Estimation of selectivity, growth,
and natural mortality in the assessment for EBS snow crab

Cody Szuwalski and Jack Turnock
May 4, 2017
Juneau, AK

and SSC comments

T had several comments and questions related to formatting and presentation from the Septe eeting:
eview SAFE guidelines to make sure required tables and figures are present
lot the relative proportion of new to old shell males to see how important the lack of fit to old ales really is
lot Bayesian posterior intervals for growth parameters
Iodel 0 has to be last year's accepted model
ssues will be corrected in the SAFE document presented at the September meeting. The CPI reral suggestions for potential model runs and expanded analyses, including:
stimate M for mature females
ocument rationale for prior on M for immature crab
ry starting the assessment in 1982 to check the behavior of the survey qs when the first survey s excluded
pply priors to the survey qs so they are somewhat constrained
rovide more detailed MCMC chain diagnostics
xtract bycatch mortality from the Tanner crab directed fisheries that is currently lumped int roundfish trawl bycatch (in a table in the assessment chapter, not necessarily in the model)

rview

CMC diagnostics and Bayesian vs. maximum likelihood
Bayesian methods designed to produce distributions
Diagnostics suggests some problematic population processes rvey selectivity
Eliminate the first 4 years of data
Think about how to use BSFRF data
owth
Piece-wise models causes problems, but contributes little to the model Unclear what the best model is
atural mortality
M ature female natural mortality should be estimated
Priors for immature natural mortality should be revisited

esian methods vs. maximum likelihood

et a TAC that accounts for scientific uncertainty
cal methods:
nate parameters via ML
parameters into projection script
numbers at length for the final year in the ection script with error
ulate a distribution of the OFL based on the error d to the numbers at length
ms with historical methods:
meter values are not perfectly know, but are
 ned so.
added to numbers at length is arbitrary, but rmines the distribution of the OFL.
ing was required to ensure M LEs were found

esian methods vs. maximum likelihood

et a TAC that accounts for scientific uncertainty
an methods:
me a distribution for each parameter
ot require copying and pasting model output erior distributions of the OFL are a result of the rtainty in parameter estimates
with Bayesian methods:
s must be specified
-consuming
ving the model has converged is difficult (though
 e are many diagnostics to identify nonergence)
nt on the var/covar matrix; therefore reliant on an opriately specified model

esian methods vs. maximum likelihood

sible modification of historical methods voids Bayesian methods:
ulate the OFL during the fitting of the el instead of in the report section and ude the OFL as a sd_report variable 1 produce a distribution of the OFL with its ulated standard deviation
d this once with the 'Trim data' model, the model blew up.
kes forever to fit the model because rence points and the OFL have to be ulated in every step.

MC diagnostics

C is used to 'build' the distributions of neters and derived quantities
nostics check for appropriate specification ie model and var/covar matrix (used to ore the posterior)
ionarity in the traces for parameters and objective function (mixing)
jarameters hitting bounds
ere are problems in these diagnostics, be ious about inference from the model

gnostic summary

ral processes have problem parameters
mixing:
rowth parameters
ec devs
itial numbers at length
nd hitting
rowth parameters
urvey selectivity (NM FS) during era 1 idustry survey selectivity parameters
t with slow mixing by using really long chains last year, but this takes a very time
hods for adjustment
riors on parameters hitting their bounds
eformulating the model
xcluding problematic periods of data

mating survey selectivity

torical methods
ta
del runs
del results
Fits
OFL and reference points
Processes influenced
commendations

orical methods

gistic selectivity

$$
S_{l}=\frac{q}{1+e^{\left(-\ln (19) \frac{L_{?}-L_{?}}{L_{?} ?-L_{?}}\right.}}
$$

orical methods

gistic selectivity
ree eras
1978-1981: different gear 1982-1988: different area 1989-present: current
rmentyonemen on

$$
S_{l}=\frac{q}{1+e^{\left(-\ln (19) \frac{L_{l}-\beta_{?}}{\beta_{?} ?}-\beta_{?}\right.}}
$$

orical methods

gistic selectivity
ree eras
1978-1981: different gear 1982-1988: different area 1989-present: current chability coefficient (q) Changes in estimates over time Era 1 has always been fixed at 1

$$
S_{l}=\frac{q}{1+e^{\left(-\ln (19) \frac{L_{l}-\beta_{?}}{\beta_{?} ?-\beta_{?}}\right.}}
$$

orical methods

gistic selectivity
ree eras
1978-1981: different gear
1982-1988: different area
1989-present: current chability coefficient (q)
Changes in estimates over time
Era 1 has always been fixed at 1
ues
Q modulates the impact of catch on the survey index Foreign fleets were excluded starting 1980, so it's not clear if the catches are fully represented in era 1 Q in the first era is consistently estimated on its bounds and anchors the catchability in the other era e the survey eras appropriately chosen? there alternate sensible configurations?

$$
S_{l}=\frac{q}{1+e^{\left(-\ln (19) \frac{L_{?}-\beta_{?}}{\beta_{? ?}-\beta_{?}}\right.}}
$$

Female

del runs

im data'

Excludes all data from 1978-1981, start model in 1982 Explores problem of anchoring of q and bound hitting parameters ked obs sel'
'Trim data' + fixing survey selectivity in era 2 and era 3 to selectivity inferred from BSFRF data
Explores implications of BSFRF data

BSFRF'

'Trim data' +setting the weights for the BSFRF likelihood components to 0 Explores the impact of the BSFRF data on model output

Table 1: Changes in management quantities for each scenar sidered. Reported quantites are the MLEs because running I for every model was prohibitively time-consuming. The MI scenarios in which MCMCs were performed are very close medians of the posterior distributions.

Model	MMB	B35	F35	FOFL
Base	92.09	1.2 .3	1.92	1.14
Trim data	221.6	215.3	1.42	0.81
Fixed obs sel	60.86	142.3	1.47	0.62
No RSFKF	74.29	139.6	1.21	0.68
Est female M	79.57	149.8	1.34	0.75
Chop growth	70.89	137.4	1.17	0.64

Parameter	Base	Trim data	Fixed obs sel	No BSFRF	$\begin{gathered} \text { Est } \\ \text { female M } \end{gathered}$	Chop growth	Growth + M
srv1_q	1	mudmemidu 1					
srv1_q_f	1						
srv1_sel95	59.89						
srv1_sel50	42.66	Q					
srv2_q	0.49	0.43	-mbermumb	0.47	-1	-	9-6
srv2_q_f	0.32	0.46	Himbuminumb	0.49	Qcs	9.3). 3
srv2_sel95	61.3	57.05	\|inkemmemime	57.32	1763.4	3.46	6. 011
srv2_sel50	41.32	41.18	mbimmemm	40.84	LJ.02	21.05	9.56
srv3_q	0.62	0.68		0.79	6.\%\%	J.	J.i9
srv3_sel95	57.24	57.63		59.43	49.3 .3	59.87	60.6\%
srv3_sel50	38.42	38.59	inkimemime	38.78	34.78	20.15	349
srv3_q_f	0.49	0.54	-imbintimbeme	0.62	1	9.54	1
srv3_sel95_f	43.09	43.42		42.85	4-403	294	148
srv3_sel50_f	33.27	33.47		32.97	120.8is3	2204	342%

Parameter	Base	Trim data	Fixed obs sel	No BSFRF	$\begin{gathered} \text { Est } \\ \text { female M } \end{gathered}$	Chop growth	Growth + M
Mmult_imat	1.8	1.81	1.22	1.74	19	181	1.97
Mmult	1.13	1.08	1.13	1.06	-1.	0	10
Mmultf					- 4.	Mrsimimbin	

Parameter	Base	$\begin{aligned} & \text { Trim } \\ & \text { data } \end{aligned}$	Fixed obs sel	No BSFRF	$\begin{gathered} \text { Est } \\ \text { female M } \end{gathered}$	Chop growth	$\begin{aligned} & \text { Growth }+ \\ & \mathrm{M} \end{aligned}$
af	-5.08	-5.06	-4.1	-5.08	-E.2.	0.72	d.e\%
am	-5.74	-5.83	-7.48	-12.2	-0.6i	2. 6	4.04
bf	1.53	1.52	1.48	1.53	1.53	. IIII: IIII:	
bm	1.54	1.54	1.62	1.83	1.53		III: .III: il III:
b1	1.15	1.15	1.12	1.16	115	. .114:	\|ille:
bf1	1.02	1.03	1	1.03	${ }^{4} 0{ }^{\text {a }}$		
deltam	32.2	32.25	32.37	27.47	3nin	.\|III: III	$\underline{\|I\|} \mathrm{IIII}$
deltaf	34.37	34.29	36.51	34.33	3.1 .1	. \mid IIE:	III: .III: ill

(978

del results

m data'

OFL decreased compared to 'Base', primarily because q in era 3 increased Decrease in estimated probability of maturing and natural mortality for brought down F35\% ked obs sel'
OFL increased (a lot) compared to 'Base' from a decrease in q, probability of maturing, and growth
M uch worse fits to survey MMB, survey selectivity much lower than any of the estimated scenarios
BSFRF'
OFL decreased compared to 'Base', primarily

Table 1: Changes in management quantities for each sce sidered. Reported quantites are the MLEs because runnin for every model was prohibitively time-consuming. The scenarios in which MCMCs were performed are very cl medians of the posterior distributions.

Model	MMB	B35	F35	FOFL
Base	9200	1523	1.91	1.11
Trim data	82.8	1593	1.42	0×1
Fixed obs sel	221.6	2153	3.19	269
No BSFRF	6086	1423	1.17	0.56
Est female M	74.29	139.6	1.21	0.68
Chop growth	79.57	149.8	1.34	0.75
Growth + M	70.89	137.4	1.17	0.64

ommendations

m data'

Adopt exclusion of all data from 1978-1981, start model in 1982 Rationale: Including this era artificially anchors catchability at 1 . Given the uncertainties around expected changes under different survey gear and the potential for catch to be missing in the early years, the risks outweigh the benefits Era 3 should start in 1988 instead of 1989
ked obs sel' \& "No BSFRF"
Neither of these should be adopted, but were used illustratively
Think harder about how to do incorporate extra survey Issues:

- problems with variables hitting bounds
- Large disconnect between 'observed’ selectivity and estimated
- Stock is at it's lowest, in spite of an assumption of a higher q than implied by the industry surveys-changing this assumption to the 'observed' would have exacerbated the decline in MMB

ural mortality

rrent:

Immature M (male and female):

- 0.41 (estimated)
- Prior =N(0.23, 0.154)
M ature female M :
- 0.23 (fixed)

M ature male M :

- 0.26 (estimated)
- Prior =N(0.23,0.054)

ues

M ature male M was higher than female, which was biologically questionable No natural mortality specific data (e.g. tagging data)
Has a large impact on reference points
Poorly documented rationale

del runs

t female M'

'Trim data' +estimating mature female $\mathrm{M}+$ setting the prior for immature crab equal to prior for mature crab
Potentially corrects for flip-flop of M between sexes and corrects the prior to conform to the rationale of M being based on longevity

del results

im data'

Immature M (male and female):

- 0.29 (estimated, decreased from 0.41)
- Prior $=\mathrm{N}(0.23,0.054)$ [sd decreased from 0.154]
M ature female M :
- 0.32 (estimated, increased from 0.23)
- Prior =N(0.23,0.054)

M ature male M :

- 0.26 (estimated; did not change)
- Prior =N(0.23,0.054)

Survey catchability is pegged at 1 for females when estimating mature M OFL decreased compared to 'Base', primarily because q in era 3 increased Decrease in estimated probability of maturing for brought down F35\%

Parameter	Base	Trim data	Fixed obs sel	No BSFRF	$\begin{gathered} \text { Est } \\ \text { female M } \end{gathered}$	Chop growth	Growth M
srv1_q	1						
srv1_q_f	1						
srv1_sel95	59.89						
srv1_sel50	42.66						
srv2_q	0.49	0.43	Hismity	0.47	0.54	0.45	0.56
srv2_q_f	0.32	0.46		0.49	0.63	0.46	0.63
srv2_sel95	61.3	57.05	inamimamimi	57.32	55.24	58.05	56.01
srv2_sel50	41.32	41.18	inamamilima	40.84	39.82	41.35	39.86
srv3_q	0.62	0.68	inamilimenama	0.79	0.77	0.7	0.79
srv3_sel95	57.24	57.63	linampanima	59.43	49.53	59.37	50.62
srv3_sel50	38.42	38.59	arimitim	38.78	34.78	39.15	34.94
srv3_q_f	0.49	0.54		0.62	1	0.54	1
srv3_sel95_f	43.09	43.42		42.85	45.23	42.84	44.8
srv3_sel50_f	33.27	33.47	ifindilumimid	32.97	34.73	32.94	34.27

Table 1: Changes in management quantities for each scenar sidered. Reported quantites are the MLEs because running 1 for every model was prohibitively time-consuming. The MI scenarios in which MCMCs were performed are very close medians of the posterior distributions.

Model	MMB	B35	F35	FOFL
Base	92.09	152.3	1.91	1.14
Trim data	83.8	152.3	1.42	0.81
Fixed obs sel	221.6	215.3	3.49	2.62
No BSFRF	60.86	142.3	1.17	0.56
Fst female M	74.29	139.6	1.21	0.68
Chop growth	79.57	149.8	1.34	0.75
Growth + M	70.89	137.4	1.17	0.64

ommendations

nakes sense to estimate mature female natural mortality and corrects ationship between mature male and mature female M, but now surve a for females hits its bound of 1 .
mature natural mortality is now flipped, but this is a result of placing t me prior on immature M that is placed on mature M.

w th model and available data

rrent: Piece-wise linear model
estimated parameters
data points

w th model and available data

rrent: Piece-wise linear model
estimated parameters
data points

wth model and available data

rrent: Piece-wise linear model

estimated parameters
data points
ues
No data where the breakpoint, resulting in poor estimation
Data beneath the breakpoint impacts the model little
Growth parameters hit bounds and are generally poorly behaved
hat model should be used for growth?

del runs

10p growth'
"Trim data" +excludes all growth data with a premolt size of $<27.5 \mathrm{~mm}$, then estimates only a linear model for both males and females
Explores problem of bound hitting and poorly estimated growth parameters
owth $+\mathrm{M}^{\prime}$
'Chop growth' + estimating mature female M
Growth and natural mortality are somewhat confounded

Table 1: Changes in management quantities for each scenar sidered. Reported quantites are the MLEs because running 1 for every model was prohibitively time-consuming. The MI scenarios in which MCMCs were performed are very close medians of the posterior distributions.

Model	MMB	B35	F35	FOFL
Dase	92.09	151.3	1.91	C.14
Irimi data	83.8	152.8	1.42	0.81
Fixed obs sel	221.6	215.3	3.49	2.62
No BSFRF	60.86	142.3	1.17	0.56
Est female M	74.29	139.6	1.21	0.68
Crupromin	-19.0	यं, 10	1.54	0.1.7
Cirowun	TiTioili	IiSim	iniil	0.0.4:

Parameter	Base	Trim data	Fixed obs sel	No BSFRF	$\begin{gathered} \text { Est } \\ \text { female M } \end{gathered}$	Chop growth	Growth + M
srv1_q	1						
srv1_q_f	1						
srv1_sel95	59.89	,					
srv1 sel50	42.66	㐌			Smenme	(1)	析
srv2_q	0.49	0.43		0.47	0.54	0.45	0.56
srv2_q_f	0.32	0.46	dimmentim	0.49	0.63	0.46	0.63
srv2_sel95	61.3	57.05		57.32	55.24	58.05	56.01
srv2_sel50	41.32	41.18		40.84	39.82	41.35	39.86
srv3_q	0.62	0.68	mimememen	0.79	0.77	0.7	0.79
srv3_sel95	57.24	57.63		59.43	49.53	59.37	50.62
srv3_sel50	38.42	38.59		38.78	34.78	39.15	34.94
srv3_q_f	0.49	0.54	\%	0.62	1	0.54	1
srv3_sel95_f	43.09	43.42	-	42.85	45.23	42.84	44.8
srv3_sel50_f	33.27	33.47	mimememen	32.97	34.73	32.94	34.27

Female

- Old observati
- New observa

del results

rowth +M'
'Growth +M ' is the 'synthesis' of all the changes-excludes 19781981 data, estimates mature female M, eliminates problem parameters from growth BUT, new problems arise:

- Survey q (females era 3) is now estimated at 1
- Survey q (males era 3) is now estimated at 0.79 , which is a large increase over the 'Base'

ommendations summary

ect a method for computing a distribution of the OFL based on certainty in the data and parameter estimates
op 1978-1981 data
rt era 3 in 1988
e a model selection approach to identify a model other than the ce-wise linear models for growth?
imate mature female M, but whack-a-mole era 3 survey q ?

