

EBS Pollock stock assessment

2019 BSAI Plan Team meeting

Seasonal and area catch patterns Eastern Bering Sea pollock

Fishing: Seasonal roe production

Compare to B-season (summer) conditions...

Winter season fishing patterns

Summer fishing distributions

Summarizing spatial fishery patterns

Shore-based catcher boats only...

- Fishery observer sampling...
 - Patterns in pollock growth

Pollock "fatness" (given length) by month

Pollock "fatness" (given length) by year and season

- 2008 year class generally small at age
- 2012 looks better!

Fishery catch-at-age

Eastern Bering Sea pollock surveys

Scientific research survey

Cold pool extent...

2019 summer bottom temperatures

- More cold pool than last year
- VERY warm in inner shelf region...

Pollock density and temperature

What about shifting fish distributions...

- Requires expanding survey area...
- Affects survey priorities at the AFSC

Survey stations in northern area..."NBS"

Formally surveyed in 2010 and 2017 2018 an "emergency" 2019 a "full" Nbs

Northern area: trace amounts

Bottom trawl survey spatial patterns

2010 standard survey (3.74 million t pollock estimated)

Northern area: trace amounts

2017 standard survey (4.81 million t pollock estimated)

Northern area: 1.34 million t
2018 standard survey (3.1 million t pollock estimated)

Northern area: 1.15 million t

2019 standard survey (5.4 million t pollock estimated)

Northern area: 1.2xx million t

New this year

- Evaluation of the cold-pool impact
- Survey age compositions also done using VAST
- Preliminary Acoustic-trawl index available
 - Included in alternative model runs

Modeling surveys

- To account for missed areas/years...
- VAST model of Thorson

Pollock biomass by regions—VAST run

Pollock biomass by regions—VAST run

Eastings

Source VAST DB

VAST Age compositions compared to design-based

Model configurations

- Base (as in 2018)
- VAST indices—account for Northern Bering Sea biomass
- New work on space-time modeling of survey data
 - Layers of water column
 - Led to an evaluation of effective "catchability"

Population numbers of fish

Scientific Research Survey

Results

<image>

2012 Year class changing to the 2013...

EBS pollock Assessment Results EBS pollock Assessment Results

Model details (1 of 2)

- Tuning indices
 - Acoustic Trawl survey
 - Available biennially (usually)
 - Annual fixed-station bottom trawl survey
 - Tested including northern Bering Sea from VAST
 - Acoustic vessel of opportunity (AVO index)
 - Two new years of data every other year
 - Old foreign trawler CPUE (in 1970s)
- Fishery data
 - Total catch
 - Catch-at-age
 - Mean fishery weights-at-age

Model details (2 of 2)

EBS pollock Assessment Results

- Age specific schedules
 - Natural mortality
 - Ages 1 and 2 higher, other ages fixed at 0.3
 - Maturity
 - Estimated externally...50% at ~ age 3.5 years
- Other
 - Conditioned on catch biomass (F's estimated)
 - Selectivity varies in fishery
 - Slightly in surveys
 - Stock recruitment model Ricker,
 - Affects ABC values, minimal impact on historical trends
 - Projection options built in to evaluate policy trade offs

Data Impact on Model

New data impact on model...

Data considerations								
Name	Updated catch to 2019	2018 fishery age data	2018 fishery2019 Bottomage datatrawl survey data					
Catch	Х							
+Age Fishery	Х	Х						
+BTS	Х	Х	Х					
+AVO	Х	х	Х	Х				

Data

Impact on

Model

EBS pollock Assessment Results

Alternative models for bottom-trawl survey

EBS pollock Assessment

Results

Alternative models for bottom-trawl survey

Year

New stuff

• Layers

• Spatial-temporal survey age compositions

Bottom trawl survey biomass 20000 10000

Year

Is it just **if**ried?

...time varying "catchability" for rigorously conducted scientific fishery-independent survey...

- Incorrect assumption if:
 - Fish don't move
 - They stay in the same place in the water column
- Problem: how to estimate?
- Solution
 - "Layers" project combining information

Acoustic and bottom trawl survey spatio-temporal modeling—Incorporating vertical distribution in index standardization

Acoustic Bottom Combined

 Table 27: Goodness of fit to primary data used for assessment model parameter estimation profiling over different constraints on the extent bottom-trawl survey selectivity/availability is allowed to change; EBS pollock.

 Less flexibility in survey "catchability"

Less f				
$\mathrm{CV70\%}$	$\mathrm{CV50\%}$	$\mathrm{CV20\%}$	CV10%	ČV05%
0.19	0.20	0.25	0.29	0.31
0.22	0.22	0.22	0.23	0.25
0.20	0.20	0.20	0.20	0.20
0.09	0.09	0.09	0.09	0.09
1.02	1.19	1.79	2.23	2.47
1.10	1.10	1.11	1.14	1.22
0.76	0.75	0.74	0.72	0.71
1365.51	1372.40	1392.26	1372.23	1278.89
208.52	203.80	178.75	159.65	141.48
215.18	215.53	214.51	209.21	200.07
20.81	28.35	64.62	99.66	122.72
8.84	8.85	8.97	9.33	10.33
9.55	9.54	9.53	9.60	9.71
137.34	138.83	143.86	149.91	159.59
146.41	149.94	168.84	190.99	239.72
26.81	26.89	27.61	28.90	30.68
	Less f CV70% 0.19 0.22 0.20 0.09 1.02 1.02 1.10 0.76 1365.51 208.52 215.18 208.52 215.18 20.81 8.84 9.55 137.34 146.41 26.81	Less flexibility in stCV70%CV50%0.190.200.220.220.200.200.090.091.021.191.101.100.760.751365.511372.40208.52203.80215.18215.5320.8128.358.848.859.559.54137.34138.83146.41149.9426.8126.89	Less flexibility in survey "catchaCV70%CV50%CV20%0.190.200.250.220.220.220.200.200.200.090.090.091.021.191.791.101.101.110.760.750.741365.511372.401392.26208.52203.80178.75215.18215.53214.5120.8128.3564.628.848.858.979.559.549.53137.34138.83143.86146.41149.94168.8426.8126.8927.61	Less flexibility in survey "catchability"CV70%CV50%CV20%CV10%0.190.200.250.290.220.220.220.230.200.200.200.200.090.090.090.091.021.191.792.231.101.101.111.140.760.750.740.721365.511372.401392.261372.23208.52203.80178.75159.65215.18215.53214.51209.2120.8128.3564.6299.668.848.858.979.339.559.549.539.60137.34138.83143.86149.91146.41149.94168.84190.9926.8126.8927.6128.90

Age 3-8 relative "availability" to bottom tra

Age 3-8 relative "availability" to bottom trawl survey

Impact of constraining availability assumption..

Year

Layer approach?

• Combining Overlapping Layered Data (COLD?)

Combining Overlapping Layers of Echosign (COLE?)

Table 27: Goodness of fit to primary data used for assessment model parameter estimation for different model configurations, EBS pollock.

Component	lastyr	Model 16.1	VAST	VAST+cold-pool	VAST ATS
RMSE BTS	0.240	0.200	0.160	0.170	0.170
RMSE ATS	0.220	0.220	0.220	0.220	0.380
RMSE AVO	0.210	0.200	0.200	0.200	0.220
RMSE CPUE	0.090	0.090	0.090	0.090	0.090
SDNR BTS	1.230	1.190	1.870	2.130	2.120
SDNR ATS	1.110	1.100	1.130	1.140	2.940
SDNR AVO	0.580	0.750	0.730	0.730	0.850
Eff. N Fishery	1438.800	1372.250	1381.800	1376.960	1373.430
Eff. N BTS	168.540	203.810	202.180	203.170	204.190
Eff. N ATS	213.530	215.490	212.720	212.560	220.060
BTS NLL	29.110	28.350	25.440	26.180	25.600
ATS NLL	8.940	8.850	9.000	9.140	26.960
AVO NLL	9.880	9.540	9.620	9.620	9.590
Fish Age NLL	115.290	138.830	139.130	139.550	139.040
BTS Age NLL	165.380	149.950	144.450	145.530	146.120
ATS Age NLL	28.220	26.890	27.030	27.110	25.970

Other model contrasts...

Year

Year

Model results...fit to data

Bering Sea pollock

Bottom trawl survey

age data and fits

Bering Sea pollock Acoustic survey

age data and fits

EBS pollock Assessment

Fishing mortality rates

Figure 51: Recruitment estimates (age-1 recruits) for EBS pollock for all years since 1964 (1963–2017 year classes) for Model 16.1. Error bars reflect 90% credible intervals based on model estimates of uncertainty.

Method Projected to 2020 Mean

Age structured anomalies

Biomass at age relative to • mean

Year

Spawning biomass projection

Projections

Cautions:

- Current absolute biomass uncertain
- Future weight-at-age may add uncertainty
- Actual year-year fluctuations in catch unrealistic

Tables provided for VAST as well

2019 Stock recruitment

lastyr

Model 16.1

Female spawning biomass (kt)

	Considerations					
		Assessment-related	Population	Environmental &	Fishery performance	
			dynamics	$\mathbf{ecosystem}$		
	Level 1	Typical to moderately	Stock trends are	No apparent	No apparent	
	Normal	increased uncertainty	typical for the stock;	$environmental \ \&$	fishery/resource-use	
		& minor unresolved	recent recruitment is	ecosystem concerns	performance and/or	
		issues in assessment	within normal range.		behavior concerns	
	Level 2	Substantially	Stock trends are	Some indicators	Some indicators	
	Substan-	increased assessment	unusual; abundance	showing an adverse	showing adverse	
	tially	uncertainty	increasing or	signals but the	signals but the	
– . <i>c</i>	increased	unresolved issues.	decreasing faster than	pattern is inconsistent	pattern is inconsistent	
Factors for	concerns		has been seen recently, or recruitment pattern is atypical	across all indicators.	across all indicators.	
roducing	Level 3	Major problems with	Stock trends are	Multiple indicators	Multiple indicators	
reducing	Major	the stock assessment	highly unusual very	showing consistent	showing consistent	
	Concern	very poor fits to data	rapid changes in stock	adverse signals a)	adverse signals a)	
ABC	e oncorn	high level of	abundance, or highly	across the same	across different	
		uncertainty, strong	atypical recruitment	trophic level, and/or	sectors, and/or b)	
		retrospective bias.	patterns.	b) up or down trophic	different gear types	
				levels (i.e., predators	0 01	
				and prey of stock)		
	Level 4	Severe problems with	Stock trends are	Extreme anomalies in	Extreme anomalies in	
	Extreme	the stock assessment,	unprecedented. More	multiple ecosystem	multiple performance	
	concern	severe retrospective	rapid changes in stock	indicators that are	indicators that are	
		bias. Assessment	abundance than have	highly likely to impact	highly like to impact	
		considered unreliable.	ever been seen	the stock. Potential	the stock.	
			previously, or a very	for cascading effects		
			long stretch of poor	on other ecosystem		
			recruitment compared	components		

to previous patterns.

Decision table diagnostics included

Table 49: Outcomes of decision (expressed as chances out of 100) given different 2020 catches (first row, in kt). Note that for the 2018 and later year-classes average values were assumed. Constant Fs based on the 2020 catches were used for subsequent years.

	10	500	1000	1250	1387	1500	1750	2000
$P\left[F_{2020} > F_{MSY}\right]$	0	0	0	0	0	1	4	12
$P\left[B_{2021} < B_{MSY}\right]$	10	16	23	28	31	34	40	48
$P\left[\underline{B_{2022}} < \underline{B_{MSY}}\right]$	6	10	19	25	28	31	39	48
$P\left[B_{2021} < \bar{B}\right]$	15	44	77	88	92	94	98	99
$P\left[B_{2024} < \overline{B}\right]$	3	11	24	31	36	39	47	55
$P\left[B_{2024} < B_{2020}\right]$	4	11	22	28	32	34	40	46
$P\left[B_{2022} < B_{20\%}\right]$	0	0	0	1	1	1	2	3
$P\left[p_{a_5,2022} > \bar{p}_{a_5}\right]$	17	44	68	75	79	81	85	88
$P\left[D_{2021} < D_{1994}\right]$	0	0	0	0	0	0	0	0
$P\left[D_{2024} < D_{1994}\right]$	0	1	5	9	12	15	24	35
$P\left[E_{2020} > E_{2019}\right]$	0	0	13	95	100	100	100	100

	As estimated	d or <i>specified</i>	As estimated or <i>recommended</i>		
	<i>last</i> ye	ear for:	this year for:		
Quantity	2019	2020	2020	2021	
M (natural mortality rate, ages $3+$)	0.3	0.3	0.3	0.3	
Tier	1a	1a	1a	1a	
Projected total (age $3+$) biomass (t)	9,110,000 t	$8,\!156,\!000 {\rm \ t}$	8,580,000 t	7,987,000 t	
Projected female spawning biomass (t)	$3,\!107,\!000 {\rm ~t}$	2,725,000 t	2,781,000 t	$2,\!476,\!000$ t	
B_0	$5,\!866,\!000~{ m t}$	$5,866,000 \ {\rm t}$	5,748,000 t	5,748,000 t	
B_{msy}	$2,\!280,\!000 {\rm \ t}$	$2,\!280,\!000 {\rm \ t}$	2,147,000 t	$2,\!147,\!000$ t	
F_{OFL}	0.645	0.645	0.528	0.528	
$maxF_{ABC}$	0.510	0.51	0.442	0.442	
F_{ABC}	0.356	0.375			
OFL	$3,\!913,\!000$ t	$3,\!082,\!000 {\rm ~t}$	4,273,000 t	$3,\!456,\!000$ t	
maxABC	$3,\!096,\!000 {\rm \ t}$	$2,\!437,\!000$ t	3,578,000 t	$2,\!894,\!000$ t	
ABC	$2,\!163,\!000$ t	$1,792,000 \ t$	2,045,000 t	1,716,000 t	
Status	2017	2018	2018	2019	
Overfishing	No	n/a	No	n/a	
Overfished	n/a	No	n/a	No	
Approaching overfished	n/a	No	n/a	No	

	As estimated	l or <i>specified</i>	As estimated or <i>recommended</i>		
	<i>last</i> ye	ear for:	this year for:		
Quantity	2019	2020	2020	2021	
M (natural mortality rate, ages $3+$)	0.3	0.3	0.3	0.3	
Tier	1a	1a	3a	3a	
Projected total (age $3+$) biomass (t)	9,110,000 t	$8,\!156,\!000 \ {\rm t}$	8,580,000 t	7,987,000 t	
Projected female spawning biomass (t)	$3,\!107,\!000 {\rm ~t}$	$2,725,000 \ t$	2,781,000 t	$2,\!476,\!000 {\rm \ t}$	
$B_0 or B_{100}$	$5,\!866,\!000~{ m t}$	$5,866,000 \ t$	$6,165,000 \ {\rm t}$	$6,\!165,\!000 {\rm \ t}$	
B_{msy}	$2,\!280,\!000 {\rm \ t}$	$2,\!280,\!000 \ t$	$2,\!158,\!000$ t	$2,\!158,\!000$ t	
F_{OFL}	0.645	0.645	0.314	0.321	
$maxF_{ABC}$	0.510	0.51	0.253	0.262	
F_{ABC}	0.356	0.375	0.253	0.262	
OFL	$3,\!913,\!000 {\rm ~t}$	$3,\!082,\!000 \ {\rm t}$	$4,273,000 \ t$	$3,\!456,\!000 {\rm ~t}$	
maxABC	$3,\!096,\!000 {\rm \ t}$	2,437,000 t	$2,045,000 \ t$	1,716,000 t	
ABC	$2,\!163,\!000 {\rm ~t}$	$1,\!792,\!000~{\rm t}$	$2,045,000 \ t$	1,716,000 t	
Status	2017	2018	2018	2019	
Overfishing	No	n/a	No	n/a	
Overfished	n/a	No	n/a	No	
Approaching overfished	n/a	No	n/a	No	

	As estimated	l or <i>specified</i>	As estimated or <i>recommended</i>		
	last ye	ear for:	this year for:		
Quantity	2019	2020	2020	2021	
M (natural mortality rate, ages $3+$)	0.3	0.3	0.3	0.3	
Tier	1a	1a	1a	1a	
Projected total (age $3+$) biomass (t)	9,110,000 t	$8,\!156,\!000 \ {\rm t}$	$9,128,000 \ t$	8,494,000 t	
Projected female spawning biomass (t)	$3,\!107,\!000 {\rm ~t}$	$2,725,000 \ t$	$2,\!991,\!000 {\rm \ t}$	$2,\!674,\!000$ t	
B_0	$5,\!866,\!000~{ m t}$	$5,866,000 \ t$	$5,777,000 {\rm \ t}$	5,777,000 t	
B_{msy}	$2,\!280,\!000 {\rm \ t}$	$2,\!280,\!000 \ {\rm t}$	$2,\!148,\!000 {\rm \ t}$	2,148,000 t	
F_{OFL}	0.645	0.645	0.449	0.449	
$maxF_{ABC}$	0.510	0.51	0.383	0.383	
F_{ABC}	0.356	0.375			
OFL	$3,\!913,\!000$ t	$3,\!082,\!000 \ {\rm t}$	$4,\!085,\!000 {\rm \ t}$	$3,385,000 \ { m t}$	
maxABC	$3,\!096,\!000 {\rm \ t}$	$2,\!437,\!000$ t	$3,\!485,\!000 {\rm \ t}$	2,888,000 t	
ABC	$2,\!163,\!000 {\rm \ t}$	1,792,000 t	$2,\!045,\!000 {\rm \ t}$	1,716,000 t	
Status	2017	2018	2018	2019	
Overfishing	No	n/a	No	n/a	
Overfished	n/a	No	n/a	No	
Approaching overfished	n/a	No	n/a	No	

Multispecies model

EBS pollock summary

- Outlook
 - Spawning biomass declining
 - From high levels
 - Fishing challenges likely to increase
 - Stock likely drop below mean by 2021
 - Age 1-abundance in 2019 survey seems good...