C-2 BSAI HALIBUT ABM OF A80 PSC LIMIT

Presenters: Diana Stram, Sam Cunningham, Anna Henry, Jim Ianelli, Mike Downs

SSC, April 5, 2021

ABM Workgroup: Council staff: Diana Stram, Sam Cunningham, Anna Henry, Mike Downs (Wislow Research) AFSC: Carey McGilliard, Jim Ianelli, Dana Hanselman NMFS RO: Anne Marie Eich, Joseph Krieger, Bridget Mansfield IPHC: Allan Hicks

OUTLINE OF PRESENTATION

- 1. Purpose and Need and refocus of analysis
- 2. Revised suite of alternatives and comparison
- 3. Review of previous operating model and addresses to SSC comments
- 4. Inferences drawn from previous model on halibut SSB and survey state
- 5. Groundfish and halibut fishery background and revenue analysis
- 6. Social Impact Assessment –changes from previous review
- 7. Wrap up

See Page 14 of Executive Summary for what has changed and why Table ES-1 shows where and why sections of analysis modified from October

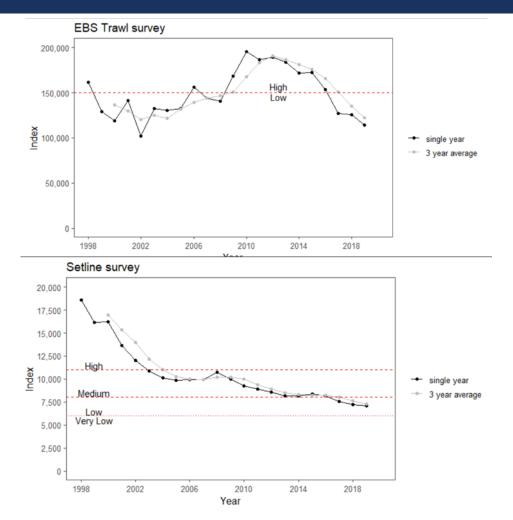
PURPOSE AND NEED SECTION 1.1 P34

Halibut is an important resource in the Bering Sea and Aleutian Islands (BSAI), supporting commercial halibut fisheries, recreational fisheries, subsistence fisheries, and groundfish fisheries. The International Pacific Halibut Commission (IPHC) is responsible for assessing the Pacific halibut stock and establishing total annual catch limits for directed fisheries and the North Pacific Fishery Management Council (Council) is responsible for managing prohibited species catch (PSC) in U.S. commercial groundfish fisheries managed by the Council. The Amendment 80 sector is accountable for the majority of the annual halibut PSC mortality in the BSAI groundfish fisheries. While the Amendment 80 fleet has reduced halibut mortality in recent years, continued decline in the halibut stock requires consideration of additional measures for management of halibut PSC in the Amendment 80 fisheries.

When BSAI halibut abundance declines, PSC in Amendment 80 fisheries can become a larger proportion of total halibut removals in the BSAI, particularly in Area 4CDE, and can reduce the proportion of halibut available for harvest in directed halibut fisheries. The Council intends to establish an abundance-based halibut PSC management program in the BSAI for the Amendment 80 sector that meets the requirements of the Magnuson-Stevens Act, particularly to minimize halibut PSC to the extent practicable under National Standard 9 and to achieve optimum yield in the BSAI groundfish fisheries on a continuing basis under National Standard 1. The Council is considering a program that links the Amendment 80 sector PSC limit to halibut abundance and provides incentives for the fleet to minimize halibut mortality at all times. This action could also promote conservation of the halibut stock and may provide additional opportunities for the directed halibut fishery.

HOW ANALYSIS REFOCUSED TO ADDRESS REVISED PURPOSE AND NEED

- Purpose and Need changes superseded the '5 overarching objectives'
- Refocused discussion of National Standards and balancing among them
- Revised Alternative set
- Revised methods for analysis
- Policy trade- off sections



ALTERNATIVES

ALTERNATIVE I: NO ACTION. BSAI HALIBUT AMENDMENT 80 PSC LIMIT IS 1,745 T.

A80 Sector	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
PSC limit	2,425	2,375	2,325	2,325	2,325	2,325	1,745	1,745	1,745	1,745	1,745
Halibut encounters	2,823	2,277	2,469	2,677	2,667	1,719	1,965	1,976	2,555	3,067	2,031
Halibut mortality	2,254	1,810	1,944	2,166	2,178	1,404	1,412	1,167	1,343	1,461	1,097

ALTERNATIVES 2-4 USE COMBINATION OF SURVEY STATES TO DETERMINED PRE-SPECIFIED PSC LIMITS IN LOOK UP TABLES

ALTERNATIVES 2-4

		EBS shelf	trawl survey index (t)
		Low	High
	1	< 150,000	≥ 150,000
	High	1,571 mt	1,745 mt
IPHC setline	≥11,000	(10% below current)	(current limit)
survey index in	Medium	1,483 mt	1,571 mt
Area 4ABCDE	8,000 - 10,999	(15% below current)	(10% below current)
(WPUE)	Low	1,396 mt	1,483 mt
	< 8,000	(20% below current)	(15% below current)
		EBS shelf t	rawl survey index (t)
		Low	High
		< 150,000	≥ 150,000
	High	1,745 mt	2,007 mt
	≥ 11,000	(current limit)	(15% above current)
IPHC setline	Medium	1,396 mt	1,745 mt
survey index in	8,000 - 10,999	(20% below current)	(current limit)
Area 4ABCDE	Low	1,309 mt	1,396 mt
(WPUE)	6,000-7,999	(25% below current)	(20% below current)
	Very Low	1,222 mt	1,309 mt
	< 6,000	(30% below current)	(25% below current)

		EBS shelf trawl	survey index (t)		
		Low	High		
		< 150,000	≥ 150,000		
	High	1,396 mt	1,745 mt		
	≥11,000	(20% below current)	(current limit)		
IPHC setline	Medium	1,222 mt	1,396 mt		
survey index in	8,000 - 10,999	(30% below current)	(20% below current)		
Area 4ABCDE	Low	1,047 mt	1,222 mt		
(WPUE)	6,000-7,999	(40% below current)	(30% below current)		
	Very Low	960 mt	1,047 mt		
	< 6,000	(45% below current)	(40% below current)		

HISTORICALLY CALCULATED PSC LIMITS (FIG 2-3; TABLE 2-5)

•‡•

T

<u>.</u>	_							
Year of survey	Setline		Trawl		Year PSC li	imit set		
	Index	State	Index	State		Lookup tables		
Alternative		2,3,4		2, 3, 4	Alternative	2	3	4
2015	8,385	Medium	172,237	High	2016	1571	1745	1396
2016	8,134	Medium	153,704	High	2017	1571	1745	1396
2017	7,583	Low	126,684	Low	2018	1396	1309	1047
2018	7,228	Low	125,957	Low	2019	1396	1309	1047
2019	7,104	Low	113,855	Low	2020	1396	1309	1047
\smile					$\nu \searrow$	/		

OPTIONS THAT COULD APPLY TO ALTERNATIVES 2,3,4

Option I: Rolling survey average to determine PSC limits (Table 2-6)

Setline average Trawl average PSC Limits from Lookup table Survey years Index State Index State year Alt 2.1 Alt 3.1 Alt 1998-2000 16,980 High 136,350 Low 2001 1571 1745 1371 1999-2001 15,348 High 129,671 Low 2002 1571 1745 1371 2000-2002 13,975 High 120,534 Low 2003 1571 1745 1371 2001-2003 12,193 High 125,025 Low 2004 1571 1745 1371 2002-2004 11,009 High 121,311 Low 2005 1571 1745 1371 2003-2005 10,282 Medium 131,581 Low 2006 1483 1396 1371 2005-2007 9,903 Medium 139,519 Low 2008 1483 1396 1372 2006-2008 10,189 Medium
Survey yearsIndexStateIndexStateyearAlt 2.1Alt 3.1Alt1998-200016,980High136,350Low200115711745131999-200115,348High129,671Low200215711745132000-200213,975High120,534Low200315711745132001-200312,193High125,025Low200415711745132002-200411,009High121,311Low200515711745132003-200510,282Medium131,581Low200614831396132005-20079,903Medium144,128Low200814831396132006-200810,189Medium146,705Low20091483139613
1999-200115,348High129,671Low200215711745132000-200213,975High120,534Low200315711745132001-200312,193High125,025Low200415711745132002-200411,009High121,311Low200515711745132003-200510,282Medium131,581Low200614831396132004-20069,972Medium139,519Low200714831396132005-20079,903Medium144,128Low200814831396132006-200810,189Medium146,705Low20091483139613
2000-200213,975High120,534Low200315711745132001-200312,193High125,025Low200415711745132002-200411,009High121,311Low200515711745132003-200510,282Medium131,581Low200614831396132004-20069,972Medium139,519Low200714831396132005-20079,903Medium144,128Low200814831396132006-200810,189Medium146,705Low20091483139613
2001-200312,193High125,025Low200415711745132002-200411,009High121,311Low200515711745132003-200510,282Medium131,581Low200614831396132004-20069,972Medium139,519Low200714831396132005-20079,903Medium144,128Low200814831396132006-200810,189Medium146,705Low20091483139613
2002-200411,009High121,311Low200515711745132003-200510,282Medium131,581Low200614831396132004-20069,972Medium139,519Low200714831396132005-20079,903Medium144,128Low200814831396132006-200810,189Medium146,705Low20091483139613
2003-200510,282Medium131,581Low200614831396122004-20069,972Medium139,519Low200714831396122005-20079,903Medium144,128Low200814831396122006-200810,189Medium146,705Low20091483139612
2004-20069,972Medium139,519Low200714831396122005-20079,903Medium144,128Low200814831396122006-200810,189Medium146,705Low20091483139612
2005-20079,903Medium144,128Low200814831396122006-200810,189Medium146,705Low20091483139612
2006-2008 10,189 Medium 146,705 Low 2009 1483 1396 12
2007 2000 10 200 N/ 1 150 751 U. 1 2010 1571 1745 1
2007-2009 10,208 Medium 150,751 High 2010 1571 1745 13
2008-2010 9,991 Medium 167,961 High 2011 1571 1745 13
2009-2011 9,385 Medium 183,434 High 2012 1571 1745 13
2010-2012 8,902 Medium 190,400 High 2013 1571 1745 13
2011-2013 8,523 Medium 186,552 High 2014 1571 1745 13
2012-2014 8,282 Medium 181,472 High 2015 1571 1745 13
2013-2015 8,230 Medium 175,884 High 2016 1571 1745 13
2014-2016 8,231 Medium 165,789 High 2017 1571 1745 13
2015-2017 8,034 Medium 150,875 High 2018 1571 1745 13
2016-2018 7,648 Low 135,448 Low 2019 1396 1309 10
2017-2019 7,305 Low 122,165 Low 2020 1396 1309 10

Option 1: 3-yr rolling average

9

4 OPTIONS TO APPLY TO ALTERNATIVES

- Option I rolling3-yr average of the survey estimate
- Other 2-4 applied following the determination of the PSC limits
- Option 4 is mutually exclusive with the selection of either Options 2 or 3.

Understanding the nomenclature of the Alternatives and Options: e.g. Alternative 3.2.1

				Option 2					
				Suboption :	1 : √aries ≤1	1% per	Suboption	2: varies ≤ 1	L5% per
\frown	Lookup tabl	es		year	\mathbf{n}		year		
Alternative) 2	(3)-	4	2.2.1	→ 3.2.1 ◀	4.2.1	2.2.2	3.2.2	4.2.2
2015	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,39(
2016	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,39(
2017	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,39(
2018	1,396	1,309	1,047	1,414	1,571	1,256	1,396	1,483	1,18

OPTION 2: PSC VARIABILITY

 PSC limit varies no more than a selected percentage per year.

Suboptions:

I0%

■ *15*%

	Lookup table	es		Option 2 Suboption 1 year	1: varies ≤10)% per	Suboption 2 year	2: varies ≤ 1	5% per
Alternative	2	3	4	2.2.1	3.2.1	4.2.1	2.2.2	3.2.2	4.2.2
2010	1,571	1,745	1,396	1,571	1,536	1,344	1,571	1,605	1,396
2011	1,571	1,745	1,396	1,571	1,689	1,396	1,571	1,745	1,396
2012	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2013	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2014	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2015	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2016	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2017	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
2018	1,396	1,309	1,047	1,414	1,571	1,256	1,396	1,483	1,187
2019	1,396	1,309	1,047	1,396	1,413	1,131	1,396	1,309	1,047
2020	1,396	1,309	1,047	1,396	1,309	1,047	1,396	1,309	1,047

OPTION 2: PSC VARIABILITY

- PSC limit varies no more than a selected percentage per year.
- Suboptions are:
- 10%
- 15%

					1					
					Option 2					
					Suboption	1: varies ≤10	0% per	Suboption 2	2: varies ≤ 1	5% per
		Lookup tabl	es		year			year		
ł	Alternative	2	3	4	2.2.1	3.2.1	4.2.1	2.2.2	3.2.2	4.2.2
	2010	1,571	1,745	1,396	1,571	1,536	1,344	1,571	1,605	1,396
	2011	1,571	1,745	1,396	1,571	1,689	1,396	1,571	1,745	1,396
	2012	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2013	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2014	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2015	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2016	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2017	1,571	1,745	1,396	1,571	1,745	1,396	1,571	1,745	1,396
	2018	1,396	1,309	1,047	1,414	1,571	1,256	1,396	1,483	1,187
	2019	1,396	1,309	1,047	1,396	1,413	1,131	1,396	1,309	1,047
	2020	1,396	1,309	1,047	1,396	1,309	1,047	1,396	1,309	1,047

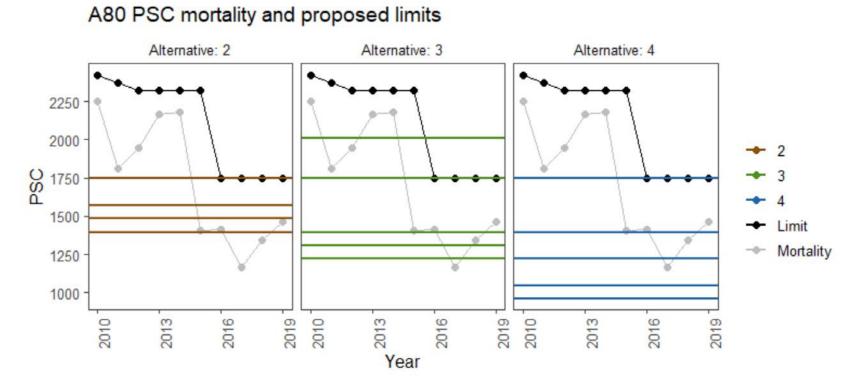
OPTION 3 ANNUAL LIMIT 80% OR 90% OF ANNUAL PSC LIMIT. IF PSC USE > A.L. IN > 3 OF 7 YEARS = HARD CAP

Table 2-8 back-calculated annual limits and when historically exceeded (grey)

				Option 3					
	Lookup tab	oles		80% of look	up table		90% of look	up table	
Alternative	2	3	4	2.3.1	3.3.1	4.3.1	2.3.2	3.3.2	4.3.2
2010	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2011	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2012	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2013	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2014	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2015	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2016	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2017	1,571	1,745	1,396	1,257	1,396	1,117	1,414	1,571	1,256
2018	1,396	1,309	1,047	1,117	1,047	838	1,256	1,178	942
2019	1,396	1,309	1,047	1,117	1,047	838	1,256	1,178	942
2020	1,396	1,309	1,047	1,117	1,047	838	1,256	1,178	942

OPTION 3: TIMING FOR HARD CAPTO REVERT BACK TO ANNUAL LIMIT TABLE 2-10

Year	_	Mortality	Alt 3.3.2
	2010	2,254	1571
	2011	1,810	1571 Annual limit exceeded
	2012	1,944	1571
	2013	2,166	1571 First year annual limit is a hard cap
	2014	2,178	1571
	2015	1,404	1571
	2016	1,412	1571
	2017	1,167	1571
	2018	1,343	1178
	2019	1,461	1178
	2020	1,097	
	2021	TBD	TBD First possible year annual limit is
	2022	TBD	TBD TBD no longer a hard cap (if mortality
			does not exceed A.L.)


OPTION 4 ROLLOVER OF UNUSED PSC (MUTUALLY EXCLUSIVE WITH OPTIONS 2 AND 3)

 PSC unused in one year may roll to the following year to increase the PSC limit generated by the lookup table up to 20%. Any PSC savings in excess of 20% would stay in the water.

Table 2-11

Year	2015	2016	2017	2018	2019	2020	2021	2022
PSC from								
lookup table	1745	1745	1745	1309	1309	1309	1745	1745
PSC use by A80	1404	1412	1167	1343	1461	1097	1097	
Remainder	341	333	578	-34	-152	212	648	
(Potential								
amount to								
rollover)								
Maximum	349	349	349	262	262	262	349	
rollover possible								
Effective PSC								
limit								
(lookup table								
PSC + rollover)	1745	2086	2078	1571	1309	1309	1957	2094
Difference in	0	341	333	262	0	0	212	349
PSC limits								

HISTORICAL COMPARISON OF ALTERNATIVES FIGURE 2-5

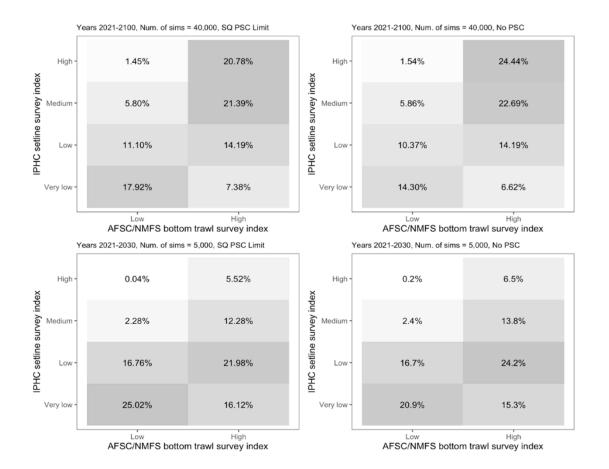


TABLE 2-12: COMPARISON OF PSC LIMITS ACROSS ALL THREE ACTION ALTERNATIVES WITH THE SURVEY STATES NECESSARY TO ACHIEVE THAT LIMIT.

	Alt 2		Alt 3			Alt 4						
		EBS	Se	etline	E	BS	Se	tline]]	EBS		Setline
PSC limit	State	Index	State	Index	State	Index	State	Index	State	Index	State	Index
960									low	<150,000	very low	<6,000
1047									low	<150,000	low	6,000-7,999
									high	>150,000	very low	<6,000
1222					low	<150,000	very low	<6,000	low	<150,000	medium	8,000-10,999
									high	>150,000	low	6,000-7,999
								6,000-				
1309					low	<150,000	low	7,999				
					high	>150,000	very low	<6,000				
1207	1.	150 000	1.	.0.000	1.	150.000		8,000-	1.	150 000	1.1.1	. 11.000
1396	low	<150,000	low	<8,000	low	<150,000	medium	10,999 6,000-	low	<150,000	high	>=11,000
					high	>150,000	low	7,999	high	>150,000	medium	8,000-10,999
				8,000-				·		· · ·		· · ·
1483	low	<150,000	medium	10,999								
	high	>150,000	low	<8,000								
1571	low	<150,000	high	>=11,000								
				8,000-								
	high	>150,000	medium	10,999								
1745	high	>150,000	high	>=11,000	low	<150,000	high	>=11,000	high	>150,000	high	>=11,000
					high	> 150,000	madium	8,000-			1	9 17
2005					high	>150,000	medium	10,999				
2007					high	>150,000	high	>=11,000				

FIGURE 2-7

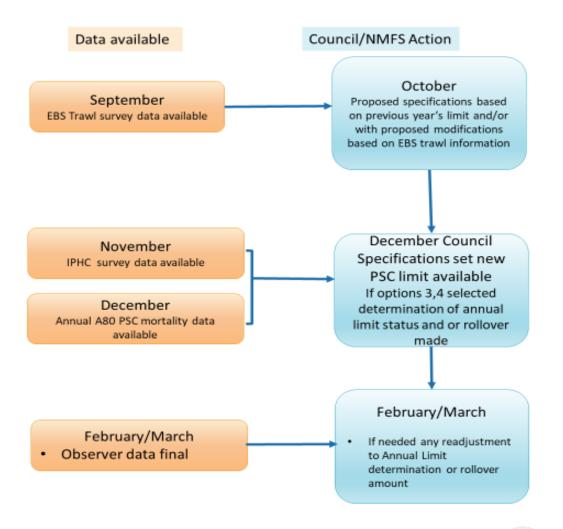

 Proportion of shortterm and long-term simulations in each of the combined alternative "states" of indices used to specify PSC Limits assuming the status quo PSC limit (left panels) and no PSC (right panels).

Table 2-13 Survey states, percentage of time model simulations over a range of time frames resulted in that combination of survey states and the PSC limits that result from those across alternatives

EBS		Setline		Proportion of simulations in each combination of survey states under stat quo PSC				PSC limits us		
State	Index	State	Index	2021- 2030	2031- 2060	2061- 2100	2021- 2100	Alt 2	Alt 3	Alt 4
low	<150,000	very low	<6,000	25%	14%	20%	18%	1396	1222	960
low	<150,000	low	6,000- 7,999	17%	10%	11%	11%	1396	1309	1047
low	<150,000	medium	8,000- 10,999	2%	7%	6%	6%	1483	1396	1222
low	<150,000	high	≥11,000	0%	2%	1%	1%	1571	1745	1396
high	>150,000	very low	<6,000	16%	4%	7%	7%	1483	1309	1047
high	>150,000	low	6,000- 7,999	22%	11%	15%	14%	1483	1396	1222
high	>150,000	medium	8,000- 10,999	12%	24%	22%	21%	1571	1745	1396
high	>150,000	high	≥11,000	6%	28%	19%	21%	1745	2007	1745

Process for Specifying Limits and optional management measures Under Alternatives 2, 3 & 4

ANNUAL PROCESS TO SPECIFY PSC LIMIT

PACIFIC HALIBUT ABM MODEL PRESENTATION / UPDATES

Pacific halibut ABM Model presentation / updates

- In Oct 2020 reviewed changes since preliminary review in October 2019:
 - Changes to alternatives (A80 only) and associated assumptions
 - Operating model changes as a result of SSC and Council requests
- April 2021 revisit main points; no reanalysis conducted (limited inferences)
 - Resolve/discuss other areas from operating model (OM)

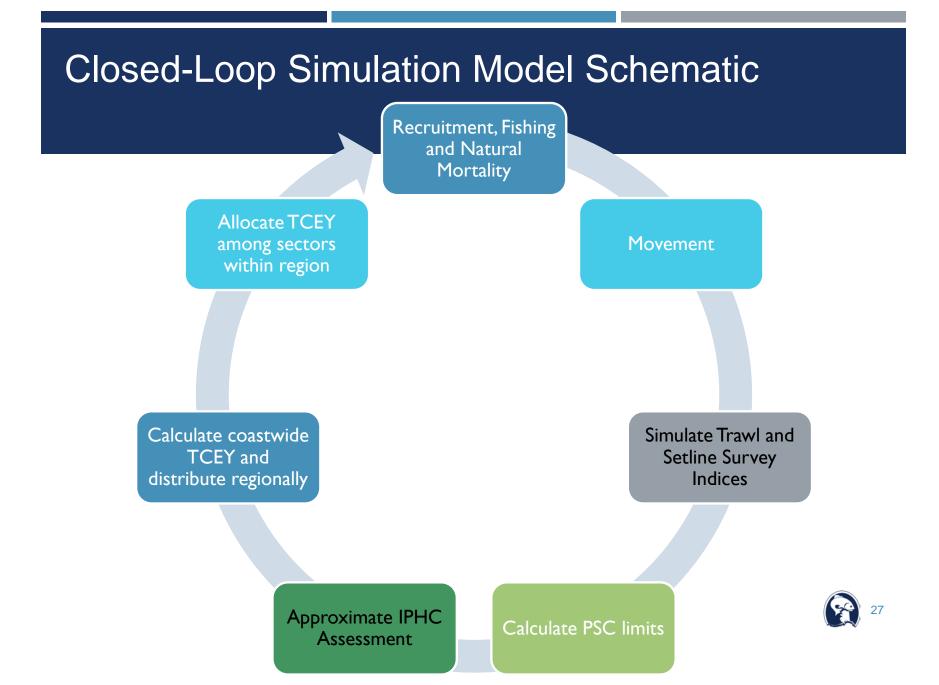
INFORMATION INFERRED FROM PREVIOUS MODELING RESULTS TO INFORM ANALYSIS FOR THIS MEETING

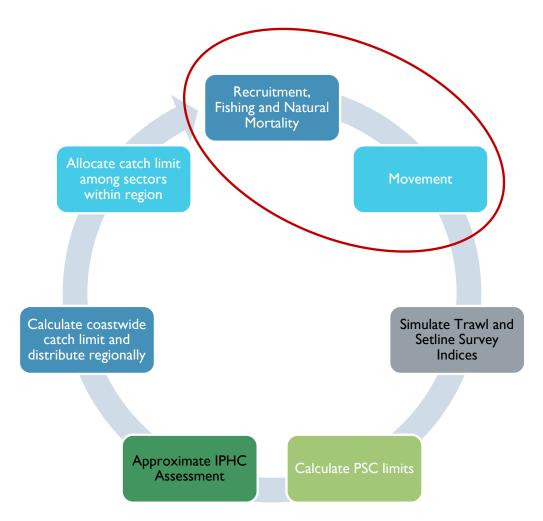
- To provide some context on the relative probability of future combination of index values used in new alternatives
- Alternatives were not explicitly modeled/contrasted

SSC model recommendations from 2019

- Alternatives apply only to A80
- Ran the model for 100 years
- Previous control rule for directed halibut fishery is still based on historical estimated SSB:total mortality estimates, but:
 - some runs also including a 30:20 control rule
 - historical relationship focuses on recent history (shallower slope)
- PSC use:limit relationship incorporates uncertainty

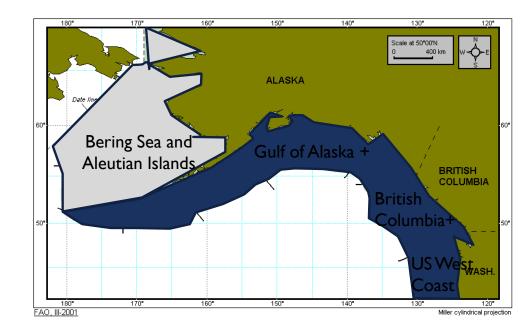
SSC model recommendations from 2019

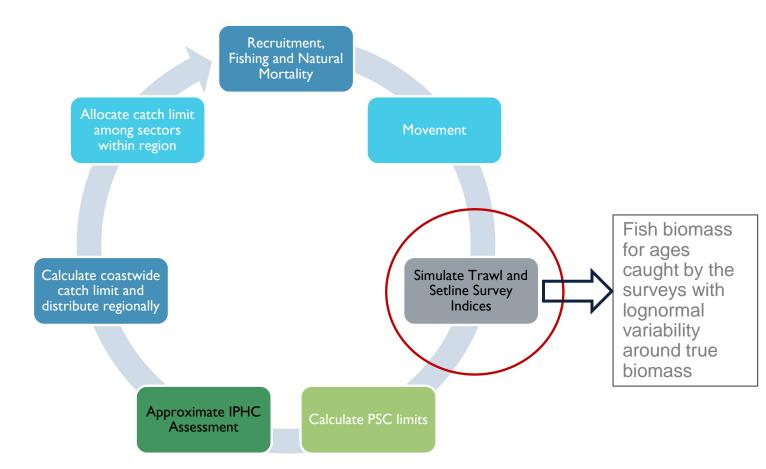

- Model shifted definition of B0 to dynamic B0
 - consistent with shift in IPHC management
- Updated model validation process to account for changes in IPHC assessments
 - Sex ratio data changed selex curves, for instance



New in 2020

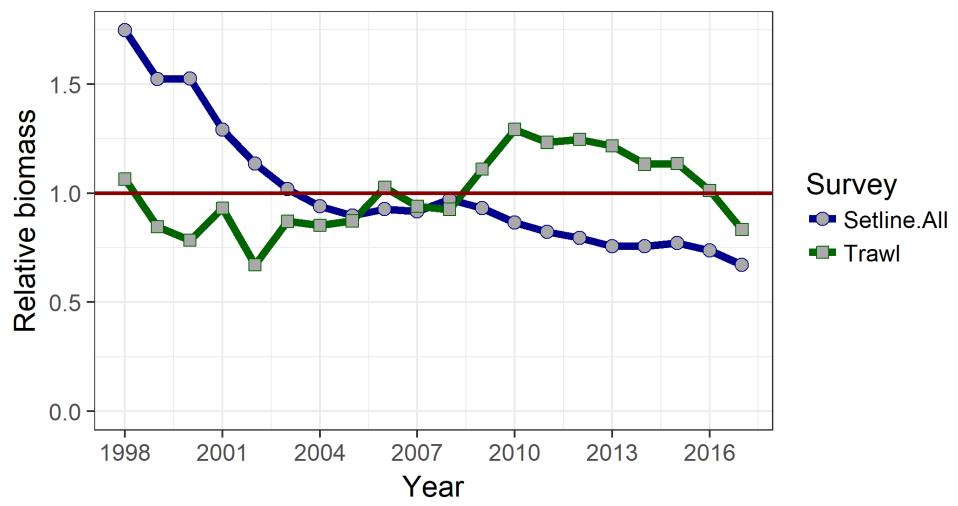
- Sensitivity analyses:
 - Low recruitment scenario,
 - Extreme low recruitment robustness test
 - Temporal autocorrelation in simulated "assessment" step
 - PSC use:limit relationship where use closer to limit as limit becomes low (also stochastic)
 - Two alternative trawl PSC selectivity curves

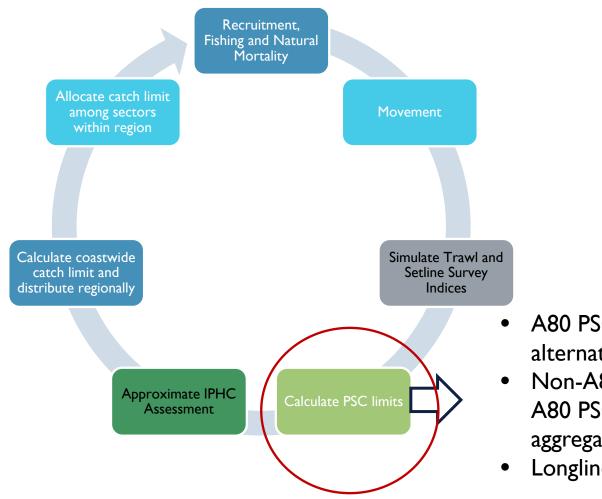



• 2 Area Model

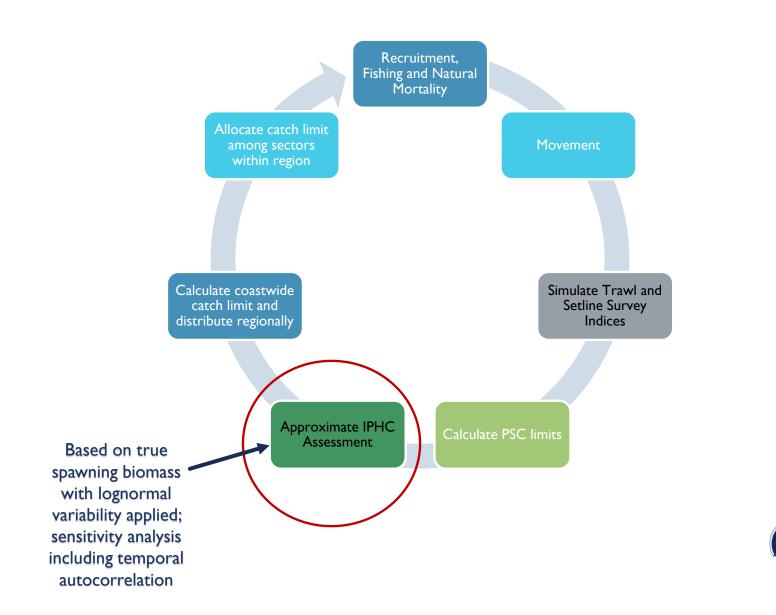
I. Bering Sea-Aleutian Islands2. Gulf of Alaska, British Columbia, US West Coast

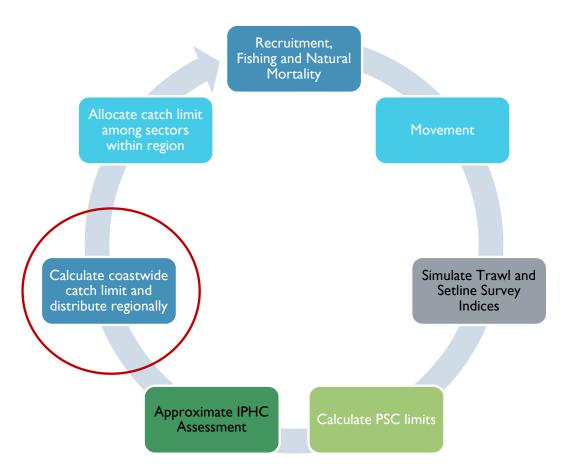
- Recruitment of halibut
 - Allocated among areas, time-varying
 - Function of example Pacific Decadal Oscillation index
- Adult movement unchanged
- Fleet structure unchanged, but selectivity updated according to new IPHC assessment results (trawl PSC fleet is still in aggregate)



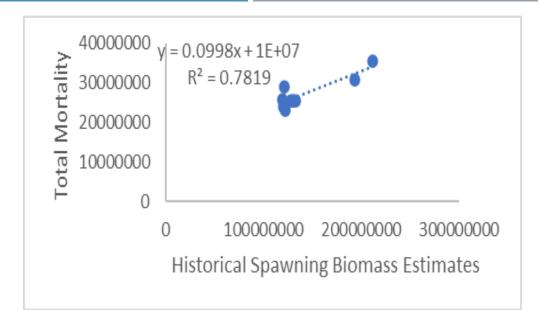


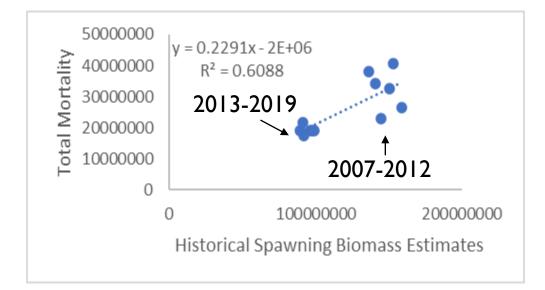
Surveys in the Eastern Bering Sea


EBS Pacific halibut

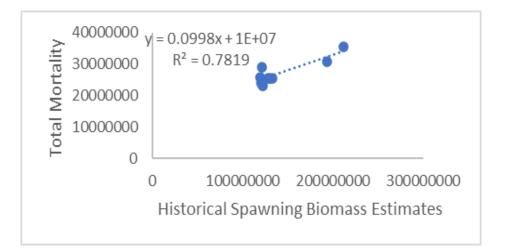


- A80 PSC limit calculated from alternatives
- Non-A80 static PSC added to A80 PSC limit to calculate aggregate BSAI trawl PSC limit
- Longline PSC limit static

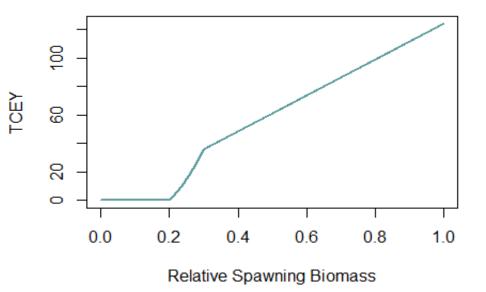




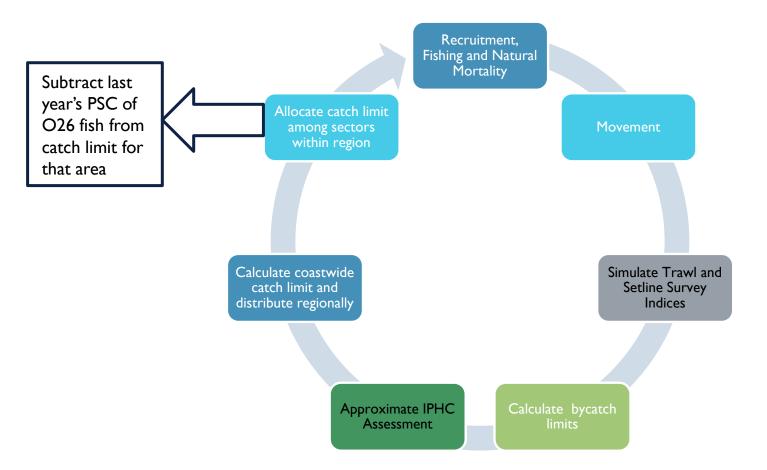
2020 ABM control rule for TCEY determination


 Note shallower slope than for last year; SSC requested not including or downweighting some of the earlier years

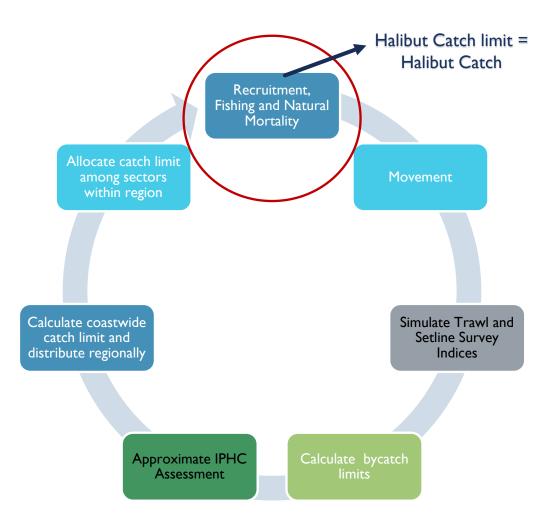
2019 ABM control rule for TCEY determination



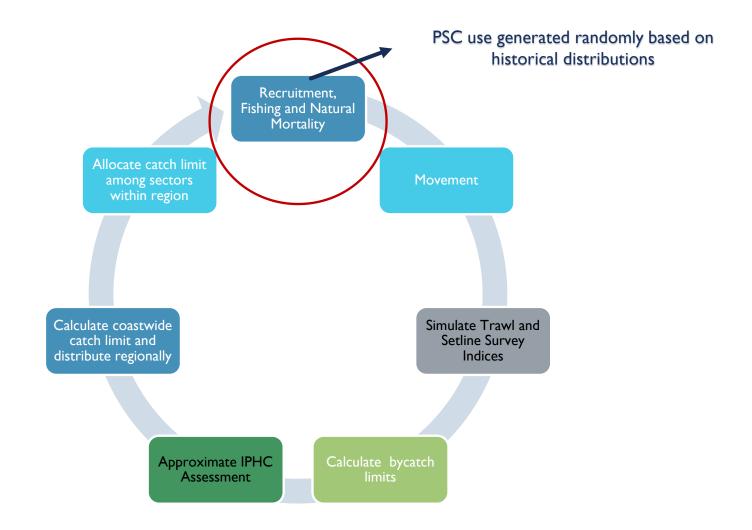
This year's control rule for TCEY determination before 30:20 rule applied

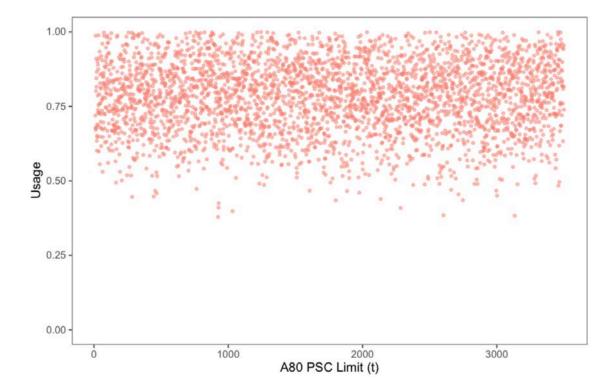

Application of 30:20 harvest control rule for TCEY determination:

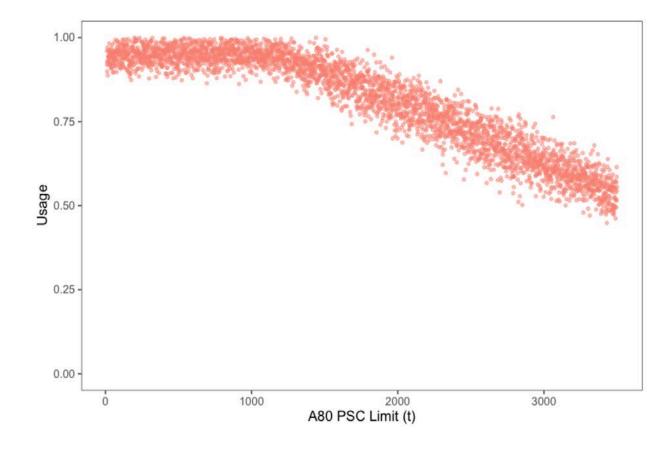
 Dynamic relative unfished spawning biomass definition



- Catch limit in the Bering Sea-Aleutian Islands = that year's proportion of modeled setline survey biomass in the BSAI
- Allows for responsiveness of catch limit by area to changes in the distribution of biomass over time







PSC use: limit relationship generated randomly based on historical distributions

Sensitivity analysis explored alternative PSC use: limit relationship

Errata to address distribution error

- The original DEIS posted to the Council website for this meeting presented results that contained conversion distribution error that affected historical catches, including 2019 catch
- We corrected the error and re-ran the model, including all sensitivity analyses.
- The tables and figures from the original DEIS are presented in a side-by-side comparison with corrected tables and figures in the following slides for reference and discussion purposes.
- The conversion error impacted any calculation that was done to show results relative to 2019 halibut catches, in particular calculations involving directed halibut fishery catches relative to 2019.

Impact analyses Unchanged by error

- Impact analysis on groundfish
- Comparison across alternatives in figures and tables
- Ranking of alternatives according to performance metrics
- Modeled values and trends over time
 - Simulated halibut fishery catches in absolute terms
 - Spawning and total biomass
 - Indices
 - PSC limits and usage
- Social Impact Analysis

Differences in SSB in model demonstrations were undetectable

DEIS version (p.189)

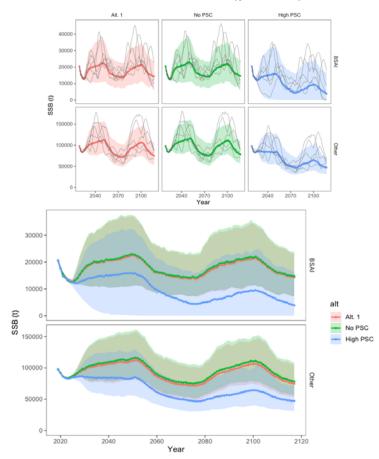
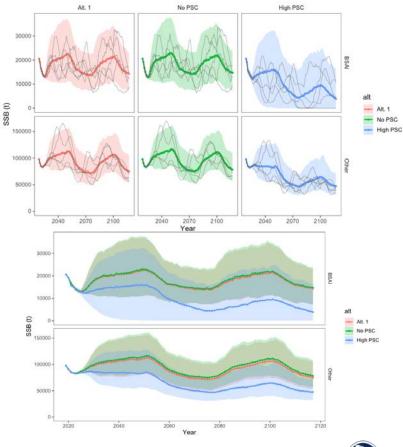



Figure 6-1 Demonstration of patterns in Pacific halibut SSB by region (note different vertical scales) over time for status quo, zero PSC Pacific halibut mortality, and 10,000 tof mortality. Solid lines are median values and 90 out of 100 model realizations fail within the shaded areas. The top and bottom panels show the same results, but the bottom panel shows the three demonstrations on the same scale. All results for the three demonstrations are identical when conducted with and without a 30:20 harvest control rule implemented for coastwide TCEY determination.

Updated version

Directed halibut fishery catches relative to 2019 were higher in demonstrations (because 2019 catch was lower); trends and behavior across alternatives were unchanged

DEIS version (p.190)

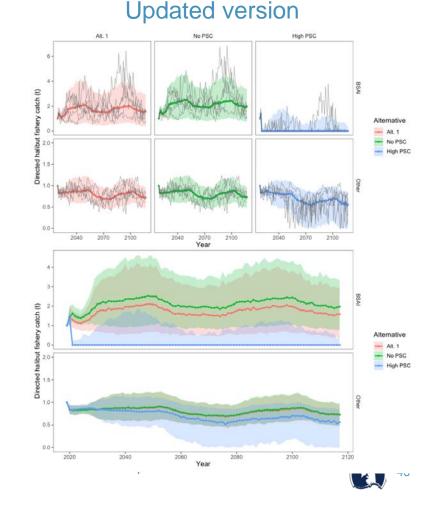
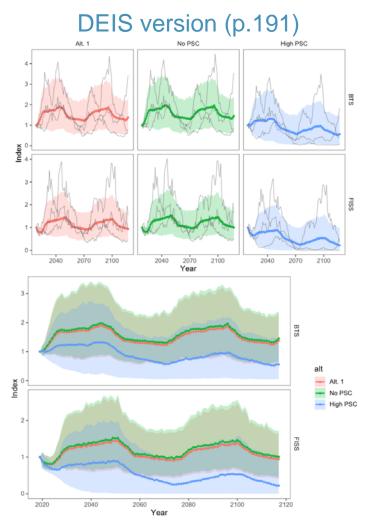
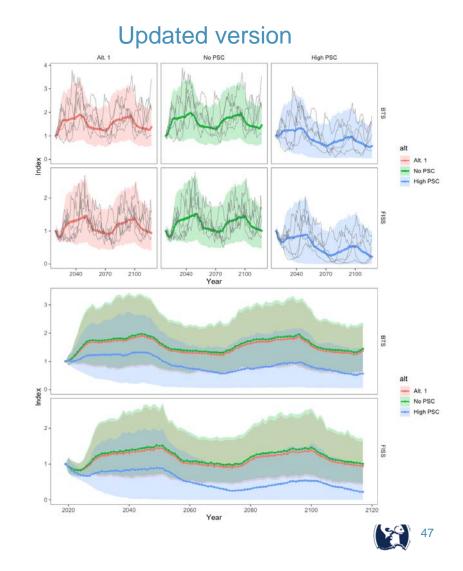
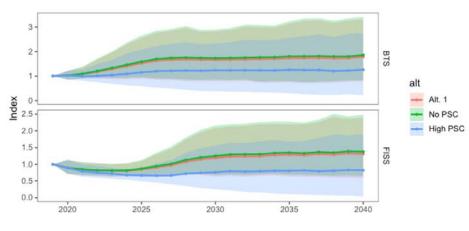
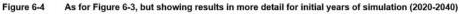
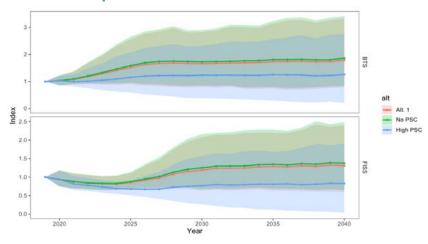



Figure 6-2 Demonstration of patterns in Pacific halibut directed fishery catch (by region and relative to 2019 values) over time for status quo, zero PSC Pacific halibut mortality, and 10,000 t of mortality. Solid lines are median values and 90 out of 100 model realizations fall within the shaded areas. The top and bottom panels show the same results, but the bottom panel shows the three demonstrations on the same scale. All results for the three demonstrations are identical when conducted with and without a 30:20 harvest control rule implemented for coastwide TCEY determination.

Indices for demonstrations were unchanged

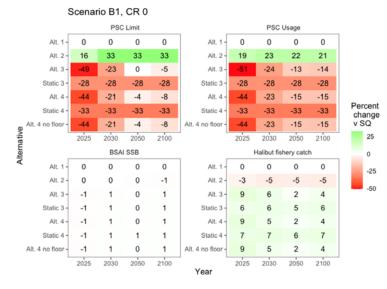





Figure 6-3 Demonstration of patterns in Pacific halibut indices (BTS and FISS and relative to 2019 values) over time for status quo, zero PSC Pacific halibut mortality, and 10,000 t of mortality. Solid lines are median values and 90 out of 100 model realizations fall within the shaded areas. The top and bottom panels show the same results, but the bottom panel shows the three demonstrations on the same scale. All results for the three demonstrations are identical when conducted with and without a 30:20 harvest control rule implemented for coastwide TCEY determination.


Indices for demonstrations were unchanged

DEIS version (p.192)

Updated version



No changes greater than two percent in PSC limits, usage, BSAI SSB, and halibut fishery catch relative to the status quo (Shown here for runs without a 30:20 rule for TCEY determination; CR = 0)

DEIS version (p.194)

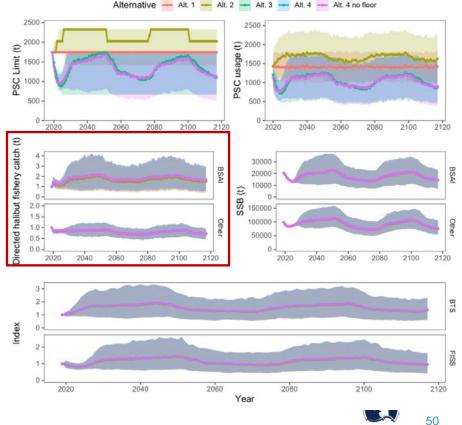
Table 6-1

6-1 Projected relative median values of PSC usage, Pacific halibut spawning biomass, and Pacific halibut directed fishery catch, and PSC limit as estimated from the simulation model. Values are expressed relative to status quo (Alternative 1 in row 1). Red shading indicates a lower relative value within each measure. Rows labeled "Static 3" and "Static 4" are runs with PSC Limits fixed at their starting point values for alternatives 3 and 4, respectively (as requested by the SSC). "Alt. 4 no floor" is the same as Alt. 4 but with the floor removed. This first set of tables shows results for base case (B1) model runs without a 30:20 harvest control rule for TCEY determination (CR 0).

Updated version

49

Changes from the conversion correction in model simulation results over time are undetectable, except that directed halibut fishery catch relative to 2019 is larger because 2019 catch is lower.


Alternative - Alt. 1 - Alt. 2 - Alt. 3 - Alt. 4 - Alt. 4 no floor 2500 2500 (t) 150 Limit (t) 1 SC Limit (t) 2000 -BSC nsage 500 500 2020 2040 2060 2080 2100 2120 Directed halibut fishery catch (t) 2.0 -30000 1.5 -20000 1.0 0.5 10000 SSB (t) 0.0 2.0 -150000 1.5 100000 1.0 50000 0.5 0.0 2020 2040 2060 2100 2120 2020 2040 2060 2080 2100 2120 2080 Saved to this PC 3. 2. BTS Index 2020 2040 2060 2080 2100 2120

DEIS version (p.196)

Year

Figure 6-5 A comparison of projected PSC limits, usage, spawning biomass (SSB), and halibut fishery catch for the status quo (Alternative 1), and the 3 other alternatives, with uncertainty bounds. Solid lines are median values and 90 out of 100 model realizations fall within the shaded areas. In nearly all presentations the shades and lines are overplotted.

Updated version

Oct 2020 SSC minutes

 "On further investigation, errors were found in the estimation of 2019 and 2020 directed halibut fishery catch in the operating model, which affects all outputs from the simulation model."

Response:

 Clearly had no effect on contrasting among alternatives (as demonstrated above)

Oct 2020 SSC minutes

"The simulation may be overestimating the proportion of the coastwide TCEY in BSAI, because it appears to be using the stock distribution and not correcting for the 0.75 relative harvest rate applied by the IPHC."

Response:

- Possibly. Other factors include imperfect match between areas
- Only applies to 4B
- Can apply in future

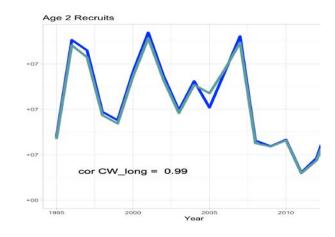
Oct 2020 SSC minutes

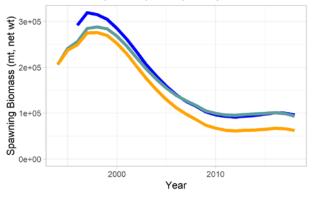
"By using the correct directed halibut fishery catch levels in the model, the alternatives are now evaluated within a context of increasing directed halibut fishery catch, not declining. This raises the question of whether the comparison of the alternatives within this context is even relevant. The SSC believes that careful consideration of the relative impacts within this new context is important, and thus, a thorough review of the revised DEIS is warranted."

Response:

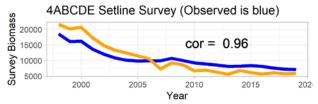
Projected Pacific halibut BSAI catches are consistent with historical

Review of model validation Appendix 3 from October 2020


- Purpose: match closed-loop simulation model over historical years to IPHC stock assessment
- IPHC stock assessment models changed since last October:
 - Commercial sex ratio data showed higher proportion of older fish (mostly female)
 - Definition of unfished spawning biomass changed to be dynamic
- Closed-loop simulation model updated to reflect IPHC assessment changes


Review of model validation Appendix 3 from October 2020

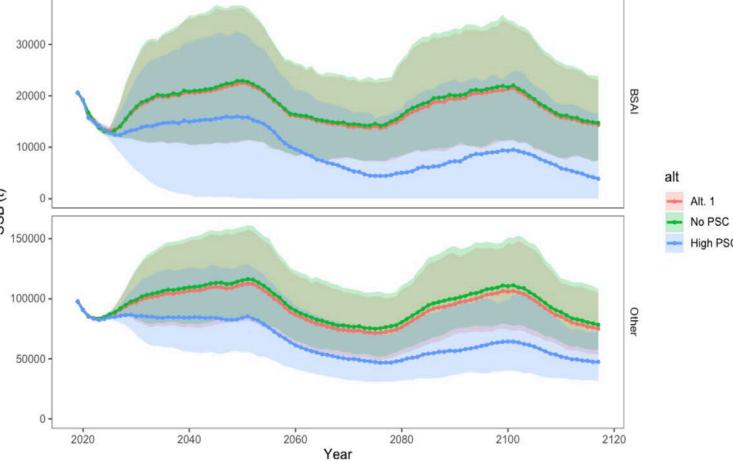
- Re-ran model validation after distribution error fix
 - Results were unchanged
 - Total historical catches in the model were always correct.
- No changes to movement parameters or average recruitment allocation
- Some fundamental differences occur between models
 - Addressed with sensitivity analyses


Review of model validation Appendix 3 from October 2020

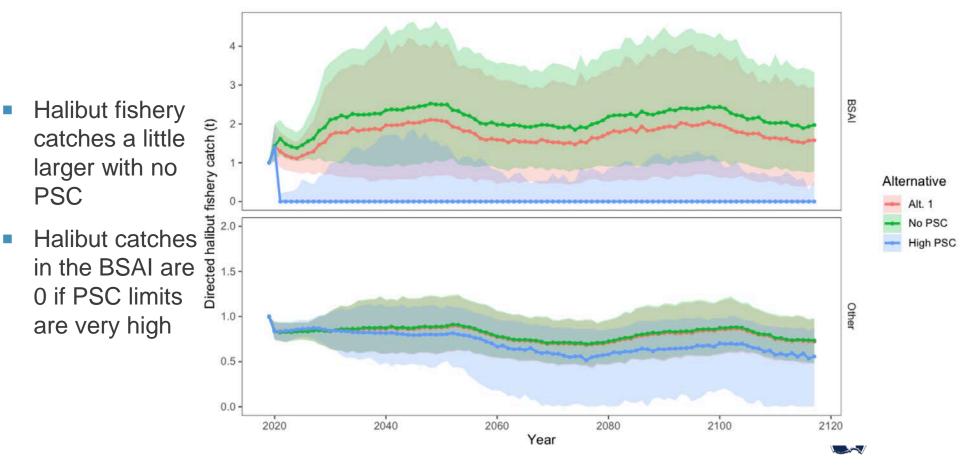
Assessed (dk blue), CW (It blue), and Simulated 5

EBS Bottom Trawl Survey (Observed is blue)

From October 2020

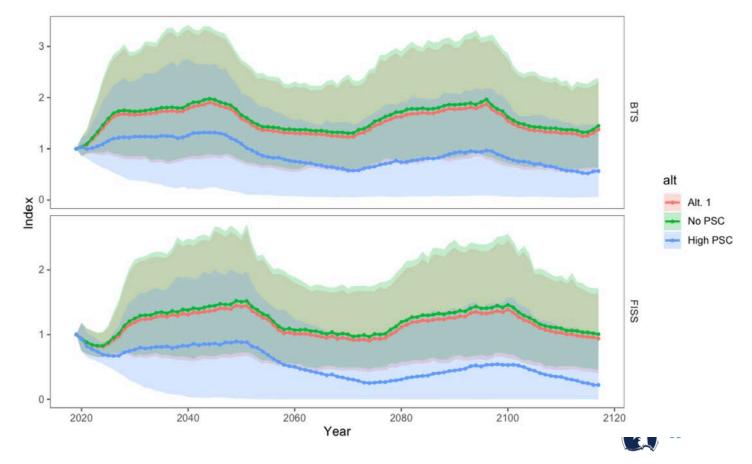

Incorporating timevarying spatial allocation of recruitment into model important for mimicking trawl survey

Model results



Demonstrations

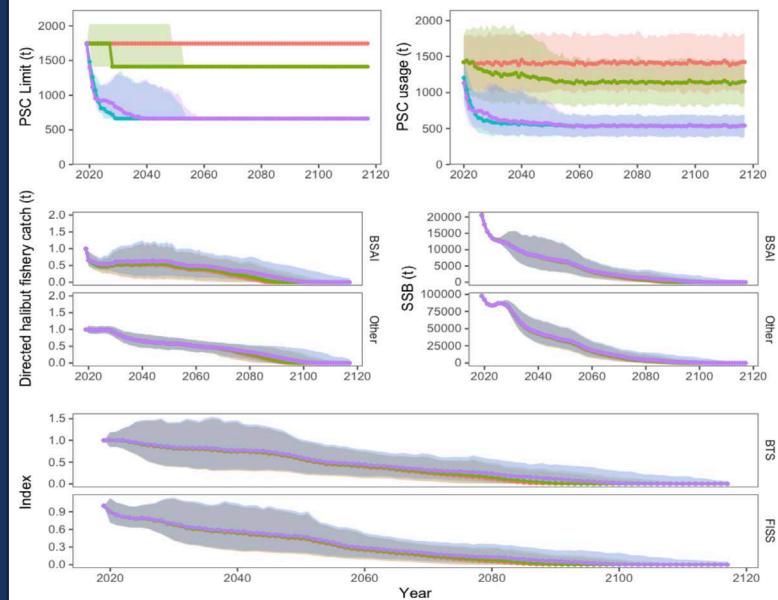
- SSB similar with or without PSC
- SSB declines in both areas with extreme high PSC (outside of range of alternatives)



Demonstrations

Demonstrations

- Indices for no PSC and Alt 1 are similar
- Indices for high PSC are lower



Sensitivity Analyses Appendix 2 from Oct 2020

- Low recruitment scenario:
- Extreme low recruitment scenario (recruitment 50% of expected every year)
- PSC use:limit increases at low PSC limits
- Trawl selectivity shifted towards younger or older fish
- Temporal autocorrelation in estimated SSB

Extreme Low Recruitment 50% of expected recruitment in each year

Main Points from Modeling Analysis

- No meaningful differences in SSB trajectories between alternatives for the range of alternatives and expected population dynamics
- rawl PSC selectivity impacts how much larger changes in PSC limits are in relation to changes in directed halibut fishery limits
- Effects of 30:20 harvest control rules cannot be seen unless the population dynamics are pushed **OUTSIDE OF EXPECTATIONS**

Main Points from Modeling Analysis

- No meaningful differences in SSB trajectories between alternatives for the range of alternatives and expected population dynamics
- Trawl PSC selectivity impacts how much larger changes in PSC limits are in relation to changes in directed halibut fishery limits
- Effects of 30:20 harvest control rules cannot be seen unless the population dynamics are pushed **OUTSIDE OF EXPECTATIONS**

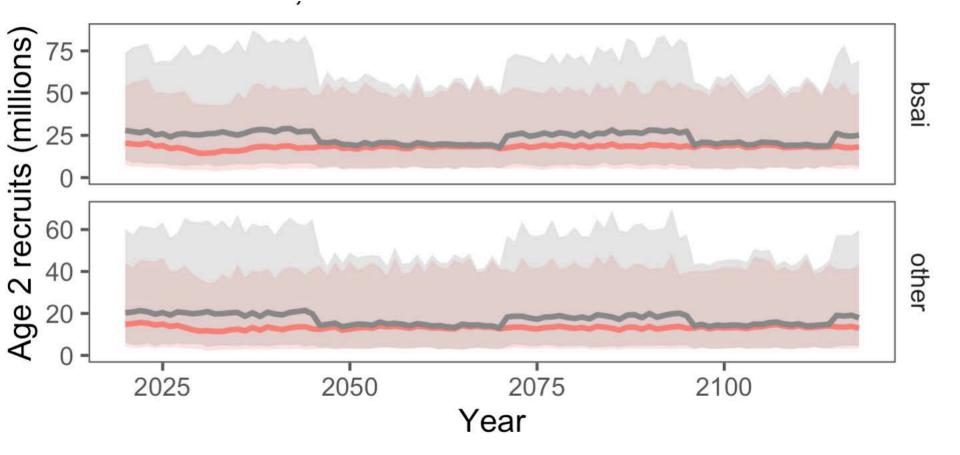
Main Points from Modeling Analysis

- No meaningful differences in SSB trajectories between alternatives for the range of alternatives and expected population dynamics
- Trawl PSC selectivity impacts how much larger changes in PSC limits are in relation to changes in directed halibut fishery limits
- Effects of 30:20 harvest control rules cannot be seen unless the population dynamics are pushed **OUTSIDE OF EXPECTATIONS**

Other points of clarification

- Projected weight-at-age
- PDO application
- "Low recruitment" options
- Consistency of directed halibut fishing projections versus history

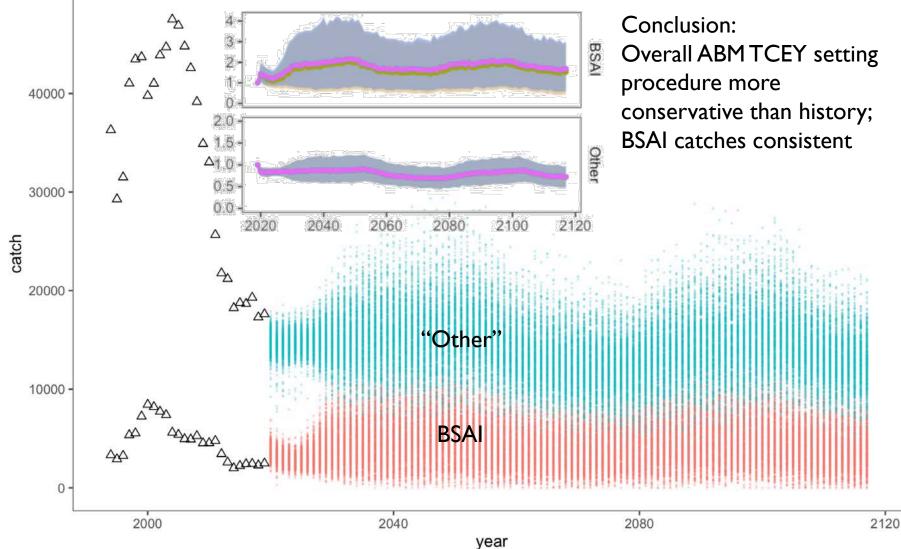
Projected somatic body weight-at-age


Model configured to have stochastic or alternative values

- Since 2019 has been set at fixed values in line with the assessment
- Some interpretation of impact potential
 - Lower degree of uncertainty, especially for aspects in area 3 (part of "Other") where changes have been the most extensive
 - SSB and future sex ratios (e.g., lowering the size limit) also missed
 - Considerations for BSAI region (for PSC, directed fishing) may be less important

PDO relative to original "Low recruitment" and recruitment variability

Two periods of good PDO implemented



Original "Low recruitment" scenario:

- PSC and directed fishery (and SSB) drop
- Showed that index in BTS increases...unusual
 - Issue arose with initial age structure
 - Adopted a different approach which was sensible

Historical versus future Pacific halibut fishery catches

IMPACTS ON HALIBUT SURVEY INDICES AND SSB

SSB

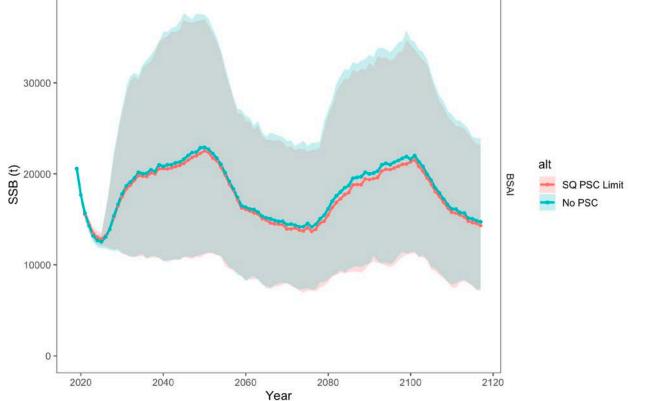


Fig 5-1 Projected Pacific halibut SSB for the BSAI region under status quo (SQ) and zero (no) PSC Pacific halibut mortality. Solid lines are redian values and 90 out of 100 model realizations fall within the shaded areas.

EFFECT ON SURVEY INDICES

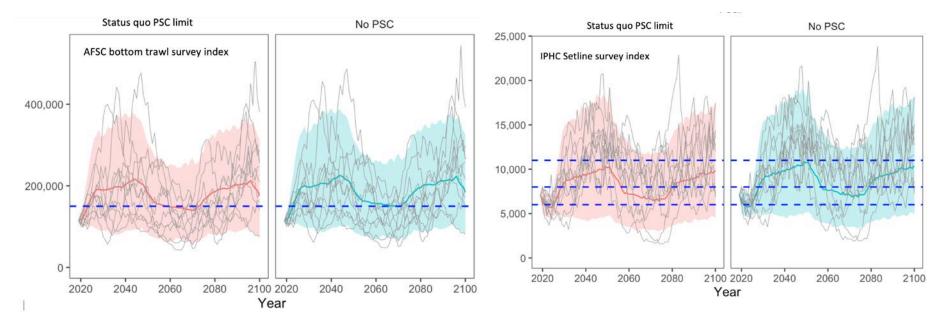
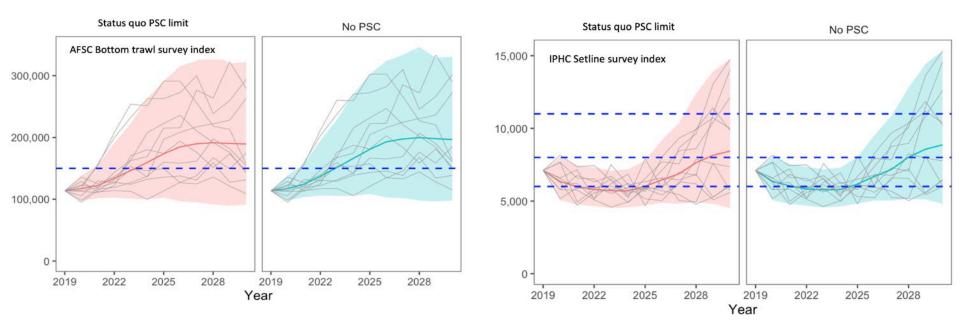
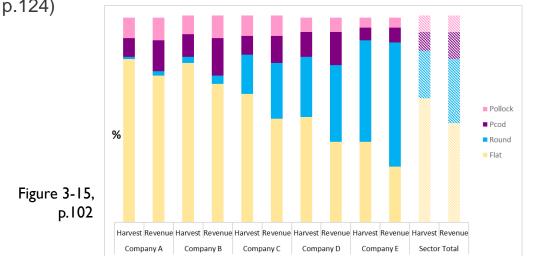



Figure 5-2 Projected Pacific halibut AFSC bottom trawl survey index (top row) and IPHC setline survey index (bottom row) in the BSAI for status quo PSC limits (left panels) and zero PSC (right panels). Dashed lines represent the thresholds between survey 'states' under Alternatives 2,3, and 4.

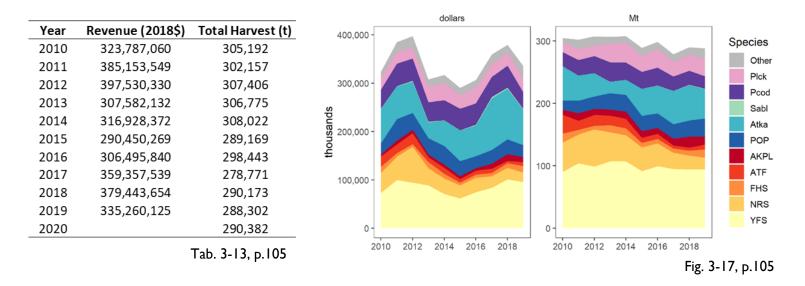
INDICES AS WITH FIGURE 5-2 BUT INITIAL YEARS (2020-2030)



GROUNDFISH AND HALIBUT FISHERY BACKGROUND INFORMATION AND IMPACT ESTIMATION

AMENDMENT 80 SECTOR (3.3)

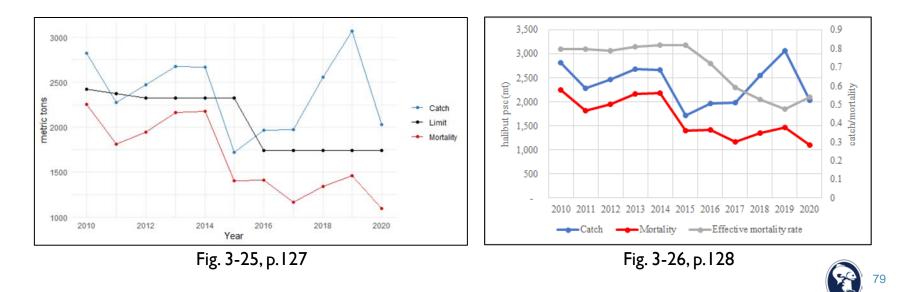
- Five companies (2020)
- Evolving sector: rationalization (2008); full cooperative participation (2011); AM111, decksorting EFP, Halibut Avoidance Plan (2015/16); ownership transition, fleet modernization, PCod stock decline (2017-19); COVID-19 (2020/21)
- Varies in reliance on flatfish → different exposure to PSC limit (Fig. 3-15, below)
- Varies in reliance on mothershipping, CDQ revenue, and dependence on non-BSAI fishing (Table 3-14 & Fig 3-19, p.107-8)
- CDQ Groups are stakeholders in A80, though A80 is a relatively small portion of total CDQ revenues (Fig 3-22, p.124)


AMENDMENT 80 SECTOR (3.3.3)

Multispecies fishery with layered constraints

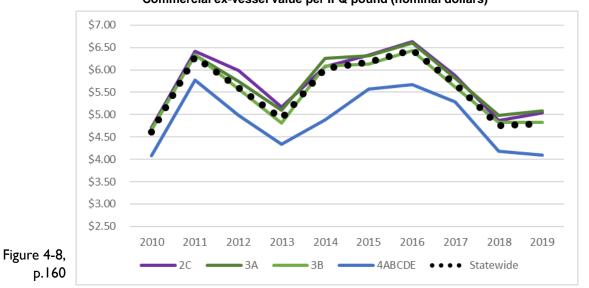
- Targets/areas are not necessarily substitutable during the year
- Companies differ in their response options to emergent constraints
 - e.g. Allocations, vessel capabilities, access to grounds
 - Limited allocations of PCod, halibut (company-level)
- A minority 'piece' of a company's harvest portfolio could be necessary to sustain full participation but not sufficient to replace forgone targets

AMENDMENT 80 SECTOR (3.3)


Gross first wholesale revenues (Sec. 3.3.2.1) are the market price estimates for primary processed seafood products. Product-type prices are derived from COAR and applied to weights from processor production reports.

Ex-vessel equivalent prices can be estimated (e.g. fish taxes, Cost Recovery) but only by a rough imputation that does not reflect the actual A80 product supply chain and would be less reliable in capturing the actual distribution of product forms and recovery rates. (see examples in Sec. 3.3.2.4 or 3.3.2.5)

78


AMENDMENT 80 HALIBUT PSC (3.4)

- Absolute and Effective PSC mortality declines post-2014/15
 - Effective mortality = PSC mortality / Halibut Catch
- Groundfish catch/halibut and revenue/halibut diverge by flatfish v. roundfish (Figs 3-32 & 3-33, p.133-4)

AREA 4 HALIBUT FISHERY (4.4)

- High utilization of catch limit IFQ: 91%, CDQ 90% (only slightly lower in 2020)
- Annual ex-vessel value (IFQ+CDQ; 2018\$) between \$16.9M and \$24.9M since 2013... 2018 & 2019 lowest (Table 4-3, p.159 and Table 4-6, p.164)
- Ex-vessel unit value has declined since 2016 and is lowest in Area 4 (Figure 4-8)
- Near-term headwinds to \$/lb. but 2020 dock prices reported (trade press) were higher than expected a year ago (p.162)

AREA 4 HALIBUT FISHERY (4.4)

Ex-vessel revenues (and price-per-pound) are given as the primary measure of fishery value. This Fish Ticket data can be calculated specific to Area 4 (and subareas). Ex-vessel captures the amount paid to fishermen by primary processors and reflects the most common operation of the Alaska halibut supply chain – especially in Area 4. In 2019 the avg. price was **\$4.43 (2018\$)**, or **\$5.54** from 2015-2019.

Wholesale value (per pound) – For comparison to A80... Arrived at \$6.37 (2018\$), or \$7.04 from 2015-2019 Approaches:

- EconSAFE statewide estimate for H&G (COAR data)
- Screen BSAI COAR for data quality and confidentiality to estimate actual WV by product type
- Translate statewide values to gut-only product form to reflect BSAI
- Qualitative description of halibut value-added chain, noting differences among regions within the state (p.166-7)

5.5 REVENUE IMPACT ESTIMATION

- Analysis of the relationship between halibut PSC limits and direct revenues generated by the Amendment 80 sector
 - Reported in \$2018 gross first wholesale value
- Relative indirect effect of the considered alternatives on directed halibut fishery catch in the BSAI region
 - Reported in \$2018 Ex-vessel value and estimated wholesale values
- Revenue estimates do not incorporate economic multipliers to estimate the total economic contributions of the A80 fishery or the directed halibut fishery in terms of output, income, employment or other economic measures.

Same as October DEIS

- General approach but with new PSC limits from lookup tables
 - A80 haul level data (PSC (t), groundfish catch (t), wholesale value (\$2018))
 - Resample hauls without replacement until reaching PSC limit from lookup table or groundfish catch limit (290k t or 310k t)
- Sum wholesale values to estimate annual revenue
- Subset into three datasets
 - high PSC use years (2010-2014)
 - all years (2010-2019, excluding 2015)
 - low PSC use years (2016-2019)

Same as October DEIS

- General approach but with new PSC limits from lookup tables
 - A80 haul level data (PSC (t), groundfish catch (t), wholesale value (\$2018))
 - Resample hauls without replacement until reaching PSC limit from lookup table or groundfish catch limit (290k t or 310k t)
- Sum wholesale values to estimate annual revenue
- Subset into three datasets
 - high PSC use years (2010-2014)
 - all years (2010-2019, excluding 2015)
 - low PSC use years (2016-2019)

New since October DEIS

- Two new year subsets to incorporate wider range of potential revenues
 - Higher PSC use (2013-14)
 - Lower PSC use (2017-18)
- Stratified approach (based on SSC recommendation in Oct 2020)
 - Sampled hauls by month, maintaining max monthly effort levels, and summed in calendar order

- Each PSC limit has 16 revenue estimates based on "scenarios" defined by combination of
 - Groundfish limit (290,000t or 310,000t)
 - Dataset used (years of data included)
 - Sampling method (random or stratified and ordered by month)
- Table 5-5
 Estimated revenue (million wholesale \$2018) by PSC limit and Alternative using different estimation methods. Green shading indicates the results were constrained by the PSC limit, blue shading indicates the results were constrained by the groundfish limit (290,000 or 3310,000 t).

5	PS	C limit		96	0	104	7	122	2	130	9	139	6	148	33	157	1	174	5	200	7
a fimatio	Alt	ernative(s)	4		4		3		3		2,3,	4	2		2		1,2,3	,4	3	
_	GF	limit (1,000	mt)	290	310	290	310	290	310	290	310	290	310	290	310	290	310	290	310	290	310
		2010-14		160.582	160.815	174.982	175.215	204.050	204.313	219.181	218.550	233.493	233.235	248.384	247.668	262.813	262.705	291.338	291.603	327.968	335.497
		2010-19		189.686	190.121	207.396	206.935	241.993	241.715	259.314	258.923	276.215	276.468	293.723	293.380	310.690	310.046	335.887	345.264	335.937	359.123
Dandom		2016-19		246.206	246.385	268.807	268.887	313.489	313.519	335.524	335.829	346.417	358.232	346.366	370.300	346.425	370.269	346.417	370.311	346.454	370.271
°	1	2013-14		137.994	138.184	150.453	150.591	175.812	175.384	187.950	187.992	200.795	200.295	213.141	213.202	225.934	225.979	251.137	251.123	288.273	288.545
_		2017-18		282.581	282.479	307.928	308.073	359.795	359.146	376.517	385.223	376.582	402.458	376.509	402.584	376.623	402.591	376.558	402.546	376.604	402.554
3		2010-14		182.258	182.272	195.088	195.065	216.307	216.059	227.666	227.668	246.072	246.276	268.338	267.997	283.966	283.479	313.799	313.520	327.054	349.666
matified		2010-19		202.931	202.828	216.382	216.445	242.752	242.719	255.780	256.090	277.083	277.964	305.385	305.515	326.047	326.307	336.782	360.053	336.793	360.511
Ľ	5	2016-19		218.741	218.978	253.143	253.251	319.090	318.907	341.704	341.720	349.070	366.178	349.027	372.528	349.165	372.536	349.034	372.499	349.147	372.479

- Generally, lower PSC limits tend to result in reduced groundfish revenue
- Revenue constrained by PSC at low PSC limits (shaded green in table)
 - Similar revenue estimates under both groundfish limits
- Revenue constrained by groundfish limits at higher PSC limits (shaded blue in table)
 - Revenue estimates vary with groundfish limit
- Revenue estimates are lower under the high PSC use and higher under low PSC use datasets
 - Large range of potential revenue for each PSC limit based on high or low PSC use
- The range of estimates under each dataset (years sampled) should be considered when comparing alternatives

- Minor differences in results using random or stratified sampling approach
- May represent upper bound of impacts

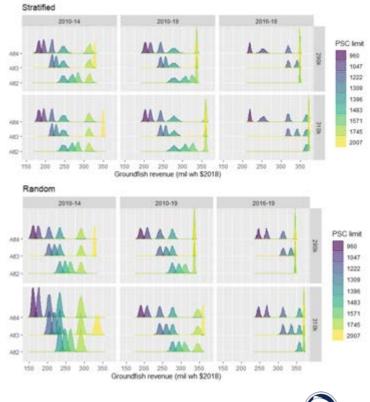


Fig 5-10 p. 194

		Percent differen	ces are ca	alculate	d acros	is the r	rows (co	ompar	ing esti	mates	using	same	method	s and	datase	ts)				
po		EBS Trawl																		
method		Survey			Lo	w	Hig	⁷ h	Lo	w	Hig	h	Lo	w	Hig	'h	Lo	w	Hig	'n
ă		Setline			10			,	100				110			,	10			,
		survey			Very]	Low	Verv	Low	Lo	w	Lo	w	Medi	ստ	Medi	um	Hig	h	Hig	rh
	SC limit	1745			139		148		139		148		148		157		157		174	
	GF limit	1/40			107	•	140		107	•	140		140		107	•	107	•	1/-	
Esti	(1,000 t)	290	310		290	310	290	310	290	310	290	310	290	310	290	310	290	310	290	310
-	2010-14	291.338	291.603		-20%	-20%	-15%	-15%	-20%	-20%	-15%	-15%	-15%	-15%	-10%	-10%	-10%	-10%	0%	0%
5	2010-19	335.887	345.264	2	-18%	20%	-13%	-15%	-18%	-20%	-13%	-15%	-13%	-15%	-8%	-10%	-8%	-10%	0%	0%
Random	2016-19	346.417	370.311	Alternative	0%	-3%	0%	0%	0%	-3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Sa	2013-14	251.137	251.123	ati	-20%	-20%	-15%	-15%	-20%	-20%	-15%	-15%	-15%	-15%	-10%	-10%	-10%	-10%	0%	0%
_	2017-18	376.558	402.546	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
÷	2010-14	313.799	313.520	l <u>F</u>	-22%	-21%	-14%	-15%	-22%	-21%	-14%	-15%	-14%	-15%	-10%	-10%	-10%	-10%	0%	0%
Strat.	2010-19	336.782	360.053	A	-18%	-23%	-9%	-15%	-18%	-23%	-9%	-15%	-9%	-15%	-3%	-9%	-3%	-9%	0%	0%
ß	2016-19	349.034	372.499		0%	-2%	0%	0%	0%	-2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
P	SC limit	1745			122	2	130	19	130	9	139	6	139	6	174	5	174	5	200	7
	GF limit																			
	(1,000 t)	290	310		290	310	290	310	290	310	290	310	290	310	290	310	290	310	290	310
a	2010-14	291.338	291.603		-30%	-30%	-25%	-25%	-25%	-25%	-20%	-20%	-20%	-20%	0%	0%	0%	0%	13%	15%
<u> </u>	2010-19	335.887	345.264	63	-28%	-30%	-23%	-25%	-23%	-25%	-18%	-20%	-18%	-20%	0%	0%	0%	0%	0%	4%
Random	2016-19	346.417	370.311	.ă.	-10%	-15%	-3%	-9%	-3%	-9%	0%	-3%	0%	-3%	0%	0%	0%	0%	0%	0%
Ra	2013-14	251.137	251.123	at	-30%	-30%	-25%	-25%	-25%	-25%	-20%	-20%	-20%	-20%	0%	0%	0%	0%	15%	15%
	2017-18	376.558	402.546	Alternative	-4%	-11%	0%	-4%	0%	-4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Strat.	2010-14	313.799	313.520	- Al	-31%	-31%	-27%	-27%	-27%	-27%	-22%	-21%	-22%	-21%	0%	0%	0%	0%	4%	12%
÷.	2010-19	336.782	360.053	~	-28%	-33%	-24%	-29%	-24%	-29%	-18%	-23%	-18%	-23%	0%	0%	0%	0%	0%	0%
	2016-19	349.034	372.499		-9%	-14%	-2%	-8%	-2%	-8%	0%	-2%	0%	-2%	0%	0%	0%	0%	0%	0%
P	SC limit	1745			96	0	104	17	104	7	122	2	122	2	139	6	139	6	174	5
	GF limit	••••																		
	(1,000 t)	290	310		290	310	290	310	290	310	290	310	290	310	290	310	290	310	290	310
в	2010-14 2010-19	291.338 335.887	291.603 345.264	4	-45% -44%	-45%	-40% -38%	-40%	-40% -38%	-40% -40%	-30% -28%	-30% -30%	-30% -28%	-30% -30%	-20% -18%	-20%	-20% -18%	-20%	0% 0%	0% 0%
ъ	2010-19	346.417	345.264		-44%	-45% -33%	-38%	-40% -27%	-38%	-40%	-28%	-30%	-28%	-30%	-18%	-20%	-18%	-20%	0%	0%
Random	2016-19	251.137	251.123	÷	-45%	-35%	-22%	-27%	-22%	-27%	-30%	-15%	-10%	-15%	-20%	-20%	-20%	-20%	0%	0%
К	2013-14	376.558	402.546	Alternative	-45%	-43%	-40%	-23%	-40%	-23%	-30%	-11%	-30%	-11%	-20%	-20%	-20%	-20%	0%	0%
<u>د</u>	2017-18	313.799	313.520	Ę	-42%	-42%	-38%	-38%	-38%	-38%	-31%	-31%	-31%	-31%	-22%	-21%	-22%	-21%	0%	0%
Strat.	2010-14	336.782	360.053	칠	-40%	-44%	-36%	-40%	-36%	-40%	-28%	-33%	-28%	-33%	-18%	-23%	-18%	-23%	0%	0%
st				- I																
\$	2016-19	349.034	372.499		-37%	-41%	-27%	-32%	-27%	-32%	-9%	-14%	-9%	-14%	0%	-2%	0%	-2%	0%	0%

 Table 5-6
 Estimated status quo revenues (millions wholesale \$2018) and percent difference from status quo by Alternative and PSC limit based on survey states.

 Percent differences are calculated across the rows (comparing estimates using same methods and datasets)

88

CONTEXT FOR GROUNDFISH RESULTS

- Revenue estimates should be read for comparison across alternatives
 - Results are not stand-alone predictions of future A80 revenue under each PSC limit.
 - Harvesters are expected to make strategic choices that are different from the randomized selection or stratified sampling of hauls used in this analysis.
- Estimates are based on actual fishery data
 - Only reflects the environmental conditions and fishing behavior that occurred during the past 10 years
 - Does not estimate outcomes under a changed environment or management regime, future TACs or market conditions, or incorporate potential future fishing adaptations or operational changes
- No predetermined relationship between PSC use and PSC limit
 - Implicit assumption that 100% of PSC use is possible (and is reached unless groundfish limit is reached first)

CONTEXT FOR GROUNDFISH RESULTS

- Results center around the mean
 - Less likely to include the most extreme examples such as a year in which the fleet has difficulty avoiding halibut and accumulates PSC at a more rapid rate
- Results are gross revenue estimates
 - Does not estimate costs associated with avoiding halibut
- Results are aggregated at the A80 sector
 - The distribution of impacts across companies and vessels will differ based on many factors, most notably fishing portfolio

BSAI HALIBUT COMMERCIAL CATCH (5.5.3)

- Objective: Relate change in A80 PSC limit to "BSAI" directed commercial halibut catch limit
 - Build off near-term BSAI catch limit estimations (2021-2030), which include assumptions about A80 PSC usage & halibut dynamics (Oct. 2020 DEIS)
 - Calculate *ratio* of change in directed halibut catch limit to change in PSC limit
 - Apply *ratio* to the alternatives in the look-up tables

 $\frac{BSAI \text{ directed halibut catch limit}_{SQ} - BSAI \text{ directed halibut catch limit}_{Alt}}{PSC \text{ limit}_{SQ} - PSC \text{ limit}_{Alt}} = Ratio$

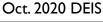
Inputs:

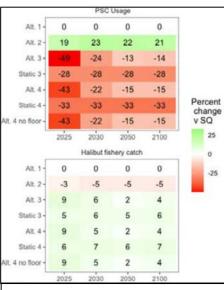
- Median simulation estimates for 2021 2030
- PSC limits ranged from 849 t to 2,325 t
- BSAI directed catch limits ranged from 4.44 million net lbs. to 7.52 million net lbs

- Applied ratio to calculate potential change in directed halibut catch resulting from PSC limits changes in the lookup table for each alternative
 - Used the minimum, median and maximum of calculated ratios
 - Results should be read for direction and magnitude; best used for looking across the table to relate PSC limit_{Alternative} to one another in terms of BSAI directed catch limits

 \triangle *PSC limit* (*from lookup table*) * *Ratio* = *Potential* \triangle *BSAI directed halibut catch*

 \triangle *PSC limit* (*from lookup table*) * *Ratio* = *Potential* \triangle *BSAI directed halibut catch*


Table 5-7 Change from status quo (SQ) BSAI directed catch limits (million net pounds) resulting from proposed PSC limits (t). The bottom three rows display change from status quo directed BSAI catch limits resulting from the PSC listed at top, calculated using the minimum, median and maximum ratios.


PSC Limit (t)			960	1047	1222	1309	1396	1483	1571	1745	2007
Difference from SQ	PSC limit (t)		-785	-698	-523	-436	-349	-262	-174	0	262
Difference from SQ	PSC limit (mil. n	et pounds)	-1.298	-1.154	-0.865	-0.721	-0.577	-0.433	-0.288	0	0.433
Change in directed	Min. ratio	0.094	0.122	0.109	0.082	0.068	0.054	0.041	0.027	0	-0.041
catch limit (million net	Median ratio	0.327	0.424	0.377	0.283	0.236	0.189	0.142	0.094	0	-0.142
pounds)	Max. ratio	0.609	0.790	0.703	0.526	0.439	0.351	0.264	0.175	0	-0.264

р. 202

- Caveats to specific ratio value estimates:
 - "BSAI" ≠ IPHC Area 4
 - Ratios based on Oct. 2020 closed-loop sim. median estimates
 - Based on near-term PSC limit and halibut catch limit estimates (2021 – 2030)
 - Bounded by △PSC in the look-up tables (Alternatives), not "zero PSC"
 - Actual *ratio* all else equal varies over time based on external factors
 - e.g., halibut size-at-age; selectivity of trawl gear ~ population age-structure; availability to HAL gear ~ population agestructure

Recall that model indicated a ratio less than 1.0 (PSC %decrease > halibut catch %increase)

- Other studies have assessed the "ratio" (aka. "yield gain" or "rate of exchange") that relates PSC use to the directed halibut fishery
 - IPHC (2021) compared results of coastwide assessment with/without coastwide bycatch
 - Resulting estimates ranged from 86% to 139% rate of exchange
 - Caveats:
 - Coastwide data are not a clean analogy for BSAI/Area 4 (e.g. different population dynamics and selectivities)
 - Study based on stock assessment as opposed to two-area simulation model that includes variable recruitment and movement
 - Comparison to "no bycatch" is a starker contrast than the low-end PSC limits analyzed in the simulation

- The downstream effect of a PSC usage change on halibut fishery catch as driven by the PSC limits in the Alternatives and assumptions about use relative to the limit – is:
 - Indirect, but can be understood in terms of direction and rough magnitude
 - A function of biological and environmental factors that can be modeled but entail assumptions
 - Not something that can be isolated from annual catch limit policy decisions at the IPHC-level
- Analysts' approach builds off of:
 - Capturing *short-term* effects from previous simulation
 - Short-term estimations that are specific to the BSAI/Area 4 (relative to other studies)
 - Modeling results that were specific to PSC limit changes (rel. to status quo) that are more similar to the current set of Alts (lookup tables)
 - Readers can interpolate beyond ratios presented
 - Would not affect the ranking of the alternatives against each other
 - Could change the relative magnitude of the "likely effects"
- The SSC may suggest other methods to arrive at a "ratio" (or something analogous); the way
 the results are set up to compare across alternatives makes it simple to substitute a different
 multiplying factor that relates PSC use to directed halibut catch *in the area of interest*

Table 5-8	Potential	change	in reve	nue from sta	tus quo base	d on PSC lim	iit (2018\$)					p. 205
				960	1047	1222	1309	1396	1483	1571	1745	2007
			min	529,693	470,988	352,903	294,199	235,494	176,789	117,410	0	-176,789
	2019	\$4.33	med	1,836,865	1,633,289	1,223,797	1,020,221	816,645	613,068	407,152	0	-613,068
Ex-Vessel			max	3,421,134	3,041,976	2,279,303	1,900,146	1,520,988	1,141,831	758,315	0	-1,141,831
Values	A		min	677,713	602,603	451,521	376,411	301,302	226,192	150,219	0	-226,192
	Average 2015-19	\$5.54	med	2,350,170	2,089,705	1,565,782	1,305,317	1,044,852	784,388	520,929	0	-784,388
	2010-17		max	4,377,155	3,892,044	2,916,245	2,431,133	1,946,022	1,460,910	970,223	0	-1,460,910
			min	779,248	692,885	519,167	432,805	346,443	260,080	172,725	0	-260,080
XX7111.	2019	\$6.37	med	2,702,271	2,402,784	1,800,366	1,500,879	1,201,392	901,904	598,975	0	-901,904
Wholesale Head-and-			max	5,032,938	4,475,148	3,353,155	2,795,365	2,237,574	1,679,783	1,115,581	0	-1,679,783
Gut	A		min	861,209	765,763	573,774	478,328	382,882	287,435	190,892	0	-287,435
	Average 2015-19	\$7.04	med	2,986,497	2,655,510	1,989,730	1,658,742	1,327,755	996,767	661,975	0	-996,767
	2010-19		max	5,562,306	4,945,846	3,705,842	3,089,382	2,472,923	1,856,464	1,232,919	0	-1,856,464

- **Ex-vessel** values reported as 2018-dollar adjusted annual averages for Area 4
- Wholesale values are state-wide estimates of first wholesale production for H&G fish as reported in the 2020 Economic SAFE
- Calculated based on change in PSC limit (not estimated use)
- Assumes 100% usage of the additional directed halibut catch limit Results in slight overestimate as Area 4 TAC utilization rate was 91% from 2011-2020 (85% in 2020)

Table 5-9 Estimated percent change in BSAI directed catch limit from status quo by survey state and alternative

EBS Trawl Survey		Low			High			Low			High			Low			High			Low			High	
Setline survey	, I	Very Lo	w	v	ery Lo	w		Low			Low		1	Mediur	n	I	Mediu	n		High			High	
ratio	low	med	max	low	med	max	low	med	max	low	med	max	low	med	max	low	med	max	low	med	max	low	med	max
Alternative 2		1396			1483			1396			1483			1483			1571			1571			1745	
	1%	5%	9%	1%	3%	6%	1%	5%	9%	1%	3%	6%	1%	3%	6%	1%	2%	4%	1%	2%	4%	0%	0%	0%
Alternative 3		1222			1309			1309			1396			1396			1745			1745			2007	
	2%	7%	13%	2%	6%	11%	2%	6%	11%	1%	5%	9%	1%	5%	9%	0%	0%	0%	0%	0%	0%	-1%	-3%	-6%
Alternative 4		960			1047			1047			1222			1222			1396			1396			1745	
	3%	10%	19%	3%	9%	17%	3%	9%	17%	2%	7%	13%	2%	7%	13%	1%	5%	9%	1%	5%	9%	0%	0%	0%
Legend		-50%	-25%	0%	25%	50%																_		

р. 205

- Summarizes findings of Social Impact Assessment (Appendix 1)
- Provides limited additional information on impacts by alternative

SSC Comments on October 2020 SIA Version:

 "... The SSC recommends that future versions of the document explore some of the concerns raised in public testimony regarding National Standard 4 and the disproportional impact to tribes, given the number of Alaska Native communities in the analysis."

Revisions in response SSC Comments:

SIA Section 3 (Regulatory Context)

- A new subsection on MSA National Standard 4 added
- A new subsection on Tribal Consultation and Coordination added
- DEIS Section 7.1 (Magnuson-Stevens Act and Pacific Halibut Act Considerations)
 - National Standard 4 (and other National Standards) discussed in advance of selection of a Preferred Alternative

Revisions in response SSC Comments (continued):

- "Community Institutional Summary" table in each CDQ region Historical Overview section now notes for each potentially substantially engaged or substantially dependent Amendment 80 groundfish and/or BSAI/Area 4 halibut fishing community:
 - ANCSA status;
 - ANCSA regional corporation;
 - ANCSA village corporation;
 - Federally recognized tribal status;
 - CDQ membership status.

Revisions in response SSC Comments (continued):

- Language on tribal status has been revisited and further clarified or emphasized in each of the community impact and Environmental Justice concerns discussions for potentially substantially engaged or dependent:
 - Groundfish communities (Section 7.1.1)
 - Halibut communities (Section 7.2.3)

Revisions in response SSC Comments (continued):

- Section 6.8 (Cross-Cutting Community Engagement Ties)
 - Communities Engaged in the Commercial BSAI/Area 4 Halibut Fishery subsection added to more clearly portray pattern of directed halibut fishery quota holdings across states.
- Section 7.2.6 (Potential Cumulative Small/Rural Community and Cultural Context Issues)
 - Section expanded to provide additional description of non-economic social and cultural aspects of halibut fishing in BSAI coastal communities.

- Other revisions to the SIA driven by:
 - Changes to the Purpose and Need statement
 - Changes to the Action Alternatives
 - Recent Executive Orders (added to regulatory context)
 - Newly available 2019 community level data
 - Income and poverty data (all communities)
 - Community financial data (Adak)
- None of the revisions change the previously reviewed overall findings of the SIA

- Preliminary Impacts: Amendment 80 Groundfish Communities
 - Impacts to operations influenced by environmental, regulatory, and behavioral factors
 - Alaska communities
 - Ports of call: fishery resource landing taxes; harbor fees; support service sector business activity
 - CDQ group communities: multispecies groundfish quota leasing; industry partnerships
 - Pacific Northwest communities
 - Amendment 80 firms, direct employment and income, large scale support sector business activity

- Preliminary Impacts: BSAI Halibut-Dependent Communities
 - Additional opportunities for directed halibut fishery
 - Problematic nature of the no-action alternative for directed halibut fishery under low abundance conditions inherently recognized in the Council's purpose and need statement
 - Conditions for potential occurrence of additional opportunities vary by action alternative
 - Level influenced by IPHC decision making
 - Individual community outcomes influenced by:
 - CDQ group decision making
 - Individual entity decision making
 - Would be realized in the near term

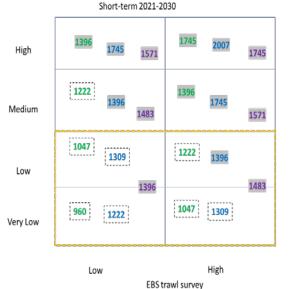
	Altern	ative 2	Altern	ative 3	Alternative 4				
	Low	High	Low	High	Low	High			
	Trawl	Trawl	Trawl	Trawl	Trawl	Trawl			
	Index	Index	Index	Index	Index	Index			
High	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit			
Setline	LOWER than	SAME as	SAME as	HIGHER than	LOWER than	SAME as			
Index	Status Quo	Status Quo	Status Quo	Status Quo	Status Quo	Status Que			
Medium	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit			
Setline	LOWER than	LOWER than	LOWER than	SAME as	LOWER than	LOWER tha			
Index	Status Quo	Status Quo	Status Quo	Status Quo	Status Quo	Status Que			
Low	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit	PSC Limit			
Setline	LOWER than	LOWER than	LOWER than	LOWER than	LOWER than	LOWER tha			
Index	Status Quo	Status Quo	Status Quo	Status Quo	Status Quo	Status Que			
Very Low			PSC Limit	PSC Limit	PSC Limit	PSC Limit			
Setline	(Note: Alt 2 does n	ot have a separate category)	LOWER than	LOWER than	LOWER than	LOWER tha			
Index	very cow	cotegory)	Status Quo	Status Quo	Status Quo	Status Que			

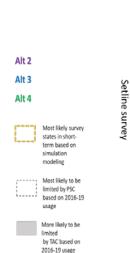
Preliminary Impacts: BSAI Halibut-Dependent Communities (continued)

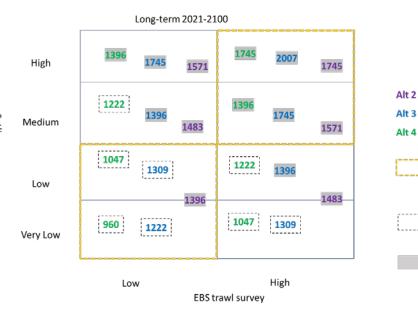
- Promotion of conservation of halibut stock
 - Dependent in part on actual mortality (vs PSC upper bounds)
 - Dependent on actual effects on halibut stock (net of mortality changes in other fisheries)
 - Potentially benefit commercial, sport, and subsistence fisheries
 - Would be realized over the longer term

Next Steps

More detailed alternative-specific analysis following the selection of a preliminary preferred alternative






SUMMARY AND NEXT STEPS

SHORT-AND LONG-TERM POSSIBLE PSC LIMITS ACROSS ALTERNATIVES

Most likely survey

states in long-term

Most likely to be

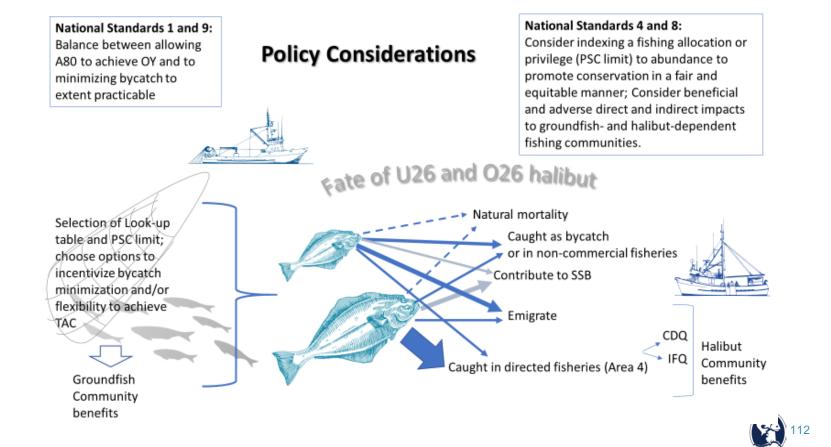
based on 2016-19

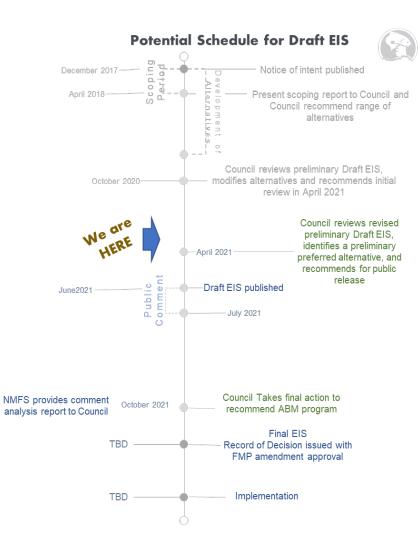
More likely to be

2016-19 usage

limited by PSC

based on


simulation


modeling

usage

limited by TAC based on

BALANCING THE NATIONAL STANDARDS: POLICY TRADE-OFFS

STEPS IN MOVING TO FINAL ACTION