SAP - VAST update May 2021

JONATHAN RICHAR AFSC RACE KODIAK LAB JON.RICHAR@NOAA.GOV

JAMES THORSON AFSC SEATTLE JAMES.THORSON@NOAA.GOV

Major items from January 2021 meeting

1.) Use DHARMa diagnostics, but also provide maps of spatial Pearson's residuals (the latter are more easily interpreted than DHARMa's spatial residuals).

- Not implemented for spring hindcasts due to time, but will be for fall
- 2.) Scale maps comparing spatial residuals between models to the same scale.
 - Not implemented for spring hindcasts due to time constraints
- 3.) Increase the size of spatial residual maps for better visual clarity.
 - Implemented in some spring hindcasts, and added in all codes for fall
- 4.) Continue to evaluate how to better define model acceptability.

Work here is ongoing

- 5.) VAST expert review committee
 - Review committee formed and used for spring hindcast process
- 6.) Visualization for barrier approach
 - Visualization approach implemented for SMBKC
- 7.) Follow-up on DHARMa p-values
 - Feedback obtained from Cole Monnahan
- 8.) Provide VAST output to authors in time for May meeting
 - 25 hindcasts produced and provided to authors

Item 3: Increase the size of spatial residual maps

Original

Current iteration

Item 4: Evaluation of model acceptability

Item 5: VAST expert review committee

- Recommended in January
- James Thorson and Jason Conner agreed to staff initial iteration
- Provided review for spring 2021 hindcasts prior to their being provided to authors

Item 6: Barrier approach visualization

Barrier enabled

Item 7: DHARMa p-values

- Recommended by Cole Monnahan and Andrea Havron at SAFS seminar
- New data simulated from the fitted model for each observation in original data
- Residuals summarized as the probability density of the eCDF generated by simulation corresponding to the observed value
- Output
 - QQ-plot with relevant statistical tests
 - Plot of how residuals vary with magnitude of the predictions
 - Spatial map of quantile residuals

	1976	1971	1179	1986	1981	1982	1943
	1834	1988	1805	1987	1963	1959	1992
							Ś
	1991	1992	1993	1994	1995	1996	1997
	1225	1998	2000	2001	2002	2003	2064
sfillinosi							
	2005	2006	2007	2008	2009	2010	2011
	2012	2011	2854	2016	28:5	2017	2018

"A couple of key takeaways are (1) you cannot trust the p-values

printed on the DHARMa plots, which test normality and outliers (I think). These are not well-calibrated meaning both that a low pvalue does not necessarily mean to reject the Hypothesis, nor does a high one mean not to reject it. (2) It is probably still a good idea to produce these residuals, but instead just look at them visually and if some of them are really bad, then that's worth looking into. (3) All options (conditional, unconditional and the joint-precision) were unreliable in some way. Frustratingly the unconditional ones seemed to work a little better for the spatial model but worse for other model types. "

Item 8: Provide VAST estimates

VAST output

- 26 model indices requested, for EBS opilio, BBRKC, and bairdi (EBS, E166 and W166)
- Successful completion required >75 model runs
 - ► 2.5 weeks
 - Female BBRKC and E166 bairdi
 - 10 day production period should be adequate
- Began with standardized settings
 - Multiple models required specific settings to run (#knots, parameters disabled)

Sex	class	index	Machine	ObsModel	#knots
		BBRKC			
Females	GE65	biomass	Kvasir	2 1	500kts
Males	GE65	biomass	Kvasir	$\frac{2}{2}$ 1	500kts
Males+females	GE65	biomass	Kvasir	2 1	500 kts
		Opilio		_	
Females	mature	biomass	Kvasir	2_1	500kts and 750kts
Males	Legal	biomass	Work1	2_1	750 kts
Males	Total	abundance	Kvasir	2_1	500kts and 750kts
Females	Total	abundance	Kvasir	2 1	500kts and 750kts
		<u>Bairdi</u>			
		EBS			
Female	Immature	biomass	Kvasir	2.1	750kts
Female	Mature	biomass	Kvasir	$\frac{2}{2}$ 1	750kts
Male	Total	biomass	Work1 and Kyasir	$\frac{2}{2}$ 1	750kts
Male	GE125	biomass	Kvasir	2 1	500kts
Female	Immature	abundance	Kvasir	2 1	750kts
Ferrela	Matana	ahaa daa aa	Vrasin	2 1	7501-te
remaie	wature	abundance	NVasir	2_1	/ JOKIS
Male	Total	abundance	Work1	2_1	250kts
Male	Total	hiomass	Work1	2 1	750kts
Male	GE125	biomass	Work1	$\frac{2}{2}$ 1	500kts
Female	Immature	biomass	Workl	2_1	750kts
Female	Mature	biomass	W OFK I	2_1	350KIS
Female	Immature	abundance	Work1	2_1	100kts
Female	Mature	abundance	Work1	2 1	150kts
		W166			
Male	Total	biomass	Work1/VM1	2 1	750kts
Male	GE125	biomass	VM1	$\frac{2}{2}$ 1	250 knots
Famala	Turner	1	Vrasin	2 1	500 and 7501-t-
Female	Immature	biomass	Kvasir	2_1	250kts
remaie	wature	UIUIIIASS	Kvasii	2_1	3 JUKIS
Female	Immature	abundance	VM1/Kvasir	2_1	500kts
Female	Mature	abundance	Kvasir	2_1	250kts

Bristol Bay red king crab

Data by year

Male GE65 biomass

Female GE65 biomass

Cls

Total GE65 biomass

Male GE65 biomass

Density maps

Males GE65

Females GE65

Quantile residuals

Total GE65

Males GE65

GE65

Total GE65

Males GE65

Summary-BBRKC

Total and Male GE65 biomass models performed well

- Diagnostics
- Population trends
- Female GE65 biomass model did not
 - …although diagnostics did look good
 - Difficulty fitting
 - Spatial distribution
 - Aberrant population trend in late 2000s

Data by year

Extrapolation area/knots

Total male biomass estimates

E166 ----E166 AREASWEPT BIOMASS MALE TOTAL ----E166_VAST_V2021_Estimate_metric_tons

Total male biomass Cls

Male GE125 biomass

----E166_VAST_V2021_GE125_MALE

Male GE125 Cls

Mature female biomass

EBS total male abundance

Density maps

EBS- Total male

EBS -Male GE125

EBS- Mature female

E166-mature female

Eastings

E166-male GE125

Quantile residuals - EBS

EBS Male GE125 biomass

EBS Male total biomass

EBS mature female biomass

EBS immature female biomass

QQ plot residuals Residual vs. predicted 1.00 a 💁 ann grupharais an Standardized residual KS test: p= 0 0.8 Deviation significant Observed 0.50 Dispers p=0significant 0.4 De Outlier test: p= 0 Deviation significant 0.00 0.0 0.0 0.2 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 Model predictions (rank transformed) Expected

DHARMa residual diagnostics

Male GE125 spatial residuals

550 cells

1200 cells

Quantile residuals – W166

W166 total male biomass

W166 mature female biomass

000

DHARMa residual diagnostics

W166 immature female biomass

DHARMa residual diagnostics

W166 immature female abundance

DHARMa residual diagnostics

Quantile residuals – E166

E166 male GE125 biomass

DHARMa residual diagnostics

E166 total male biomass

DHARMa residual diagnostics

E166 mature female biomass

DHARMa residual diagnostics

E166 immature female abundance

DHARMa residual diagnostics

Bairdi summary

- Overall, diagnostics looked good
- DHARMa residual plots
 - Positive trends at highest observations/prediction
 - Model underestimating
- Some models problematic to fit
 - Eastern district females

Data by year

Extrapolation area/knots

750 knots

Biomass estimates

Legal male biomass

Total male abundance

Total male abundance CI

1.5E+09

Design based Cl

2E+09

2.5E+09

Mature female biomass

Mature female biomass Cls

Density maps

Total male abundance

Mature female biomass

Quantile residuals

Total male abundance

Mature female biomass

Total female abundance

DHARMa residual diagnostics

Summary: opilio

Diagnostics were more problematic

QQ plots: Heavy tails

> As was case with Bairdi models trend in Residual vs. Predicted plots

- Model underestimated at highest observations
- Males

Close correspondence between design and model based estimates

► Females

Less correspondence with design based

Item 8 overall summary

- VAST indices: generally similar(often very much so) trends to designbased, but much improved CIs
- Model run process took longer than expected
 - 10-day production period
- EBS Bairdi, and male/total BBRKC models performed best
- Eastern/Western Bairdi models temperamental, but decent diagnostics
- Opilio models performed well, but diagnostics marginally worse than bairdi

Questions?

