BSAI Flathead Sole/Bering Flounder
 Carey McGilliard

Overview:

- Flathead sole and Bering flounder are morphologically similar congeners, but we do not know if they are 2 different species or not
- Bering flounder like cold water; flathead sole seem to avoid the cold pool
- Bering flounder don't grow as large as flathead sole
- 2017 and 2018 Northern Bering Sea survey showed 10x as many Bering flounder (~30,0000) as for the EBS shelf survey, but flathead sole population still mostly on the EBS shelf

Overview, continued:

- TAC always much lower than ABC, realized catch lower than TAC
- Flathead sole are harder to find than yellowfin or Northern rock sole, prior to 2008 there were some fishery closures due to halibut bycatch
- 2016 assessment issues:
- Retrospective bias related to survey selectivity parameters + unrealistic survey selectivity curve
- A distinct pattern in residuals for fits to survey and fishery length composition data, recurring over time
- An unrealistic estimate of historical mean recruitment (54 million age 3 recruits prior to 1977 and 835 million recruits after 1977)
- Temperature-catchability relationship does not seem to hold anymore

Catch of flathead sole/Bering flounder:

The fishery:

NMFS Area															
Year	508	509	512	513	514	516	517	518	519	521	523	524	541	542	543
1992	0.00	0.14	0.00	0.19	0.05	0.01	0.16	0.00	0.02	0.40	0.02	0.01	0.00	0.00	0.00
1993	0.00	0.19	0.00	0.39	0.02	0.01	0.12	0.00	0.00	0.24	0.01	0.01	0.00	0.00	0.00
1994	0.00	0.14	0.00	0.37	0.00	0.03	0.25	0.00	0.01	0.18	0.00	0.01	0.00	0.00	0.00
1995	0.00	0.19	0.00	0.40	0.01	0.01	0.27	0.00	0.01	0.12	0.00	0.00	0.00	0.00	0.00
1996	0.00	0.32	0.00	0.34	0.00	0.01	0.25	0.00	0.01	0.06	0.00	0.01	0.00	0.00	0.00
1997	0.00	0.18	0.00	0.36	0.01	0.00	0.34	0.00	0.01	0.09	0.00	0.01	0.00	0.00	0.00
1998	0.00	0.22	0.00	0.25	0.00	0.00	0.33	0.00	0.01	0.18	0.00	0.00	0.00	0.00	0.00
1999	0.00	0.12	0.00	0.40	0.00	0.02	0.31	0.00	0.01	0.14	0.00	0.00	0.00	0.00	0.00
2000	0.00	0.18	0.00	0.40	0.00	0.00	0.23	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00
2001	0.00	0.13	0.00	0.32	0.00	0.02	0.14	0.00	0.01	0.30	0.01	0.05	0.00	0.00	0.00
2002	0.00	0.11	0.00	0.28	0.00	0.01	0.16	0.00	0.01	0.42	0.00	0.01	0.00	0.00	0.00
2003	0.00	0.13	0.00	0.34	0.01	0.02	0.08	0.00	0.00	0.36	0.00	0.05	0.00	0.00	0.00
2004	0.00	0.13	0.00	0.23	0.00	0.02	0.11	0.00	0.01	0.48	0.00	0.01	0.00	0.00	0.00
2005	0.00	0.14	0.00	0.25	0.00	0.01	0.13	0.00	0.00	0.27	0.00	0.18	0.00	0.00	0.00
2006	0.00	0.21	0.00	0.17	0.00	0.01	0.13	0.00	0.00	0.41	0.00	0.06	0.00	0.00	0.00
2007	0.00	0.15	0.00	0.19	0.00	0.01	0.23	0.00	0.01	0.35	0.00	0.05	0.00	0.00	0.00
2008	0.00	0.26	0.00	0.24	0.00	0.01	0.15	0.00	0.00	0.27	0.00	0.06	0.00	0.00	0.00
2009	0.00	0.25	0.00	0.23	0.00	0.01	0.15	0.00	0.00	0.32	0.00	0.03	0.00	0.00	0.00
2010	0.00	0.23	0.00	0.26	0.00	0.03	0.11	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.00
2011	0.00	0.25	0.00	0.28	0.00	0.01	0.17	0.00	0.00	0.27	0.00	0.01	0.00	0.00	0.00
2012	0.00	0.17	0.00	0.18	0.02	0.01	0.18	0.00	0.01	0.41	0.00	0.02	0.00	0.00	0.00
2013	0.00	0.19	0.00	0.16	0.00	0.01	0.28	0.00	0.00	0.34	0.00	0.00	0.00	0.00	0.00
2014	0.00	0.20	0.00	0.18	0.01	0.01	0.24	0.00	0.00	0.35	0.00	0.00	0.00	0.00	0.00
2015	0.00	0.15	0.00	0.35	0.05	0.01	0.07	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.00
2016	0.00	0.17	0.00	0.54	0.05	0.02	0.09	0.00	0.02	0.09	0.00	0.01	0.00	0.00	0.00
2017	0.00	0.20	0.00	0.51	0.02	0.01	0.11	0.00	0.01	0.12	0.00	0.01	0.00	0.00	0.00
2018	0.00	0.12	0.00	0.45	0.02	0.01	0.14	0.00	0.01	0.14	0.00	0.11	0.00	0.00	0.00

	Non- Pelagic Trawl	Pelagic Trawl	Pair Trawl	Shrimp Trawl	Pot Trap	Longline

Survey Biomass
Flathead sole:Bering flounder

EBS shelf:Al Flathead sole

Is there a relationship between survey biomass and bottom temperature?

Data exploration: Female length-atage by cohort and year of flathead sole from the EBS shelf survey

Data exploration: Male length-at-age by cohort and year of flathead sole from the EBS shelf survey

Data exploration: Female weight-atage by cohort and year of flathead sole from the EBS shelf survey

Data exploration: Male weight-at-age by cohort and year of flathead sole from the EBS shelf survey

Data exploration: Female length-atage by cohort and NMFS area of flathead sole from the EBS shelf survey

Data exploration: Male length-at-age by cohort and NMFS area of flathead sole from the EBS shelf survey

Data exploration: Female weight-atage by cohort and NMFS area of
 flathead sole from the EBS shelf survey

Data exploration: Male weight-at-age by cohort and NMFS area of flathead sole from the EBS shelf survey

Survey data exploration: More in Appendix D of the document

- Weight-length by cohort and year
- Plots shown for Bering flounder

In September:

- Switched to Stock Synthesis framework for assessment
- Presented an exercise completed to compare the 2016 model to the best-matching model in Stock Synthesis
- Presented updated/improved models in Stock Synthesis beyond the best matching model
- Two models were recommended by the SSC to move forward for November: Model 18.0 and 18.0b (like Model 18.0, but with fishery selectivity estimated in 3 separate management eras)
- Plan Team thought just Model 18.0b was sufficient for November (along with 2016 model with updated data)

In September:

- Promised to do some data exploration
- Plan Team agreed to a run with growth estimated within the assessment model based on conditional age-at-length data

Notable changes in inputs presented in September:

- 1964-1987 foreign reported catches added
- Historical catch prior to 1964 was set equal to the average catch from 19641977 (11,659 t).

Model changes presented in September:

- Used Stock Synthesis framework (2016 model with 2018 data presented in Appendix)
- Modeled male and female survey selectivity as separate curves using an age-based doublenormal asymptotic curve to provide for additional flexibility in the curve's shape.
- Age- and length-composition data were weighted using methods described in Francis (2011) to approximate effective sample size for each year and data type for all models 18.0-18.2 variants.
- Recruitment deviations were estimated through 2014 for age 0 recruits.
- A sum-to-zero constraint was used in the likelihood component for recruitment deviations.
- Historical mean recruitment was set equal to non-historical mean recruitment.
- The temperature-catchability relationship that was assumed in the 2012, 2014, and 2016 models was removed from the model.
- A model was run with separate fishery selectivity curves for three management eras (recommended by Plan Team to move forward for November)

Models:

Models 18.x:

- Time invariant fishery selectivity curves

Models 18.xb:

- Separate fishery selectivity curves for the time period 1964-1988, 1989-2007, and 2008+. Models 18.xc:
- Separate fishery selectivity curves for the time period 1964-1988, 1989+

Models 18.0x:

- Shown in September (external estimation of growth, equal input sample sizes for comp data)

Models 18.1x

- Estimated growth within the assessment model using a conditional age-at-length approach Male and female fishery selectivity were estimated as separate curves
Models 18.2x:
- Used the number of hauls from which length data originated as input sample sizes for survey and fishery length and age compositions (Pennington and Volstad)

SSC Comments in general:

- The risk matrix: did not seem necessary for flathead sole - well above B40\% and no indicators of higher natural mortality or low fish condition, etc.
- Ensemble modeling: all of the candidate models for 2018 were highly correlated and ensemble modeling would not have yielded different results

SSC/Plan Team Comments for flathead sole/Bering

 flounder:- BSAI Plan Team: The Team recommends examining the use of time blocks in selectivity due to changes in fishing practices:
- Some 2018 models incorporated time blocks on fishery selectivity for the 1964-1987 and 1988-2007 management eras.

Data used in the assessment:

Source	Data	Species Included	Years
NMFS	Survey biomass (linear	Flathead only;	$1980,1983,1986$,
Aleutian	regression used to combine	no Bering	(triennial), 2002- Islands
Groundfish	BS shelf survey estimates	flounder were	2006 (biennial),
Trawl Survey	sith AI survey estimates for a	caught in the	2010-2018 (biennial)

Data used in the assessment:

Source	Data	Species Included	Years
	Survey biomass (linear regression used to combine	Flathead sole and Bering flounder combined	$1982-2018$
NS shelf survey estimates Bering Sea Shelf Groundfish	with AI survey estimates for a single survey biomass index)		
Survey (standard survey area only 1)	Age Composition	Flathead sole	$1982,1985,1992-$
	Length Composition	only	$1995,2000-2017$
		Flathead sole	$1983,1984,1986-$
only	$1991,1996-1999$,		

Data used in the assessment:

Source	Data	Species Included	Years
U.S. trawl fisheries	Catch (Bering Sea and Aleutian Islands; pelagic and non-pelagic trawl ${ }^{2}$)	Flathead sole and Bering flounder combined	1977-2018
	Age Composition (Bering Sea only; non-pelagic trawl only)	Flathead sole only	1994, 1995, 1998, 2000, 2001, 20042007, 2009-2017
	Length Composition (Bering Sea only; non-pelagic trawl only)	Flathead sole only	$\begin{aligned} & \text { 1977-1993, 1994, } \\ & \text { 1996-1997, 1999, } \\ & 2002-2003,2008, \\ & 2018 \end{aligned}$

Data used in the assessment:

Source	Data	Species Included	Years
Foreign trawl fisheries in the BSAI	Catch (Bering Sea and Aleutian Islands; trawl)	Flathead sole and Bering	$1964-1987$

Data used in the assessment:

Models: Models 18.0 and 18.0b requested by SSC

 Models 18.x:- Time invariant fishery selectivity curves

Models 18.xb:

- Separate fishery selectivity curves for the time period 1964-1988, 1989-2007, and 2008+. Models 18.xc:
- Separate fishery selectivity curves for the time period 1964-1988, 1989+

Models 18.0x:

- Shown in September (external estimation of growth, equal input sample sizes for comp data)

Models 18.1x

- Estimated growth within the assessment model using a conditional age-at-length approach Male and female fishery selectivity were estimated as separate curves
Models 18.2x:
- Used the number of hauls from which length data originated as input sample sizes for survey and fishery length and age compositions

Comparing Models 18.0, 18.1, and 18.2:

- Model 18.0: time-invariant fishery selectivity, external growth estimates, input sample sizes to comp data $=200$ for all years
- Model 18.1: time-invariant fishery selectivity, internal growth estimates, input sample sizes to comp data $=200$ for all years
- Model 18.2: time-invariant fishery selectivity, internal growth estimates, input sample sizes to comp data $=$ number of hauls from which data came
- Note: input sample sizes for all conditional age-at-length data were the number of ages in the sample

Comparing
Models 18.0,
18.1, and 18.2

- Results are very similar
- Estimating growth internally and input sample size = \# of hauls are both improvements to methodology

Comparing Models 18.0b, 18.1b, and 18.2b

- Results are similar
- Using input SS = hauls lowers variability in estimates of Fs during middle era (19882007)
- Moved forward with 18.2 and 18.2b only

Comparing Models 18.0b, 18.1b, and 18.2b, continued

Comparing Models 18.2, 18.2b, and 18.2c

Comparing Models 18.2, 18.2b, and 18.2c

- 18.2 and $18.2 \mathrm{~b}, \mathrm{c}$ are two different ways to account for the overall fishing intensity
- More similar than apical F plot would suggest
- Fits to fishery length comp data are much better with 18.2b,c

Comparing Models 18.2, 18.2b, and 18.2c

- Fishery selectivity in the most recent time period is very similar
- All models estimate male selex occurring at smaller lengths than female selex

Why would males be caught at smaller lengths than females?

- Flathead organize by age groups such that is it more likely to catch similar ages together + males are smaller than females
- Survey sampling group reported finding similar ages of flathead sole within hauls
- Could be explored further by looking at the data at the haul level
- Bias in sexing - survey group does not think so. Flathead are relatively easy to sex

Comparing Models 18.2, 18.2b, and 18.2c

- Fishery selectivity through time. Models 18.2 b and 18.2 c estimate similar curves for the earliest time block (1964-1987)

Model 18.2b: Females

Model 18.2b: Males

Model 18.2c: Females

Model 18.2c: Males

Comparing Models 18.2, 18.2b, and 18.2c

- Survey selectivity is very similar among the models

Age-based selectivity by fleet in 2018

Age-based selectivity by fleet in 2018

Comparing Models 18.2, 18.2b, and 18.2c

- Survey selectivity is very similar among the models

- Fixed the problematic survey selectivity from the 2016 model

Comparing Models 18.2, 18.2b, and 18.2c

- Fits to fishery age comp data aggregated over years are similar
- Estimated growth parameters are very similar

Comparing Models 18.2, 18.2b, and 18.2c

- Fits to length comp data aggregated over years are similar
- With input sample size = \# of hauls, the early era is down-weighted substantially
Comparing

Comparing Models 18.2, 18.2 b , and 18.2 c

- Fits to fishery length comp in early era (1964-1987) is poor for Model 18.2 (timeinvariant fishery selectivity) and much better if selex is estimated separately for this era
- Not much difference fits of the model to the data
 under 2 or 3 time eras for fishery selex

Could the fishery selectivity for 1964-1987 be different for some reason other than differences in selectivity?

- Doesn't seem like it
- Ghost fishery length comp fits are very good, indicating no mismatch in length-at-age between survey and fishery data
- No major changes in length-at-age over time in plots of the survey data

Comparing

 Models 18.2, 18.2 b , and 18.2 c- Fits to survey length comp: Pearson residuals are small (+-2)

Model 18.2 (time invariant fish. Selex.)
Model 18.2b (3 fish. Selex eras)

- However, there is a persistent pattern over time; several hypotheses were formulated and tested to see if could resolve the pattern. No.

Hypotheses about small, persistent residual pattern:

- Shape of survey selectivity curve too constraining
- Shape of von-Bertlanffy growth curve too constraining
- Variability in growth not adequately represented by CV in length-atage 3 and 21+
- Conflict in the data between survey biomass and survey composition data
- Data don't fully characterize variability in length-at-age for flathead sole (not enough ages??)

Model 18.2c results

Model 18.2c results

Early period fishery selectivity
occurs at
substantially
smaller lengths

 than post-1988
fishery selectivity

Model 18.2c: Estimated numbers-at-age

Model 18.2c: Estimates of growth

Model 18.2c: Fits to survey length composition

Length (cm)

Model 18.2c: Fits to survey length composition

Model 18.2c:

Left columns:

 Observed and expected mean age-at-length for both females and males 90% intervals about observed age-atlengthRight columns: Observed and expected standard deviation in age-atlength

Aggregated over sex

Mode

 18.2c:Left:
Observed and expected mean age-at-length for both females and males 90% intervals about observed age-atlength

Right:
Observed and expected standard deviation in age-atlength

Aggregated over sex

Model 18.2c: Fits to fishery length composition

Model 18.2c: Fits to fishery age composition

Model 18.2c: Retrospective plots

Model 18.2c
2016 Model

Executive summary

Quantity	As estimated or specified last year for: 2018 2019		As estimated or recommended this year for: 2019* 2020*	
M (natural mortality rate)	0.2	0.2	0.2	0.2
Tier	3 a	3 a	3 a	3 a
Projected total (3+) biomass (t)	762,513	777,961	673,718	686,431
Projected Female spawning biomass (t)	214,124	205,156	153,203	155,032
$B_{100 \%}$	322,938	322,938	212,060	212,060
$B_{40 \%}$	129,175	129,175	84,824	84,824
$B_{35 \%}$	113,028	113,028	74,221	74,221
$F_{\text {ofL }}$	0.41	0.41	0.47	0.47
$\operatorname{maxF}_{A B C}$	0.34	0.34	0.38	0.38
$F_{A B C}$	0.34	0.34	0.38	0.38
OFL (t)	79,862	78,036	80,918	83,190
$\operatorname{maxABC}(\mathrm{t})$	66,773	65,227	66,625	68,448
ABC (t)	66,773	65,227	66,625	68,448
Status	As determined last year for:		As determined this year for:	
	2016	2017	2017	2018
Overfishing	no	n/a	no	n/a
Overfished	n/a	no	n/a	no
Approaching overfished		no	n / a	no

Future research

- Exploration of spatial dynamics of flathead sole with respect to the cold pool (proposal underway)
- Investigation of methods for assessment species complexes (proposal written, not funded YET)
- Stock structure analysis and possible use of slope data
- Better accounting for uncertainty in catchability and natural mortality

