÞ

Zðx1; t1Þ; Zðx1; t2Þ; Zðx1; t3Þ;……Zðx1; tNÞ ð3cÞ
or a set of multivariate observations scattered in space and time (e.
g. Allen and Somerfield, 2009)

Nðx1; t1Þ;Nðx2; t2Þ;Nðx3; t3Þ;……NðxM ; tMÞ ð4aÞ

Pðx1; t1Þ; Pðx2; t2Þ; Pðx3; t3Þ;……PðxM ; tMÞ ð4bÞ

Zðx1; t1Þ; Zðx2; t2Þ; Zðx3; t3Þ;……ZðxM ; tMÞ ð4cÞ
where N, P, Z represent three different biological properties, e.g.
nutrients, phytoplankton, and zooplankton.

Note how in (3a)–(3c), the different variable types are analo-
gous to the different spatial locations used in (2a)–(2c). In either
case the fundamental goal is the same; to compactly describe the
covariance among a collection of timeseries. To this end, a N�N
matrix is constructed whose elements are the covariance (or
correlation) of the ith series to the jth timeseries for all i¼1,…N
and j¼1,…N. The eigenvectors and eigenvalues of this matrix are
derived; the eigenvectors are then interpreted as coupled modes
of variability among the series. For EOF analysis, this results in an
orthogonal set of spatial patterns (the “modes”) and an orthogonal
set of timeseries (the principal components, i.e. PCs).

Since our aim here is the examination of coupled spatial modes
of biophysical variability, we use a multivariate set of timeseries
spanning the model domain:
of o
/j.d
N(x1,t1), N(x1,t2), N(x1,t3),……N(x1,tN)
P(x1,t1), P(x1,t2), P(x1,t3),……P(x1,tN)
Z(x1,t1), Z(x1,t2), Z(x1,t3),……Z(x1,tN)
T(x1,t1), T(x1,t2), T(x1,t3),……T(x1,tN)
………………………………………………

N(xM,t1), N(xM,t2), N(xM,t3),……N(xM,tN)
P(xM,t1), P(xM,t2), P(xM,t3),……P(xM,tN)
Z(xM,t1), Z(xM,t2), Z(xM,t3),……Z(xM,tN)
T(xM,t1), T(xM,t2), T(xM,t3),……T(xM,tN)
Again, the intended product is the covariance structure of the
coupled system—that is, which features of the biological and
physical system covary, and what is the spatial structure of this
covariance. At the outset, we expect that none of the multivariate
modes from this analysis will explain as much of the variance
contained a single variable, as can be explained through univariate
EOF analysis. However, this approach is a useful way to summarize
the spatial modes in which different hydrographic features and
trophic levels rise and/or fall together, either through self-
generated dynamics (e.g. phytoplankton decrease as zooplankton
increase) or through a common driver (warmer temperatures lead
to increased/decreased production of certain trophic levels in
particular areas). For the Bering Sea, shifts to the north and/or
inshore are of particular interest.

It is important in such an analysis to avoid the pitfall of
quadrature. As an example, when control is neither fully top-
down nor fully bottom-up, a biological system (real or modeled)
may develop predator–prey cycles (and/or seasonal succession)
which place predator and prey 901 out of phase with each other—
that is, closely linked but perfectly uncorrelated. A simple example
is a phytoplankton bloom followed with some time lag by
zooplankton growth. To guard against this pitfall, we must take
care to average over the timescale on which such cycles would
occur. For the full multivariate analysis of Section 3.3.2, we use
bserved and modeled biophysical variability on the Bering Sea
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multiyear timeseries composed of annual averages for each vari-
able and location.

Note also the need for normalization of the timeseries prior to
analysis; each variable is in different units, and we seek to give all
of them an equal chance to contribute to the biophysical modes.
Here, we proceed by normalizing each variable using its standard
deviation over all space and time. This simultaneously eliminates
units and emphasizes the relative change in each case. Once the
EOFs are calculated on these normalized series, we de-normalize
the results by multiplying back by the set of standard deviations.
The results are then plotted using shading levels ranging from −1
to +1 s.d. of each variable. In this manner, we illustrate how
strongly each of the variables has contributed to the coupled
mode, relative to that variable's own total variance.

Many timeseries could be used as input for this type of multivariate
analysis, up to the full 3D fields of every modeled variable, as well as
the many fluxes among those variables. For the present investigation,
we select some of themajor scalar variables which are believed to play
a role in the OCH, with a focus on temperature, ice, and zooplankton.
We further limit our attention to 2D variables (e.g. ice cover), 2D slices
from 3D variables (sea surface and sea bottom temperature), or
vertical averages of 3D variables (e.g. zooplankton).

Two types of analysis were performed:
1)
P
s

A direct comparison with BASIS data was carried out for sea
surface temperature, sea bottom temperature, sea surface
salinity and averaged phytoplankton in the upper 40 m.
Model-equivalent values from the CFSR-forced hindcast were
sampled at precisely the same locations and times as the BASIS
data for this comparison (sampled days span mid-August–early
October of each year). A carbon-to-chlorophyll ratio of 50:1 was
assumed for this analysis, to convert chlorophyll values (from
BASIS surveys) to large plus small phytoplankton biomass
(from the model output). A summary of the variables used for
this analysis is shown in Table 2. Extensive gridded data do not
exist for other seasons, however, univariate comparisons with
physical and biological have quantified the correspondence to
observed temperature and nutrient fields in most areas (Gibson
et al., unpublished).
2)
Table 2
Variables used in the multivariate analysis of the BASIS data, and its model
equivalent.

Surface temperature SST 1C
Bottom temperature SBT 1C
Surface salinity SSS psu
Phytoplankton (top 40 m ave) PHYT mg C m−3
An extended multiyear analysis was carried out using annual
averages of 15 properties from the model output, chosen to
include features relevant to the OCH hypotheses (temperature,
ice, nutrients, and multiple trophic levels). A summary of the
variables used for these analyses is shown in Table 3. This more
extensive multivariate analysis was applied to three different
groupings of the simulation output: (1) a concatenated series
of CORE (1970–2004) and CFSR (2005–2009) hindcasts; (2)
last two decades of the CGCM3 forecast (2020–2040); (3)
Table 3
Variables used in the multivariate analysis of the simulations.

Surface temperature SST
Bottom temperature SBT
Surface salinity SSS
Ice cover ICECOVER
Mixed layer depth MLD

Vertical mixing (depth ave) AKTS
Nitrate+ammonium (depth ave) NUT
Ice phytoplankton (surface layer ave) ICEPHYT
Small plus large phytoplankton (depth ave) PHYT
Microzooplankton (depth ave) MZOO
Small copepods (depth ave) COPE
Neocalanus (depth ave) NCA
Euphausiids (depth ave) EUP
Benthic detritus BENDET
Benthic infauna BENINF

lease cite this article as: Hermann, A.J., et al., A multivariate analysis
helf: Multidecadal.... Deep-Sea Res. II (2013), http://dx.doi.org/10.1016
a concatenated series of CORE (1970–2004), CFSR (2005–2009)
and CGCM3 (2010–2040).

After their de-normalization, the multivariate EOFs may be
interpreted as coupled spatial patterns for each of the variables,
describing how particular quantities rise and/or fall together. The
principal component timeseries for that mode, multiplied by the
de-normalized EOF, indicates a time history of rising/falling quan-
tities in the domain, in the original units of the variable. A spatial
map for temperature with both positive and negative values
indicates that, for that particular multivariate EOF, some parts of
the domain rise in temperature at the same time that other parts
fall in temperature, e.g. those different regions are negatively
correlated. In the same way, at a particular location, we may see
that temperature has positive EOF value while salinity has a
negative EOF value. This indicates that those variables are nega-
tively correlated at that location. Further, we may observe that
temperature has a positive EOF value at location A, while nitrate has
a negative EOF value at location B. This indicates that temperature
at location A is negatively correlated with nitrate at location B.
3. Results

3.1. 10-Level physical model performance

A detailed statistical analysis of the 60-level biophysical model
performance has demonstrated significant model skill in capturing
the spatial and temporal variability of both temperature and
nitrate in the top 40 m of the water column (Gibson et al.,
unpublished). The broad structure and seasonality of the nutrient
field are similar in both 60-layer and 10-layer models. A thorough
assessment of the 60-level physical model on the NEP-5 grid is
reported in DCHWS; these included a comparison of observed vs.
modeled ice and tides. As described in Section 2, our physical
model is similar in structure to that of DCHWS, albeit on a smaller
grid (a subsection with the same horizontal resolution as the full
NEP-5 grid), and with some modifications pertaining to surface
1C
1C
psu
fractional area
m (positive up coordinates;
hence negative change denotes deepening MLD)
m2 s−1

mg N m−3

mg C m−3

mg C m−3

mg C m−3

mg C m−3

mg C m−3

mg C m−3

mg C m−2

mg C m−2
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heat flux. Here, we describe representative properties of the
10-level model, and their comparison with data. Our intent is to
demonstrate that the 10-level model, while vertically coarse,
captures enough of the essential physics and biology of the region
Fig. 3. Climatological and weekly averaged model velocities at 40 m, from a simulation
January (A) and July (B) values; lower panels show a weekly average from January 2004
(a) January climatology, (b) July climatology, (c) 11 Jan 2004 and (d) 11 July 2004.

Fig. 4. Climatological modeled (red) vs. measured (black) summer (May 15–October 15
shaded (m). Measured values are derived from drogued drifter climatology. Left figure il
(red) vectors, and excludes locations with no measurements. (For interpretation of the r
this article.)

Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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to be useful as a tool to explore relevant aspects of past and future
interannual change. Ice and tidal results were in fact very similar
to those of DCHWS; here instead we focus on velocity, tempera-
ture and salinity results.
of years 1970 to 2009. Speed is shaded (m s−1). Upper panels show climatological
(C) and July 2004 (D). Bathymetric contours at 70 m and 1000 m depth are shown.

) velocities at 40 m depth for the Bering Sea. Velocities are in m s−1; bathymetry is
lustrates model vectors (red); right figure illustrates measured (black) and modeled
eferences to color in this figure caption, the reader is referred to the web version of
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3.1.1. Climatological circulation
The climatological circulation of the model exhibits major

observed circulation features between 54N and 66N: a vigorous
flow along the southern boundary of the Aleutians and through
Unimak Pass, and to the northwest along the shelf break (Fig. 3).
Weaker but persistent flows are to the northwest on the Bering
Sea shelf; these are strongest in winter. Weekly averaged velocities
Fig. 5. Modeled (x-axis) vs. observed (y-axis) values for climatological summer
eastward (red) and northward (blue) velocities at 40 m. Values are in m s−1. The
r-squared values are 0.54 and 0.70 for eastward and northward velocities,
respectively. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Near surface monthly

Near bottom monthly

V
el

oc
ity

 (
cm

 s
-1

)

Fig. 6. Monthly velocity climatology at station M2, from observation and model. (A) Nea
velocity from data; (D) near-bottom velocity from model. Colors indicate averages fromw
(C) are adapted from Stabeno et al. (2012a). (a) surface data, (b) surface model, (c) botto
figure caption, the reader is referred to the web version of this article.)
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exhibit more detailed structures, such as 200-km eddies along the
shelf break. Note how the climatological maps reveal strong
northwestward flows along the 50 m and 100 m isobaths in
winter; these correspond to frontal structures separating the
inner/middle and middle/outer biophysical regimes of the Bering
Sea (Coachman, 1986; Kachel et al., 2002).

3.1.2. Velocity climatology from drifters
In Fig. 4 we compare modeled and drifter-derived climato-

logical velocities at 40 m depth for Bering Sea summer (May 15–
October 15). Model-derived velocities are in conformance with the
available data in most areas. A scatterplot compares observed
climatological velocities with their equivalent from the 10-level
model (Fig. 5). The r-squared values are 0.54 for the eastward
and 0.70 for the northward velocities, respectively. There is a
slight bias towards weaker velocities in the model as compared
with data.

3.1.3. Mid-shelf velocity climatology
A comparison of measured climatological velocity by month at

station M2 (from Stabeno et al., 2012a) with their model equiva-
lent (Fig. 6) reveals a similar seasonal progression in both model
and data, with a tendency to offshore flow during the summer. The
observed and modeled summertime near-surface offshore flow is
more pronounced during cold years (Stabeno et al., 2012a).

3.1.4. Mid-shelf hydrography at stations M2 and M4
Thermistor arrays at mid-shelf stations M2 and M4 allow a

detailed comparison with model output. The CORE-driven
hindcast, even with only 10 vertical levels, captures the basic
seasonal and interannual trends as the data (Fig. 7). Seasonal
creation of the thermocline in summer is followed by its
destruction in the fall. The presence of ice in cold years is
 average currents at M2

 average currents at M2

r-surface velocity from data; (B) near-surface velocity from model; (C) near-bottom
arm years only (red), cold years only (blue) and all years combined (black). (A) and
m data and (d) bottom model. (For interpretation of the references to color in this
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Fig. 7. Comparison of measured vs. modeled temperatures at stations M2 (A and B) and M4 (C and D). Units are 1C. (a) M2 DATA, (b) M2 MODEL, (c) M4 DATA and (d) M4
MODEL.
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associated with near-freezing temperatures which extend to the
bottom (e.g. January–April 2009). The model exhibits similar
patterns at slightly reduced amplitude. Depth-averaged tem-
peratures are compared in Fig. 8. Model bias is smallest in
summer; largest discrepancies are found in winter, where the
model has a residual tendency to underestimate the areal extent
of ice at both M2 and M4 (not shown). When ice coverage is not
complete in a given grid cell, the average temperature there will
be above freezing. A straightforward adjustment of the ice
module can increase ice cover growth, as opposed to ice
thickness growth, when new ice is formed; this has been
applied to recent simulations and will be reported in a
future paper.

Salinity at M2 and M4 has been more sparsely sampled than
temperature. Rather than full vertical profiles, we compare salinity
timeseries at two depths: 15 m and 55 m (Fig. 9). In both model
and data, interannual variability is the dominant signal, and the
residual between model and data at 15 m is frequently less than
0.1 psu. This is in fact within the accuracy of the salinometer itself.
Note how the model generates a fresh, 20 m-deep surface layer in
summer, especially during cold years.

The model likewise captures the essential seasonal and inter-
annual patterns of stratification as expressed through the potential
energy anomaly ϕ at station M2 (Fig. 10). Stratification increases
rapidly in May and peaks around August. As with temperature
itself, the model exhibits the same pattern as the data, but at
slightly reduced amplitude.
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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3.2. Multidecadal behavior of the model

Before proceeding to the full multivariate analysis, we focus on
two aspects of the interannual/interdecadal performance of the
10-level model: temperature and large crustacean zooplankton.
3.2.1. Mid-shelf temperature timeseries
Multidecadal timeseries of depth-averaged temperature at M2

from the model, based on each of the three forcing datasets
(Fig. 11), exhibit marked interannual and interdecadal variability,
with some pronounced changes corresponding with regime shifts
of the larger North Pacific (e.g. the shift of 1976). The recent
periods of warming (1999–2004) and cooling (2005–2009) (see
Fig. 9) are clearly evident in the CORE and CFSR hindcasts. These
two hindcasts overlap during 2003–2004; the time plots of
temperature during those years show essentially identical results
(and hence are difficult to distinguish as separate lines in Fig. 11).
The CGCM3-based forecast indicates a slow warming trend, with
the 5-year mean average gradually rising from ∼3.75 1C to
∼5.25 1C by the mid-2030s. Note how the CGCM3 forecast, down-
scaled here beginning with year 2003, anticipated a colder series
of years in 2003–2006 and a warmer series of years in 2006–2010
than were actually observed. This level of mismatch is in fact
anticipated, as CGCM3 is a freely evolving coupled global air–sea
simulation unconstrained by data; as such it manifests different
interannual details than the real atmosphere and ocean.
of observed and modeled biophysical variability on the Bering Sea
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Fig. 8. Comparison of measured (black) vs. modeled (red) depth-integrated
temperature at locations M2 (A) and M4 (B). Units are 1C. (a) M2 depth-average
T and (b) M4 depth-average T. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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3.2.2. Correlation with large crustacean zooplankton
Observations during the recent period of cooling in the Bering

Sea suggest a tendency for large crustacean zooplankton (repre-
sented by euphausiids and neocalanus in the model) to covary
inversely with temperature (Hunt et al., 2011; Coyle et al., 2011).
This general tendency is apparent in the 10-level model results
over all three simulation periods (Fig. 12), and is consistent with
the detailed comparisons by region from the 60-level model
during warm vs. cold years (Gibson et al., unpublished).

3.3. Results from multivariate analysis

As noted in the methods, the multivariate EOFs may be interpreted
as coupled spatial patterns for each of the variables, describing how
particular quantities, at particular locations, rise and/or fall together.
Below we explore these patterns, and their amplitude through time.
3.3.1. Comparison with BASIS gridded data
The leading biophysical mode from the BASIS data exhibits a

correlated fall in surface and bottom temperatures (SST, SBT) in the
southeastern Bering Sea (Fig. 13). Higher sea surface salinity (SSS) is
found along the 70m isobaths during warmer years, and higher
concentrations of phytoplankton (PHYT) are observed during those
years. The leading biophysical mode from the corresponding model
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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output exhibits markedly similar patterns in SST, SBT and SSS during
warm/cold years, but a much weaker (and even negative) correlation
with PHYT. The temporal trend (first PC) of this mode is markedly
similar between the model and data; in both cases the dominant
signal reflects the cooling between 2005 and 2009. The conformance
of the model/data SSS patterns is especially striking. The likely cause of
this pattern is melt along the southern/offshore extent of the seasonal
ice field, as suggested in the (univariate) salinity EOF analysis of
Danielson et al. (2010, 2011). In the northeastern Bering Sea, ice is
typically formed in the lee of headlands and islands and is advected
south by the prevailing winds (Stabeno et al., 2010), hence serving as a
net conveyor of freshwater to the south. In warm years, less ice is
melted along the southeast segment of the 70 m isobath (the south-
erly/offshore extent of this ice field), and so the SSS is higher than in
cold years at that location.
3.3.2. Full multivariate analysis of model output
The full multivariate analysis of model output yields a leading

spatial modewhere some variables rise in concert with others (e.g. SST
and SSB), whereas others vary out of phase with each other (e.g. SST
vs. ICECOVER). Biological variables such as EUP show marked spatial
variance; positive/negative values on the inner/outer shelf indicate
that EUP goes up on the inner shelf when it is falling on the outer
shelf. Further, a comparison of EUP and SST maps reveals that outer
shelf EUP go down when shelf-wide SST is rising. The leading
biophysical mode is similar across all groupings of the model output
(Figs. 14–16). In each case, SST, SBT and SSS exhibit similar trends and
tendencies as in the BASIS data. For the mode using CORE and CFSR
hindcasts (Fig. 14), and the mode using all three forcing datasets
(Fig. 16), warmer SST, warmer SBT, and reduced ICECOVER co-occur in
the south, but cooler temperatures are associated with this change in
the north when all three datasets are included. Increased SSS is
observed at the mean location of the ice edge; these are associated
with enhanced mixing (AKT) and deepening of the MLD (note: both
SSH and MLD are defined in meters above mean sea level, hence more
negative values for MLD denote a deepermixed layer). Reduced pelagic
biomass (MZOO, COPE, NCA, EUP) is found on the outer shelf, while
increased biomass of those terms is found both inshore and north-
ward. EUP in particular exhibits a decrease in biomass during warm
periods, as was seen in the direct scatterplot of these quantities at M2
(Fig. 12). This inverse correlation is likewise found in the 60-level
output (Gibson et al., unpublished). A similar shift is observed in
benthic detritus and benthic infauna, but has a more zonal alignment
(i.e., benthic biomass shifts more directly to the north, as opposed to
inshore). Dissolved inorganic nitrogen (NUT) shows a trend to lower
values along the 70m isobaths when temperatures arewarm; changes
in large plus small phytoplankton (PHYT) are less dramatic. The
amplitude of this mode (the first PC) exhibits large changes in
1975–1980, 1999–2004, and 2005–2009. These latter two periods
exhibit the same interannual trends as the depth-averaged tempera-
ture timeseries at M2 (Fig. 8).

The dominant mode obtained using only the last 20 years of
CGCM3-driven results (Fig. 15) are similar to those of the CORE/CFSR
analysis (Fig. 14), but emphasize primarily the coupling among
hydrographic variables (SST, SBT, SSS, ICECOVER). The increase in
mixing and deepening of MLD are more broadly spread along the
outer shelf. NUT decreases in the south and increases in the north,
while PHYT increases all along the 70m isobath; its pattern is in fact
similar to that of SSS. The patterns associated with the benthos and
the zooplankton are weaker than in the hindcast, and, along with the
pattern for ICECOVER, have been shifted north. This likely reflects the
northerly shift of the seasonal ice edge under continued warming.

When the full concatenated series (CORE/CFSR/CGCM3) is used
(Fig. 16), the largest jump in the PC occurs between the end of
the CFSR segment and the beginning of the CGCM3 segment.
of observed and modeled biophysical variability on the Bering Sea
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Fig. 9. Comparison of modeled vs. measured salinity at stations M2 (A and B) and M4 (C and D). Upper figures compare modeled (red) vs. measured (black) values at 15 m
depth (A and B) and 55 m depth (B and D). Lower figures exhibit model values over all depths for M2 (E) and M4 (F). Units are psu. (a) M2 15 m, (b) M2 55 m, (c) M4 15 m,
(d) M4 55 m, (e) M2 MODEL and (f) M4 MODEL. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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A north/south gradient in temperature (SST, SBT) is especially striking
in the leading spatial mode, and emerges as well in difference maps
between mean forecast and hindcast temperatures (not shown).
Dissolved inorganic nitrogen (NUT) appears to contribute substantially
to the dominant mode using this full concatenated series, and is
positively correlated with temperature in most areas. Mixing (AKT) is
diminished and the MLD shoals broadly across the shelf, in synchrony
with the warmer temperature. An onshore and northward shift of
pelagic and benthic biomass is once again evident, as in the analysis
using CORE/CFSR only (Fig. 14).
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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4. Discussion

4.1. Alternate statistical approaches

It is worth considering what we gain by the CPCA analysis, that
we could not learn from simple difference maps. We might see very
similar patterns if we grouped the warm vs. cold years, and took the
difference between those climatologies. While both approaches
presume that temperature is a controlling variable, the present CPCA
approach allowed its importance to more spontaneously emerge
of observed and modeled biophysical variability on the Bering Sea
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from the analysis, without an a priori selection of temperature
categories. Further analysis will help to specify which atmospheric
variables (e.g. air temperature vs. shortwave radiation) play the
largest role in controlling the temperature field.

In their comparison of multivariate methods, Bretherton et al.
(1992) noted that the modes produced by CPCA may exhibit a bias
towards spatial structures similar to those of the most energetic
univariate EOFs. In the present case, this likely means a bias
towards a mode which fits much of the SST and SBT data. This is
acceptable in our case, as the original intent was to seek modes
which correlate with temperature. However, it is worth noting
that other methods compared in Bretherton et al. (e.g. coupled
correlation analysis) might produce a significantly different result.
Our present usage of CPCA does appear robust, insofar as the three
different choices of timeseries produced similar results.
4.2. Discrepancies with data

The primary mode computed from BASIS data exhibits correlated
physical/biological properties: warmer sea surface and sea bottom
Fig. 10. Comparison of modeled (red) and measured (black) water column stability
(J m−2) at location M2. Measured values are from Ladd and Stabeno (2012). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

Fig. 11. Depth-averaged temperature at station M2 from model simulation using CORE
forcing (red line). Thin lines show weekly average values; thick line is 5-year running m
the reader is referred to the web version of this article.)
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temperatures, increased sea surface salinity at mean location of the
ice edge, and increased phytoplankton (or more specifically, chlor-
ophyll) on the middle shelf. While physical variables in the leading
mode from the model were very similar to their BASIS data counter-
parts, we failed to replicate the observed positive correlation of
phytoplankton with temperature. This mismatch may be due to
several factors, including a bias in the timing of the modeled fall
bloom as compared with the measured fall bloom (Gibson et al.,
unpublished). The modes computed from the longer simulations,
based on annual averages of scalar properties, do appear to exhibit a
positive correlation between temperature and phytoplankton on the
middle shelf. The strength of this correlation varies with the span of
years chosen, and is strongest when the full concatenated series
(CORE/CFSR/CGCM3) is used.

The model was calibrated to better fit summer temperatures,
yet there was a residual tendency of the model to overestimate
winter temperature and to underestimate ice cover. The ice model
itself (Budgell, 2005) contains tunable parameters, such as the
hindcast forcing (black line), CFSR hindcast forcing (blue line), and CGCM3 forecast
ean. Units are 1C. (For interpretation of the references to color in this figure caption,

Fig. 12. Scatterplot of depth-averaged temperature (1C ) in spring vs. depth-
averaged large crustacean zooplankton (LCZ, mg C m−3) in fall at station M2, from
model hindcasts and forecast. CORE, CFSR and CGCM3 runs are marked with black,
blue, and red stars, respectively. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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Fig. 13. Leading biophysical mode using gridded data and equivalent model output for the same variables. (A) First principal component for data (black line) and model (red
line). The leading mode for data contains 43.0% of the total variance in its multivariate timeseries, and the leading mode for the model equivalent contains 49.6% of the
variance in its multivariate timeseries. (B) Spatial loadings (EOFs) for each of the variables from BASIS data, converted back to their original units (listed in Table 2). Levels
used for shading span −1 to +1 s.d. of each variable. Bathymetric contours at 70 m and 1000 m depth are shown. (C) Spatial loadings for each of the variables from the model,
sampled at the same locations and times as the BASIS data. (a) PC1, (b) EOF1 for DATA and (c) EOF1 for MODEL. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 14. Leading biophysical mode using model output from the combined CORE and CFSR hindcasts. Top figure shows the first principal component. Period of CORE (1970–
2004, black line) and CFSR (2005–2009, blue line) hindcasts are indicated. This mode contains 15.1% of the total variance of the normalized timeseries. Panels exhibit the
spatial loadings for each of the variables, converted back to their original units (listed in Table 3). Levels used for shading span −1 to +1 s.d. of each variable. Bathymetric
contours at 70 m and 1000 m depth are shown. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 15. Leading biophysical mode using only the last 20 years of the CGCM3 forecast (2020–2040). This mode contains 15.1% of the total variance of the normalized
timeseries.
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Fig. 16. Leading biophysical mode using a continuous series constructed from all three hindcasts: CORE (1970–2004, black line), CFSR (2005–2009, blue line) and CGCM3
(2010–2040, red line). This mode contains 21.5% of the total variance of the normalized timeseries. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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ratio of growth in ice area to growth in ice thickness when freezing
takes place. These will be explored in future simulations.

4.3. Differences between hindcast and forecast runs

When the full concatenated series (CORE/CFSR/CGCM3) is used
in the multivariate analysis (Fig. 16), the largest jump in the PC
occurs between the end of the CFSR segment and the beginning of
the CGCM3 segment. The series to either side of this jump are
relatively flat. This may be due in part to the mismatch between
what CGCM3 predicted for the 2003–2009 period, vs. what
actually occurred; as a consequence the concatenated series
includes a sharp jump in temperature between 2009 and 2010
(see Fig. 9). A second source of this discontinuity may be the fact
that forcing datasets in hindcast vs. forecast periods are different
in spatial and temporal resolution (see Table 1). Note in particular
that CGCM3 winds were only available at daily time scales,
whereas CORE and CFSR were available at 6-hourly time scales.
The multivariate analysis attempts to capture variance in the most
efficient manner, and this first mode may in fact be composed
partly of the differences between these two datasets. As an
example, if there were a bias towards a more northward ice edge
in CGCM3, relative to CORE or CFSR, under equivalent atmospheric
conditions, the leading EOF of the combined series would contain
this change in bias.
Fig. 17. Ratios of large crustacean zooplankton biomass to total zooplankton biomass (LC
ratio), in warm (2004) vs. cold (2008) years, derived using the leading multivariate mo
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4.4. Model results vs. the oscillating control hypothesis

As summarized in Section 1.1, the modified OCH of Hunt et al.
(2011) predicts that cooler temperatures will lead to a larger
biomass of large crustacean zooplankton, which in turn appear
necessary (albeit not sufficient) for the successful recruitment of
young walleye pollock. An earlier version of the OCH (Hunt et al.,
2002) suggested that warmer temperatures should lead to greater
production of both small and large copepods, but this was not
borne out by data from the middle and outer shelf (Hunt et al.,
2011). While we cannot address the fish-related elements (and
associated bottom-up vs. top-down control scenarios) of the OCH
in this version of the model, we can examine the conformance of
our hindcast results (Fig. 14) to the relationships among lower
trophic levels in the OCH.

Specifically, the modified OCH suggests the following should
occur together in the eastern Bering Sea during a warm year:
warmer SST, less ice, a later bloom of phytoplankton, and a higher
ratio of pelagic to benthic production. Conversely, the following
should occur in a cold year: cooler SST, more ice, an earlier bloom
of phytoplankton, enhanced production of large crustacean zoo-
plankton, and a lower ratio of pelagic to benthic production. The
relationships in Fig. 14 are indeed suggestive of the modified OCH,
but primarily on the middle and outer shelf. Note that all the
zooplankton categories are enhanced/reduced on the inner shelf
Z ratio), and benthic infauna biomass to total pelagic plus benthic biomass (benthic
de shown in Fig. 14.
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(shoreward of the 70 m isobath) during warm/cold periods, while
euphausiids and benthic biomass are significantly reduced/
enhanced on the outer shelf during warm/cold periods. It would
appear that for this model during 1970–2009, the inner shelf
responds to higher temperatures by increasing zooplankton bio-
mass across all size categories. By contrast, the middle and outer
shelf respond to cold periods by enhancing euphausiid production
(as in OCH) and enhancing benthic production (as in OCH), but
only weakly enhancing small zooplankton.

A comparison of the patterns among variables in Fig. 14
suggests the following scenarios along the 70 m isobath during
1970–2009. In a cold year with more ice, lower salinity yields
reduced mixing (as in Ladd and Stabeno, 2012, salinity stratifica-
tion controls mixing over much of the shelf). Lower temperatures
and enhanced ice cover (less light) yield lower pelagic production
inshore, resulting in higher nutrient levels. Increased nutrients
yield bigger zooplankton, and a shorter food chain. In a warm year,
less ice results in higher salinity and enhanced mixing on the
middle shelf. Higher temperatures and reduced ice cover (more
light) lead to enhanced pelagic production which depletes nutri-
ents, resulting in smaller zooplankton and a longer food chain. In
each of these cases, the yearly average phytoplankton signal is
modest (the timing of the bloom may shift, but that is not
addressed by our analysis here).

We quantify some of these effects by reconstructing that portion
of the original signal which consists of the temporal mean plus the
correlated anomalies of the leading mode from the CORE/CFSR
results (Fig. 14). For each variable, the anomalies are constructed by
multiplying the PC timeseries by the EOF spatial patterns. Consider
the case of a “warm” year (2004; PC value ∼2.0) compared to a “cold
year” (2008; PC value ∼−3.0). The EOF values on the southern, outer
shelf (195E, 65 N) are approximately +1 1C for SST, −0.25 mg Cm−3

for MZOO and −0.25 mgC m−3 for EUP. In 2008, our coupled multi-
variate signal consists of a 31 drop in SST, accompanied by a
0.75 mg C m−3 increase in MZOO, a 0.75 mg Cm−3 increase in EUP,
and a 1000 mg Cm−3 increase in BENINF.

We add these anomalies to the temporal mean at each location,
and subsequently compare the ratios of large crustacean zoo-
plankton biomass to total zooplankton biomass (LCZ ratio), and
benthic infauna biomass to total pelagic plus benthic biomass
(benthic ratio). For the later ratio we distribute benthic biomass
(BENINF) over the depth of the water column at each location (H):

LCZ¼NCA+EUP
LCZ ratio¼LCZ/(LCZ+COPE+MZOO)
benthic ratio¼(BENINF/H)/(LCZ+COPE+MZOO+(BENINF/H))

In Fig. 17, we illustrate the results for warm (2004) vs. cold (2008)
years. Both the LCZ ratio and the benthic ratio have increased in cold
years. The LCZ ratio increases over the entire shelf, while the benthic
ratio increases primarily on the outer, southern shelf. In this manner,
the revised OCH is supported by the model all across the shelf, while
an earlier version of the OCH (enhanced production of all sizes
classes of zooplankton during warm periods; see Fig. 14) is supported
by the model on the inner shelf alone. If COPE are included as part of
the LCZ (not shown), the spatial pattern is shifted slightly, and the
change in LCZ ratio is greater on the outer shelf, as compared with
the version where LCZ¼EUP +NCA only.
5. Conclusions

A 10-level model of the Bering Sea captures key physical and
biological dynamics of the region, and has been used to explore its
multiyear and multidecadal variability. Model hindcasts and fore-
casts have been interpreted using a form of coupled principal
Please cite this article as: Hermann, A.J., et al., A multivariate analysis
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component analysis (CPCA). The leading mode of our CPCA
analysis of biophysical model output for the Bering Sea exhibits
correlated physical/biological properties with substantial inter-
annual variability and a long-term warming trend. Several of the
patterns observed conform to the revised oscillating control
hypothesis (OCH). The following properties were observed:
1)
of o
/j.d
All the zooplankton categories (microzooplankton, small cope-
pods, neocalanus and euphausiids) exhibit similarities in spa-
tial pattern, (positive correlation on the inner shelf, negative
correlation on the outer shelf), but the relative magnitude of
this response varies among small vs. large size classes.
2)
 Large crustacean zooplankton are negatively correlated with tem-
perature on the outer, southwestern shelf, and positively correlated
to temperature on the inner, northeastern shelf. Areas of positive
correlation tend to correspond with those areas with greatest
change in ice cover. As in the revised OCH, the ratio of large to total
zooplankton is enhanced at lower temperatures. On the outer shelf,
higher temperatures may be leading to reduced secondary produc-
tion either through effects on stratification (and hence nutrient
limitation), or through direct effects of temperature on growth,
respiration, and vertical migration. Changes on the northern shelf
may involve a complex interplay of light and nutrient limitation
effects, as modulated by reduced ice cover. A closer examination of
these relationships is warranted.
3)
 Salinity exhibits a strong signal at the mean location of the ice
edge. As noted in Danielson et al. (2010, 2011), this likely due to the
southward advection of freshwater in ice. In warm years there is
less ice formation in the northeast (hence fresher there) and less
ice melt at the southeastern extent of the ice (hence saltier there).
4)
 Benthos (benthic detritus and benthic infauna) and euphasiids are
reduced on the middle and outer shelf with rising temperatures;
this is correlated with a rise in both small and large zooplankton
on the inner shelf. Under cold conditions, consistent with the
OCH, the ratio of benthic to pelagic production appears to rise
over most areas. A more explicit inclusion of production values
(rather than biomass) will help to elucidate these factors.
5)
 Recent work by Danielson et al. (2012) underscores the
importance of wind as a controlling variable which structures
the Bering Sea system. In future multivariate analyses, we will
utilize other groupings of variables, including the individual
atmospheric forcing terms used by the model (winds and heat
fluxes), to examine these relationships.
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