Aleutian Islands Golden King Crab Stock Assessment Appendices

Appendix A: Integrated model

Aleutian Islands Golden King Crab (*Lithodes aequispinus*) Stock Assessment Model Development- east of 174° W (EAG) and west of 174° W (WAG) Aleutian Island stocks

Basic population dynamics

The annual [male] abundances by size are modeled using the equation:

$$N_{t+1,j} = \sum_{i=1}^{j} [N_{t,i}e^{-M} - (\hat{C}_{t,i} + \widehat{D}_{t,i} + \widehat{Tr}_{t,i})e^{(y_t - 1)M}]X_{i,j} + R_{t+1,j}$$
(A.1)

where $N_{t,i}$ is the number of [male] crab in length class *i* on 1 July (start of fishing year) of year *t*; $\hat{C}_{t,i}$, $\hat{D}_{t,i}$, and $\hat{T}r_{t,i}$ are respectively the predicted fishery retained, pot fishery discard dead, and groundfish fishery discard dead catches in length class *i* during year *t*; $\hat{D}_{t,i}$ is estimated from the intermediate total ($\hat{T}_{t,i \ temp}$) catch and the retained ($\hat{C}_{t,i}$) catch by Equation A.2c. $X_{i,j}$ is the probability of length-class *i* growing into length-class *j* during the year; y_t is elapsed time period from 1 July to the midpoint of fishing period in year *t*; *M* is instantaneous rate of natural mortality; and $R_{t+1,j}$ recruitment to length class *j* in year t+1.

The catches are predicted using the equations

$$\hat{T}_{t,j,temp} = \frac{F_t s_{t,j}^T}{Z_{t,j}} N_{t,j} e^{-y_t M} (1 - e^{-Z_{t,j}})$$
(A.2a)

$$\hat{C}_{t,j} = \frac{F_t s_{t,j}^T s_{t,j}^r}{z_{t,j}} N_{t,j} e^{-y_t M} (1 - e^{-Z_{t,j}})$$
(A.2b)

$$\widehat{D}_{t,j} = 0.2(\widehat{T}_{t,j,temp} - \widehat{C}_{t,j})$$
 (A.2c)

$$\widehat{Tr}_{t,j} = 0.65 \frac{F_t^{Tr} S_j^{Tr}}{Z_{t,j}} N_{t,j} e^{-y_t M} (1 - e^{-Z_{t,j}})$$
(A.2d)

$$\hat{T}_{t,j} = \hat{C}_{t,j} + \hat{D}_{t,j} \tag{A.2e}$$

where $Z_{t,j}$ is total fishery-related mortality on animals in length-class j during year t:

$$Z_{t,j} = F_t s_{t,j}^T s_{t,j}^r + 0.2F_t s_{t,j}^T (1 - s_{t,j}^r) + 0.65 F_t^{Tr} s_j^{Tr}$$
(A.3)

 F_t is the full selection fishing mortality in the pot fishery, F_t^{Tr} is the full selection fishing mortality in the trawl fishery, $s_{t,j}^T$ is the total selectivity for animals in length-class *j* by the pot fishery during

year t, s_j^{Tr} is the selectivity for animals in length-class j by the trawl fishery, $s_{t,j}^r$ is the probability of retention for animals in length-class j by the pot fishery during year t. Pot bycatch mortality of 0.2 and groundfish bycatch mortality of 0.65 (average of trawl [0.8] and groundfish pot [0.5] mortality) were assumed.

Initial abundance

The initial conditions are computed as the equilibrium initial condition using the following relations:

The equilibrium stock abundance is

$$N = X.S.N + R \tag{A.4}$$

The equilibrium abundance in 1960, N_{1960} , is

$$\underline{N}_{1960} = (I - XS)^{-1}\underline{R}$$
(A.5)
where X is the growth matrix, S is a matrix with diagonal elements given by e^{-M} , I is the identity
matrix, and R is the product of average recruitment and relative proportion of total recruitment to
each size-class.

We used the mean number of recruits from 1987 to 2012 in equation (A.5) to obtain the equilibrium solution under only natural mortality in year 1960, and then projected the equilibrium abundance under natural mortality with recruitment estimated for each year after 1960 up to 1985 with removal of retained catches during 1981/82–1984/85.

Growth Matrix

The growth matrix *X* is modeled as follows:

$$X_{i,j} = \begin{cases} 0 & if \ j < i \\ P_{i,j} + (1 - m_i) & if \ j = i \\ P_{i,j} & if \ j > i \end{cases}$$
(A.6)

where:

$$P_{i,j} = m_i \begin{cases} \int_{-\infty}^{j_2 - L_i} N(x | \mu_i, \sigma^2) dx & \text{if } j = i \\ \int_{j_1 - L_i}^{j_2 - L_i} N(x | \mu_i, \sigma^2) dx & \text{if } i < j < n \\ \int_{j_1 - L_i}^{\infty} N(x | \mu_i, \sigma^2) dx & \text{if } i = n \end{cases}$$

$$N(x|\mu_i, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(\frac{x-\mu_i}{\sqrt{2}\sigma})^2}$$
, and

 μ_i is the mean growth increment for crab in size-class *i*: $\mu_i = \omega_1 + \omega_2 * \overline{L}_i$.

(A.7)

 ω_1 , ω_2 , and σ are estimable parameters, j_i and j_2 are the lower and upper limits of the receiving length-class *j* (in mm CL), and \overline{L}_i is the mid-point of the contributing length interval *i*. The quantity m_i is the molt probability for size-class *i*:

$$m_i = \frac{1}{1 + e^{c(\tau_i - d)}} \tag{A.8}$$

where τ_i is the mid-length of the *i*-th length-class, *c* and *d* are parameters.

Selectivity and retention

Selectivity and retention are both assumed to be logistic functions of length. Selectivity depends on the fishing period for the directed pot fishery:

$$S_{i} = \frac{1}{1+e^{\left[-\ln(19)\frac{\tau_{i}-\theta_{50}}{\theta_{95}-\theta_{50}}\right]}}$$
(A.9)

where θ_{95} and θ_{50} are the parameters of the selectivity/ retention pattern (Mark Maunder, unpublished generic crab model). In our program, we re-parameterized the denominator ($\theta_{95} - \theta_{50}$) to $log(delta\theta)$ so that the difference is always positive and transformed θ_{50} to $log(\theta_{50})$ to keep the estimate always positive.

Recruitment

Recruitment to length-class i during year *t* is modeled as $R_{t,i} = \overline{R}e^{\epsilon_i}\Omega_i$ where Ω_i is a normalized gamma function

$$gamma(x|\alpha_r,\beta_r) = \frac{x^{\alpha_r - 1}e^{\frac{x}{\beta_r}}}{\beta_r^{\alpha_r} \Gamma_{(\alpha_r)}}$$
(A.10)

with α_r and β_r (restricted to the first five length classes).

Parameter estimation

Table A1 lists the parameters of the model indicating which are estimated and which are prespecified. The objective function includes contributions related to the fit of the model to the available data and penalties (priors on various parameters).

Tables A2 lists parameter values (with the corresponding coefficient of variations in parentheses) used to weight the components of the objective functions for EAG and WAG.

Likelihood components

Catches

The contribution of the catch data (retained, total, and groundfish discarded) to the objective function is given by:

$$LL_{r}^{catch} = \lambda_{r} \sum_{t} \{ \ell n(\sum_{j} \hat{C}_{t,j} w_{j} + c) - \ell n(\sum_{j} C_{t,j} w_{j} + c) \}^{2}$$
(A.11a)
(A.11a)

$$LL_{T}^{catch} = \lambda_{T} \sum_{t} \{ ln \left(\sum_{j} \hat{T}_{t,j} w_{j} + c \right) - ln \left(\sum_{j} T_{t,j} w_{j} + c \right) \}^{2}$$
(A.11b)

$$LL_{GD}^{catch} = \lambda_{GD} \sum_{t} \{ ln \left(\sum_{j} \widehat{Tr}_{t,j} w_{j} + c \right) - ln \left(\sum_{j} Tr_{t,j} w_{j} + c \right) \}^{2}$$
(A.11c)

where λ_r , λ_T , and λ_{GD} are weights assigned to likelihood components for the retained, pot total, and groundfish discard catches; w_j is the average mass of a crab is length-class j; $C_{t,j}$, $T_{t,j}$, and $Tr_{t,j}$ are, respectively, the observed numbers of crab in size class j for retained, pot total, and groundfish fishery discarded crab during year t, and c is a small constant value. We assumed c = 0.001.

An additional retained catch likelihood (using Equation A.11a without w) for the retained catch in number of crabs during 1981/82–1984/85 was also considered in all scenarios.

Catch-rate indices

The catch-rate indices are assumed to be lognormally distributed about the model prediction. Account is taken of variation in addition to that related to sampling variation:

$$LL_{r}^{CPUE} = \lambda_{r,CPUE} \left\{ 0.5 \sum_{t} ln \left[2\pi \left(\sigma_{r,t}^{2} + \sigma_{e}^{2} \right) \right] + \sum_{t} \frac{\left(ln(CPUE_{t}^{r} + c) - ln \left(\widehat{CPUE_{t}^{r} + c} \right) \right)^{2}}{2(\sigma_{r,t}^{2} + \sigma_{e}^{2})} \right\}$$
(A.12)

where $CPUE_t^r$ is the standardized retain catch-rate index for year t, $\sigma_{r,t}$ is standard error of the logarithm of $CPUE_t^r$, and $CPUE_t^r$ is the model-estimate of $CPUE_t^r$:

$$\widehat{CPUE}_{t}^{r} = q_{k} \sum_{j} S_{j}^{T} S_{j}^{r} \left(N_{t,j} - 0.5 \left[\widehat{C_{t,j}} + \widehat{D_{t,j}} + \widehat{Tr_{t,j}} \right] \right) e^{-y_{t}M}$$
(A.13)

in which q_k is the catchability coefficient during the *k*-th period (e.g., pre- and post-rationalization time periods), σ_e is the extent of over-dispersion, *c* is a small constant to prevent zero values (we assumed c = 0.001), and $\lambda_{r,CPUE}$ is the weight assigned to the catch-rate data. We used the same likelihood formula (A.12) for fish ticket and cooperative survey retained catch rate indices. However, for cooperative survey catch rate prediction we used a different catchability parameter.

Following Burnham et al. (1987), we computed the ln(CPUE) variance by:

$$\sigma_{r,t}^2 = \ln \left(1 + C V_{r,t}^2 \right) \tag{A.14}$$

Length-composition data

The length-composition data are included in the likelihood function using the robust normal for proportions likelihood, i.e., generically:

$$LL_{r}^{LF} = 0.5 \sum_{t} \sum_{j} \ell n(2\pi\sigma_{t,j}^{2}) - \sum_{t} \sum_{j} \ell n \left[\exp\left(-\frac{(P_{t,j} - \hat{P}_{t,j})^{2}}{2\sigma_{t,j}^{2}}\right) + 0.01 \right]$$
(A.15)

where $P_{t,j}$ is the observed proportion of crabs in length-class j in the catch during year t, $\hat{P}_{t,j}$ is the model-estimate corresponding to $P_{t,j}$, i.e.:

$$\hat{\mathrm{L}}_{\mathrm{t},j}^{\mathrm{r}} = \frac{\mathrm{C}_{\mathrm{t},j}}{\sum_{j}^{\mathrm{n}} \widehat{\mathrm{C}}_{\mathrm{t},j}}$$

$$\hat{\mathbf{L}}_{\mathbf{t},j}^{\mathrm{T}} = \frac{\mathbf{T}_{\mathbf{t},j}}{\sum_{j}^{\mathrm{n}} \hat{\mathbf{T}}_{\mathbf{t},j}}$$

$$\hat{\mathbf{L}}_{\mathbf{t},j}^{\mathrm{GF}} = \frac{\widehat{\mathbf{T}}_{\mathbf{t},j}}{\sum_{j}^{\mathrm{n}} \widehat{\mathbf{T}}_{\mathbf{t},j}}$$

$$\sigma_{t,j}^{2} \text{ is the variance of } P_{t,j}:$$

$$\sigma_{t,j}^{2} = \left[(1 - P_{t,j}) P_{t,j} + \frac{0.1}{n} \right] / S_{t}$$
(A.16)
(A.16)
(A.17)

and S_t is the effective sample size for year t and n is the number of size classes.

Note: The likelihood calculation for retained length composition starts from length-class 6 (mid length 128 mm CL) because the length-classes 1 to 5 mostly contain zero data.

Tagging data

Let $V_{j,t,y}$ be the number of tagged male crab that were released during year *t* that were in size-class *j* when they were released and were recaptured after *y* years, and $\rho_{j,t,y}$ be the vector of recaptures by size-class from the males that were released in year *t* that were in size-class *j* when they were released and were recaptured after *y* years. The log-likelihood corresponding to the multinomial distribution for the tagging data is then:

$$lnL = \lambda_{y,tag} \sum_{j} \sum_{t} \sum_{y} \sum_{i} \rho_{j,t,y,i} ln \hat{\rho}_{j,t,y,i}$$
(A18)

where $\lambda_{y,tag}$ is the weight assigned to the tagging data for recapture year y, $\hat{\rho}_{j,t,y,i}$ is the proportion in size-class *i* of the recaptures of males that were released during year *t* that were in size-class *j* when they were released and were recaptured after *y* years:

$$\underline{\hat{\rho}}_{j,t,y} \propto \underline{s}^{T} [\mathbf{X}]^{y} \underline{Z}^{(j)}$$
(A19)

where $Z^{(j)}$ is a vector with $V_{j,t,y}$ at element *j* and 0 otherwise, and S^T is the vector of total selectivity for tagged male crab by the pot fishery. This log-likelihood function is predicated on the assumption that all recaptures are in the pot fishery and the reporting rate is independent of the size of crab.

Penalties

Penalties are imposed on the deviations of annual pot fishing mortality about mean pot fishing mortality, annual trawl fishing mortality about mean trawl fishing mortality, recruitment about mean recruitment, and the posfunction (fpen):

$$P_1 = \lambda_F \sum_t (\ell n F_t - \ell n F)^2$$
(A.20)

$$P_{2} = \lambda_{F^{Tr}} \sum_{t} (\ell n F_{t}^{Tr} - \ell n F^{Tr})^{2}$$
(A.21)

$$P_3 = \lambda_R \sum_t (\ell n \varepsilon_t)^2$$
(A.22)

$$P_5 = \lambda_{posfn} * fpen \tag{A.23}$$

Standardized Residual of Length Composition

$$Std. Res_{t,j} = \frac{P_{t,j} - \hat{P}_{t,j}}{\sqrt{2\sigma_{t,j}^2}}$$
(A.24)

Output Quantities

Harvest rate

Total pot fishery harvest rate:

$$E_t = \frac{\sum_{j=1}^n (\hat{c}_{j,t} + \hat{D}_{j,t})}{\sum_{j=1}^n N_{j,t}}$$
(A.25)

Exploited legal male biomass at the start of year t:

$$LMB_{t} = \sum_{j=legal \ size}^{n} s_{j}^{T} s_{j}^{r} N_{j,t} \ w_{j}$$
(A.26)

where w_i is the weight of an animal in length-class *j*.

Mature male biomass on 15 February spawning time (NPFMC 2007a, b) in the following year:

$$MMB_{t} = \sum_{j=mature \ size}^{n} \{ N_{j,t} e^{-y'M} - (\hat{C}_{j,t} + \widehat{D}_{j,t} + \widehat{Tr}_{j,t}) e^{(y_{t} - y')M} \} w_{j}$$
(A.27)

where y'is the elapsed time from 1 July to 15 February in the following year.

For estimating the next year limit harvest levels from current year stock abundances, an F_{OFL} value is needed. The current crab management plan specifies five different Tier formulas for different stocks depending on the strength of information available for a stock, for computing F_{OFL} (NPFMC 2007a, b). For the golden king crab, the following Tier 3 formula is applied to compute F_{OFL} :

If, $MMB_{current} > MMB_{35\%}, F_{OFL} = F_{35\%}$

If, $MMB_{current} \leq MMB_{35\%} \text{ and } MMB_{current} > \beta MMB_{35\%} \text{ ,}$

$$F_{OFL} = F_{35\%} \frac{\left(\frac{MMB_{current}}{MMB_{35\%}} - \alpha\right)}{(1 - \alpha)}$$
(A.28)

If, $MMB_{current} \leq \beta MMB_{35\%}$,

 $F_{OFL} = 0.$

where

 β = a parameter with a restriction that $0 \le \beta < 1$. A default value of 0.25 is used, α = a parameter with a restriction that $0 \le \alpha \le \beta$. A default value of 0.1 is used,

 $MMB_{current}$ = the mature male biomass in the current year, and $MMB_{35\%}$ = a proxy MMB_{MSY} for Tier 3 stocks.

Because projected MMB_t (i.e., $MMB_{current}$) depends on the intervening retained and discard catch (i.e., MMB_t is estimated after the fishery), an iterative procedure is applied using Equations A.27 and A.28 with retained and discard catch predicted from Equations A.2b-d. The next year limit harvest catch is estimated using Equations A.2b-d with the estimated F_{OFL} value.

Table A1. Pre-specified and estimated parameters of the population dynamics model

Parameter	Number of parameters
Fishing mortalities:	
Pot fishery, F_{t}	1981-2020 (estimated)
Mean pot fishery fishing mortality, \overline{F}	1 (estimated)
Groundfish fishery, F_{ι}^{Tr}	1989–2020 (the mean F for 1989 to 1994 was used to estimate groundfish discards back to 1981 (estimated)
Mean groundfish fishery fishing mortality, \overline{F}^{Tr}	l (estimated)
Selectivity and retention:	
Pot fishery total selectivity, θ_{50}^{T}	2 (1981–2004; 2005+) (estimated)
Pot fishery total selectivity difference, $delta\theta^{T}$	2 (1981–2004; 2005+) (estimated)
Pot fishery retention, θ_{50}^{r}	1 (1981+) (estimated)
Pot fishery retention selectivity difference, $delta\theta^r$	1 (1981+) (estimated)
Groundfish fishery selectivity	fixed at 1 for all size-classes
Growth:	
Expected growth increment. ω_1, ω_2	2 (estimated)
Variability in growth increment, σ	1 (estimated)
Molt probability (size transition matrix with tag data), a	1 (estimated)
Molt probability (size transition matrix with tag data), b Natural mortality M	1 (estimated) 1 (pre specified 0.21 yr^{-1})
Recruitment	r (pre-specificu, 0.21yr)
Number of recruiting length-classes	5 (pre-specified)
Mean recruit length	1 (pre-specified, 110 mm CL)
Distribution to length-class, β_r	1 (estimated)
Median recruitment, R	1 (estimated) 61 (1961–2021) (estimated)
Recruitment deviations, \mathcal{E}_t	01 (1901 2021) (estimated)
Fishery catchability, q	2 (1985–2004; 2005+) (estimated)

Additional CPUE indices standard deviation, σ_e Likelihood weights (coefficient of variation) 1 (estimated) Pre-specified, varies by scenario

	Models
Weight	19.1, 21.1a, 21.1b, and 21.1c
Catch:	
Retained catch for 1981–1984 and/or 1985–2020, λ_r	500 (0.032)
Total catch for 1990–2020, λ_T	Number of sampled pots scaled to a max 250
Groundfish by catch for 1989 –2020, λ_{GD}	0.2 (3.344)
Catch-rate: Observer legal size crab catch-rate for 1995–2020, $\lambda_{r,CPUE}$	1 (0 805)
	1 (0.805)
Fish ticket retained crab catch-rate for 1985–1998, $\lambda_{r,CPUE}$	1 (0.805)
Penalty weights:	
Pot fishing mortality dev, λ_F Groundfish fishing mortality dev, $\lambda_{F^{Tr}}$	Initially 1000, relaxed to 0.001 at phases ≥ select. phase Initially 1000, relaxed to 0.001 at phases ≥ select. phase
Recruitment. λ_R	2 (0.533)
Posfunction (to keep abundance estimates always positive), λ_{posfn}	1000 (0.022)
Tagging likelihood	EAG individual tag returns

Table A2. Specifications for the weights with corresponding coefficient of variations* in parentheses for each model for EAG and WAG.

* Coefficient of Variation, $CV = \sqrt{\exp\left[\frac{1}{2W}\right] - 1}$, w=weight

Appendix B: Catch and CPUE data

The commercial catch and length frequency distribution were estimated from ADF&G landing records and dockside sampling (Bowers *et al.* 2008, 2011). The annual retained catch, total catch, and groundfish (or trawl) discarded mortality are provided in Tables 1, 2, and 2b for EAG and WAG. The weighted length frequency data were used to distribute the catch into 5-mm size intervals. The length frequency data for a year were weighted by each sampled vessel's catch as follows. The *i*-th length-class frequency was estimated as:

$$\sum_{j=1}^{k} C_{j} \frac{LF_{j,i}}{\sum_{i=1}^{n} LF_{j,i}}$$
(B.1)

where k = number of sampled vessels in a year, $LF_{j,i} =$ number of crabs in the *i*-th length-class in the sample from *j*-th vessel, n = number of size classes, $C_j =$ number of crabs caught by *j*-th vessel. Then the relative frequency for the year was calculated and applied to the annual retained catch (in number of crabs) to obtain retained catch by length-class.

The annual total catch (in number of crabs) was estimated by the observer nominal (unstandardized) total CPUE considering all vessels multiplied by the total fishing effort (number of pot lifts). The weighted length frequency of the observer samples across the fleet was estimated using Equation B.1. Observer measurement of crab ranged from 20 to 220 mm CL. To restrict the total number of crabs to the model assumed size range (101-185+mm CL), the proportion of observer total relative length frequency corresponding to this size range was multiplied by the total catch (number of crabs). This total number of crabs was distributed into length-classes using the weighted relative length frequency. Thus, crab sizes < 101 mm CL were excluded from the model. In addition, all crab >185 mm CL were pooled into a plus length class. Note that the total crab catches by size that went into the model did not consider retained and discard components separately. However, once the model estimated the annual total catch, then retained catch was deducted from this total and multiplied by handling mortality [we used a 20% handling mortality (Siddeek *et al.* 2005) to obtain the directed fishery discarded (dead) catch].

Observer data have been collected since 1988 (Moore et al. 2000; Barnard et al. 2001; Barnard and Burt 2004; Gaeuman 2011), but data were not comprehensive in the initial years, so a shorter time series of data for the period 1990/91–2020/21 was selected for this analysis. During 1990/91–1994/95, observers were only deployed on catcher-processor vessels. During 1995/96-2004/05, observers were deployed on all fishing vessels during fishing activity. Observers have been deployed on all fishing vessels since 2005/06, but catcher-only vessels are only required to carry observers for a minimum of 50% of their fishing activity during a season; catcher-processor vessels are still required to carry observers during all fishing activity. Onboard observers sample seven pots per day (may be different numbers of pots per string) and count and measure all crabs caught and categorize catch as females, sublegal males, retained legal males, and non-retained legal males in a sampled pot. Prior to the 2009/10 season, depending on season, area, and type of fishing vessel, observers were also instructed to sample additional pots in which all crab were only counted and categorized as females, sublegal males, retained legal males, and non-retained legal males, but were not measured. Annual mean nominal CPUEs of retained and total crabs were estimated considering all sampled pots within each season (Table 3). The observer CPUE data collection improved over the years and the data since 1995/96 are more reliable. Thus, for model fitting, the observer CPUE time series was restricted to 1995/96–2020/21. The 1990/91–2020/21 observer database consists of 118,025 records and that of 1995/96–2020/21 contains 113,746 records, For CPUE standardization, these data were further reduced by 5% cutoff of Soak time and 1% cutoff of Depth on both ends of the variable range to remove unreliable data or data from dysfunctional pot operations and restricting to vessels which have made five trips per year for at least three years during 1985/86–2020/21.

We detected some computational errors in raw size frequency summary data preparation (observer and fish ticket sampling) for 2016–2019 and rectified errors in relative retained and total size frequency computations in the current analysis. The correction of errors did not affect retained catch crab distribution by size bins but caused minor changes to allocation of total catch crab into size bins.

Length-specific CPUE data collected by observers provides information on a wider size range of the stock than did the commercial catch length frequency data obtained from mostly legal-sized landed males.

There were significant changes in fishing practice due to changes in management regulations (e.g., since 1996/97 constant TAC and since 2005/06 crab rationalization), pot configuration (escape web on the pot door increased to 9" since 1999), and improved observer recording in Aleutian Islands golden king crab fisheries since 1998. These changes prompted us to consider two separate observer CPUE time series, 1995/96–2004/05 and 2005/06–2020/21, to estimate CPUE indices for model input.

To include a long time series of CPUE indices for stock abundance contrast, we also considered the 1985/86–1998/99 legal size standardized CPUE as a separate likelihood component in all scenarios. Because of the lack of soak time data before 1990, we estimated the CPUE index considering a limited set of explanatory variables (e.g., vessel, captain, area, month) and fitting the negative binomial GLM model to fish ticket data (Tables 4 and 14).

When using CPUE indices in the model fit, we compared the predicted with the observed legal male CPUE in the observer CPUE likelihoods because legal male (retained plus non-retained) data are more reliable than total in the observer samples.

The CPUE standardization followed the GLM fitting procedure (Maunder and Punt 2004; Starr 2012; Siddeek *et al.* 2018). Following a suggestion from the CIE reviewers in June 2018 we reduced the number of gear codes in the database after consulting with the fishing industry (Rip Carlton, Chad Hoefer, and Scott Goodman, personal communication December 2018; Table B1). Following an SSC suggestion in October 2018, we used a hybrid procedure: First, we selected a scope of variables set by Akike Information Criterion, AIC (Burnham and Anderson 2002). An increase of more than 2 units in the AIC was used to identify the variable to be included successively (stepAIC program, R Core Team 2020). Then, the model parsimony was improved further by successively removing the term that explained the least proportion of deviance ($R^2 < 0.01$) (stepCPUE R function was used, Siddeek *et al.* 2018). Feenstra, *et al.* (2019) used a similar hybrid approach.

Table B.1. Updated gear codes for observer data analysis. Only gear code # 5, 6, 7, 8, and 13
were considered following crab industry suggestion. Note: Identical codes were given to those
gear codes with similar catchability/selectivity. X indicates gear codes that were ignored.

Original Gear code	Pot gear description	Mark X against the code that can be ignored	Number encountered by observers during 1990–2016	Updated gear code
1	Dungeness crab not small & round	X	2	X
2	Pyramid pot, tunnel openings usually on sides, stackable	X	2121	Х
3	Conical pot, opening at top of cone, stackable	Х	2000	Х
4	4' X 4' rectangular pot		60	Х
5	5' X 5' rectangular pot		18032	5
6	6' X 6' rectangular pot		17508	6
7	7' X 7' rectangular pot		23806	7
8	8' X 8' rectangular pot		1936	8
9	5 1/2' X 5 1/2' rectangular pot		6934	5
10	6 1/2' X 6 1/2' rectangular pot		22085	6
11	7 $1/2' \ge 7 1/2'$ rectangular pot		387	7
12	Round king crab pot, enlarged version of Dungeness crab pot		8259	Х
13	10' X 10' rectangular pot		466	13
14	9' X 9' rectangular pot	Х	1	Х
15	8 1/2' X 8 1/2' rectangular pot	Х	1	Х
16	9 1/2' X 9 1/2' rectangular pot	Х	Not used	Х
17	8' X 9' rectangular pot	Х	1	Х
18	8' X 10' rectangular pot	Х	1	Х
19	9' X 10' rectangular pot		Not used	Х
20	7' X 8' rectangular pot	Х	252	Х
21	Hair crab pot, longlined and small, stackable		Not used	Х
22	snail pot	Х	1	Х
23	Dome-shaped pot, tunnel opening on top, often longlined in deep-water fisheries ADF&G shellfish research 7' X 7' X34"	Х	6756	Х
24	rectangular pot with 2.75" stretch mesh and no			
	escapement rings or mesh		Research pot	Х
80	Historical: Cod pot, any shape pot targeting cod, usually with tunnel fingers	Х	711	Х
81	Historical: Rectangular pot, unknown size, with escape rings	Х	1123	X

All scenarios used CPUE indices estimated by the hybrid GLM method. Following a January 2019 CPT request, we considered a Year:Area interaction factor as a special case for a CPUE standardization scenario.

Thus we estimated two sets of observer CPUE indices for model input, 19.1 (reduced number of gear codes), and 21.1c (reduced number of gear codes and Year: Area interaction).

Observer CPUE index by GLM

a. Non-interaction GLM model

The CPUE standardization followed the GLM fitting procedure (Maunder and Punt 2004; Starr 2012; Siddeek *et al.* 2016b). We considered the negative binomial GLM on positive and zero catches to select the explanatory variables. The response variable CPUE is the observer sample catch record for a pot haul. The negative binomial model uses the log link function for the GLM fit.

For the non-interaction model, we assumed the null model to be:

$$\ln(\text{CPUE}_i) = \text{Year}_{y_i} \tag{B.2}$$

where Year is a factorial variable.

The maximum set of model terms offered to the stepwise selection procedure was:

$$ln (CPUE_{I}) = Year_{y_{i}} + ns(Soak_{si}, df) + Month_{m_{i}} + Vessel_{vi} + Captain_{ci} + Area_{ai} + Gear_{gi} + ns(Depth_{di}, df),$$
(B.3)

where Soak is in unit of days and is numeric; Month, Area (Block) code, Vessel code, Captain code, and Gear code are factorial variables; Depth in fathom is a numeric variable; ns=cubic spline, and df = degree of freedom.

We used a log link function and a dispersion parameter (θ) in the GLM fitting process. We used the R² criterion for predictor variable selection (Siddeek *et al.* 2016b).

We calculated appropriate degrees of freedom and dispersion parameters by calculating AICs for a range of values and locating the best values at the minimum AIC (Figures B1 and B.2, respectively).

Figure B.1. AIC vs degrees of freedom for soak time and depth during pre- and postrationalization periods for EAG (top) and WAG (bottom). Vertical lines identify the optimum degrees of freedom values chosen for CPUE standardization.

Figure B.2. AIC vs theta (dispersion parameter) during pre- and post-rationalization periods for EAG (top) and WAG (bottom). Vertical lines identify the optimum theta values chosen for CPUE standardization.

Instead of using the traditional AIC (-2log_likelihood+2p) we used the Consistent Akaike Information Criteria (CAIC) (Bozdogan 1987) {-2log_likelihood+[ln(n)+1]*p} for variable selection by StepAIC, where n=number of observations and p= number of parameters to be estimated. The number of selected variables were further reduced for parsimony, if feasible, by the R² criterion using the StepCPUE function. i.e., a hybrid selection procedure (Feenstra *et al.* 2019).

Example R codes used for main effect GLM fitting are as follows:

For EAG 1995 04 CPUE indices:

library(MASS)

library(splines)

Step 1:

glm.object<- glm(Legals~Year,family = negative.binomial(1.38),data=datacore)

```
epotsampleoutAIC <-stepAIC(glm.object,scope=list(upper= ~(Year+ns(SoakDays,df=4)+Month+Vessel+Captain+Area+Gear+ns(Depth,df=9)),lower= ~Year),family=negative.binomial(1.38),direction="forward",trace=9,k=log(nrow(datacore)) +1.0)
```

Step 2:

glm.object<- glm(Legals~Year,family = negative.binomial(1.38),data=datacore)

epotsampleout<stepCPUE(glm.object,scope=list(upper=~(Year+Gear+Captain+ns(SoakDays,df=4)+ Month+Area),lower=~Year),family=negative.binomial(1.38),direction="forward",trace=9,r 2.change=0.01)

The final main effect models for EAG were:

Model 19.1: Initial selection by stepAIC: ln(CPUE) = Year + Gear + Captain + ns(Soak, 4) + *Month* + *Block* AIC=203,808

Final selection by stepCPUE: ln(CPUE) = Year + Captain + Gear + ns(Soak, 4) + Month (B.4) for the 1995/96–2004/05 period [θ =1.38, R² = 0.2205]

Initial selection by stepAIC:

ln(CPUE) = Year + Captain + Gear + ns(Soak, 3) + *Month* AIC=77,173

Final selection by stepCPUE: ln(CPUE) = Year + Captain + Gear + ns(Soak, 3) (B.5) for the 2005/06–2020/21 period [$\theta = 2.32$, $R^2 = 0.1082$].

The final models for WAG were:

Model 19.1: Initial selection by stepAIC: ln(CPUE) = Year + Captain + ns(Soak, 7) + Gear + Area + Month + ns(Depth, 5) + Vessel AIC=190,897

Final selection by stepCPUE: ln(CPUE) = Year + Captain + ns(Soak, 7) + Gear (B.6) for the 1995/96–2004/05 period [θ =0.97, R² = 0.1681]

Initial selection by stepAIC: ln(CPUE) = Year + Captain + Gear + Month + ns(Soak, 18) AIC=116,552

Final selection by stepCPUE: ln(CPUE) = Year + Captain + Gear + ns(Soak, 18) (B.7) for the 2005/06–2020/21 period [$\theta = 1.13$, $R^2 = 0.0776$, Soak forced in].

b. Year: Area interaction GLM:

For year and area interaction analysis, we designed the areas in to 1 nmi x 1 nmi grids enmeshed in 10 larger blocks as follows. The number of blocks was restricted to a few to prevent GLM fitting problems (Figure B.3 and Table B.2).

175°30'W 171°30'E 172°30'E 173°30'E 174°30'E 175°30'E 176°30'E 177°30'E 178°30'E 179°30'E 179°30'W 178°30'W 177°30'W 176°30'W 174°30'W 173°30'W 172°30'W 171°30'W 170°30'W 169°30'W 168°30'W 167°30'W

Figure B.3. The 1995/96–2020/21 observer pot samples enmeshed in 10 blocks for the Aleutian Islands golden king crab. The blocks were determined from visually exploring each year's pot distribution locations (available with the first author). The blocks contain observed patches of crab distribution during this period.

Table B.2. Number of 1 nmi x 1 nmi grids containing observer sample locations within each block by fishing year for the Aleutian Islands golden king crab, 1995/96–2020/21 data. Blocks 1–4 belong to EAG and 5–10 to WAG. Sum of ever fished number of grids for each block is listed at the bottom row.

FMP Season	Block_1	Block_2	Block_3	Block_4	Block_5	Block_6	Block_7	Block_8	Block_9	Block_10
1995	125	529	748	379	218	373	112	722	166	122
1996	149	814	761	372	89	473	359	799	200	35
1997	116	530	755	257	202	443	104	568	274	0
1998	78	581	453	236	18	318	157	251	132	0
1999	123	593	454	231	163	476	182	627	193	145
2000	72	540	754	301	187	440	195	555	547	47
2001	123	507	507	329	45	369	288	634	256	9
2002	97	387	584	271	71	341	205	335	242	37
2003	43	492	530	299	111	347	212	465	150	61
2004	81	289	377	216	77	319	150	359	172	116
2005	0	205	221	118	8	220	83	261	54	0
2006	0	154	248	122	15	191	58	220	39	0
2007	0	111	177	110	24	228	78	173	20	0
2008	0	111	203	93	12	181	67	196	0	0
2009	0	59	146	60	6	137	95	220	25	0
2010	0	81	141	85	1	115	73	260	39	0
2011	0	126	117	33	3	83	73	266	9	0
2012	0	146	110	56	7	91	85	312	53	0
2013	2	149	129	51	12	144	105	293	86	0
2014	1	138	96	41	39	120	114	319	37	0
2015	0	135	147	61	46	163	106	280	16	48
2016	0	145	231	63	26	134	89	210	106	0
2017	0	97	170	110	11	87	79	198	118	0
2018	0	91	158	95	7	69	82	204	121	0
2019	1	112	171	101	0	0	89	316	138	0
2020	4	109	193	95	0	0	76	287	91	36

Ever Fished:										
AIGKC All Seasons	Block_1	Block_2	Block_3	Block_4	Block_5	Block_6	Block_7	Block_8	Block_9	Block_10
1995–2020 - Sum of 1x1 cells	381	1402	1792	917	459	1028	796	2012	1021	334

We assumed the null model to be

$$ln(CPUE_i) = Year_{y_i}:Area_{ai}$$
(B.8)

The maximum set of model terms offered to the stepwise selection procedure was:

 $ln (CPUE_{I}) = Year_{y_{i}}: Area_{ai} + ns(Soak_{si}, df) + Month_{m_{i}} + Vessel_{vi} + Captain_{ci} + Area_{ai} + Gear_{gi} + ns(Depth_{di}, df).$ (B.9)

Example R codes used for interaction effect GLM fitting are as follows:

For WAG 1995_04 CPUE indices:

library(MASS)

library(splines)

Step 1:

glm.object<- glm(Legals~Year:Area,family = negative.binomial(0.97),data=datacore)

```
wpotsampleoutAIC<-stepAIC(glm.object,scope=list(upper=
~(Year:Area+ns(SoakDays,df=7)+Month+Vessel+Captain+Area+Gear
ns(Depth,df=5)),lower=~Year:Area),family=
negative.binomial(0.97),direction="forward",trace=9,k=log(nrow(datacore))+1.0)
```

Step 2:

```
glm.object<- glm(Legals~Year:Area,family = negative.binomial(0.97),data=datacore)
```

```
wpotsampleout<-stepCPUE(glm.object,scope=list(upper=
~(Captain+ns(SoakDays,df=7)+Gear+Area+Month+Year:Area),lower= ~Year:Area),family=
negative.binomial(0.97),direction="forward",trace=9,r2.change=0.01)
```

The final interaction effect models for EAG were:

Model 21.1c: Initial selection by stepAIC: ln(CPUE) = Gear + Captain + ns(Soak, 4) + Month + Year: Area AIC=203,851 +

Final selection by stepCPUE: ln(CPUE) = Gear + Captain + ns(Soak, 4) + Year: Area for the 1995/96–2004/05 period [θ =1.38, R ² = 0.2235]	(B.10)
Initial selection by stepAIC: ln(CPUE) = Vessel + Gear + ns(Soak, 3) + Month + Year: Area AIC=72,343	
Final selection by stepCPUE: ln(CPUE) = Vessel + Gear + ns(Soak, 3) + Year: Area for the 2005/06–2020/21 period [$\theta = 2.32$, $R^2 = 0.1169$].	(B.11)
The final interaction effect models for WAG were:	
Model 21.1c: Initial selection by stepAIC: ln(CPUE) = Vessel + ns(Soak, 7) + Gear + Month + Year: Area AIC=191,018	
Final selection by stepCPUE: ln(CPUE) = Vessel + ns(Soak, 7) + Gear + Year: Area for the 1995/96–2004/05 period [θ =0.97, R ² = 0.1719]	(B.12)
Initial selection by stepAIC: ln(CPUE) = Gear + Vessel + Month + Year: Area + ns(Soak, 18) AIC=116,859	
Final selection by stepCPUE: ln(CPUE) = Gear + Year: Area + ns(Soak, 18) for the 2005/06–2020/21 period [θ = 1.13, R ² = 0.0818, Soak forced in].	(B.13)

Steps: 1. *Block-scale analysis*:

> The bias corrected estimate of CPUE index for each Year-Area (Area=Block) interaction was first obtained as: $VB \rightarrow e^{-2}/2$

$$CPUE_{ij} = e^{YB_{ij} + \sigma_{ij}^2/2}$$
(B.14)

where $CPUE_{ij}$ is the CPUE index in the ith year and jth block, YB_{ij} is the coefficient of the *i*th year and *j*th block interaction, and σ_{ij} is the biased correction standard error for expected CPUE value.

The number of 1 nmi x 1 nmi grids in each block can change from year to year; so, we considered using the number of grids **ever fished** in a block, N_{everj} [this is equivalent to assuming that the grids fished in any year randomly sample the stock in that block (Campbell, 2004)].

The abundance index for *j*th block in *i*th year is

$$B_{ij} = N_{ever_i} CPUE_{ij} \tag{B.15}$$

Notice in Table B.2 that no or very few observer samplings occurred in certain years for a whole block. We filled the B_{ij} index gaps resulting from Year: Area CPUE standardization model fit as follows:

$$\widehat{B_{i,j}} = e^{A_i + C_j}$$

fitted by GLM [i.e., fitting a log-linear model, $ln(\hat{B}_{i,j}) = A_i + C_j$], (B.16) where $B_{i,j}$ is the available index of biomass for year i and block *j*, A_i is a year factor, and C_j is a block factor, and used this model to predict the unavailable biomass index for blocks x years with no (or very limited) data.

An example set of R codes used to predict the missing biomass index is as follows:

library(MASS)

To fit the log-linear model (Equation B.16):

glm.fit<- glm(log(Bij)~Yeari + Blockj, data=Bindex)

where the data frame "Bindex" contains available B_{ij}, Year_i, and Block_j column values.

To predict the missing biomass index Y:

Y<- predict.glm (glm.fit, BindexFillpredict, se.fit=TRUE)

where the new data frame "BindexFillpredict" contains $Year_i$ and $Block_j$ column values for which B_{ij} indices are needed and contains an empty B_{ij} column for fill in.

By setting se.fit=TRUE, the standard errors, σ_{ij} , of predictions are also estimated.

Bias correction was made to each predicted biomass index by $B_{i,j} = e^{\hat{Y}_{i,j} + \sigma_{ij}^2/2}$ where σ_{ij} is the standard error of predicted $Y_{i,j}$ value, which is on the scale of the linear predictor (i.e., log transformed B_{ij}). The standard error for each year and area combination is estimated as follows. If we denote the covariance matrix of the fitted "glm.fit" as Σ and write the coefficients for linear combination of a set of predictors in a vector form as *C*, then the standard error of prediction for that combination is $\sqrt{C'\Sigma C}$, where *C'* is the transpose of vector *C*.

Annual biomass index, B_i , was estimated as, $B_i = \sum_j B_{ij}$ (B.17)

The variance of the total biomass index was computed as:

$$Var(B_i) = \sum_j N_{ever_j}^2 var(CPUE_{i,j})$$
(B.18)

where $N_{ever,j}$ is the total number of 1mni x 1 mni cells ever fished in block *j*, and $CPUE_{i,j}$ is the CPUE index for year *i* and block *j*.

To compare with other CPUE index estimates (Figures 24 for EAG and 41 for WAG) as well as to use in the assessment model 21.1c, we rescaled the B_i indices by the geometric mean of estimated B_i values (Equation B.17) separately for the pre- and post-rationalization periods. The corresponding standard error (~CV) of B_i was estimated by

$$\sqrt{\frac{Var(B_i)}{(B_i)^2}} \tag{B.19}$$

The rescaled biomass indices with standard errors are listed in Table B.3 for EAG and Table B.4 for WAG.

Table B.3. Steps to estimate biomass-based abundance indices with standard errors for 1995/96–2020/21 in EAG. GMScaled B_index and B_Index SE were used as CPUE index and its standard error.

 Year	B_Index	GMScaled B_Index	Var(B_index)	Var(B_Index)/(B_Index) ²	B_Index SE
1995	1646.045	0.772	31119.811	0.011	0.107
1996	1664.192	0.781	30961.039	0.011	0.106
1997	1657.073	0.777	26973.953	0.010	0.099
1998	1983.401	0.930	28416.977	0.007	0.085
1999	1889.406	0.886	26998.598	0.008	0.087
2000	1829.271	0.858	48321.122	0.014	0.120
2001	2644.434	1.240	159513.439	0.023	0.151
2002	2685.133	1.260	33738.827	0.005	0.068
2003	2403.298	1.127	33864.001	0.006	0.077
2004	3651.543	1.713	114213.956	0.009	0.093
2005	11479.919	1.051	2445608.389	0.019	0.136
2006	8686.932	0.796	2442560.854	0.032	0.180
2007	9615.569	0.881	2441515.275	0.026	0.163
2008	9592.846	0.879	2445626.553	0.027	0.163
2009	8430.385	0.772	2454692.100	0.035	0.186

2010	8569.358	0.785	2452577.255	0.033	0.183
2011	11695.405	1.071	2455608.856	0.018	0.134
2012	11150.360	1.021	2451865.327	0.020	0.140
2013	11544.882	1.057	2516532.727	0.019	0.137
2014	14396.446	1.319	2451276.698	0.012	0.109
2015	13446.866	1.232	2445059.570	0.014	0.116
2016	11681.802	1.070	2443192.818	0.018	0.134
2017	10484.499	0.960	2447524.594	0.022	0.149
2018	12931.639	1.184	2447048.616	0.015	0.121
2019	12126.070	1.111	2569011.349	0.017	0.132
2020	10966.012	1.004	2507915.925	0.021	0.144

Table B.4. Steps to estimate biomass-based abundance indices with standard errors for 1995/96–2020/21 in WAG. GMScaled B_index and B_Index SE were used as CPUE index and its standard error.

Year	B_Index	GMScaled B_Index	Var(B_index)	$Var(B_Index)/(B_Index)^2$	B_Index SE
1995	4171.339	1.133	108954.723	0.006	0.079
1996	3700.400	1.005	59000.363	0.004	0.066
1997	3793.778	1.030	62175.636	0.004	0.066
1998	3890.218	1.056	83518.738	0.006	0.074
1999	3419.423	0.928	56573.751	0.005	0.070
2000	3235.253	0.878	57888.952	0.006	0.074
2001	2947.962	0.800	130461.360	0.015	0.123
2002	3411.078	0.926	62878.499	0.005	0.074
2003	4145.339	1.126	56898.996	0.003	0.058
2004	4371.503	1.187	63567.812	0.003	0.058
2005	12519.564	1.069	336101.196	0.002	0.046
2006	12648.627	1.080	262528.825	0.002	0.041
2007	12145.212	1.037	276246.442	0.002	0.043
2008	13834.526	1.182	294798.093	0.002	0.039
2009	18360.125	1.568	423396.136	0.001	0.035
2010	12742.844	1.088	271918.180	0.002	0.041
2011	12819.358	1.095	325347.368	0.002	0.044
2012	12472.968	1.065	247042.061	0.002	0.040
2013	8698.067	0.743	308718.510	0.004	0.064
2014	8667.031	0.740	250151.136	0.003	0.058
2015	8566.046	0.732	262916.058	0.004	0.060
2016	10509.029	0.898	247759.318	0.002	0.047
2017	12543.516	1.071	258282.878	0.002	0.041
2018	15738.039	1.344	298711.438	0.001	0.035
2019	10006.568	0.855	292689.921	0.003	0.054
2020	9330.912	0.797	300658.131	0.003	0.059

c. Commercial fishery CPUE index by non-interaction model

We fitted the negative binomial GLM model for fish ticket retained CPUE time series 1985/86 – 1998/99 offering Year, Month, Vessel, Captain, and Area as explanatory variables and applying the hybrid selection method. Reduced area resolution (grouped ADF&G codes to AreaGP) was used for model fitting.

The final model for EAG was:

Initial selection by stepAIC: ln(CPUE) = Year + Vessel + Month AIC=16,996

Final selection by stepCPUE: ln(CPUE) = Year + Vessel + Monthfor the 1985/86–1998/99 period [θ =10.40, R² = 0.3327]

and that for WAG was:

Initial selection by stepAIC: ln(CPUE) = Year + Vessel + Area AIC=31,701

Final selection by stepCPUE: ln(CPUE) = Year + Vessel + Area (B.21) for the 1985/86–1998/99 period [θ =6.67, R² = 0.3569]

(B.20)

Appendix C. Cooperative Survey

1. Summary of the survey method

The ADF&G and industry collaborative pot survey was initiated in 2015 in the EAG and has continued since then. The survey was extended to WAG in 2018. A stratified two-stage sampling design has been implemented in a 2 nmi x 2 nmi grids within 1000 m depth covering the entire golden king crab fishing area. The 2 nmi x 2 nmi choice was the best compromise between scale of fishing gear, accuracy of defining habitat, and number of possible stations (Figure C1).

Figure C.1. Survey design: 2 nmi x 2 nmi grids overlaid on observer pot sample locations (green squares) in EAG.

There are nearly 1100 grids in the EAG divided into three equal size strata for selecting random pot sampling locations (Figures C.2 and C.3).

Figure C.2. Survey design: 2 nmi x 2 nmi grids stratified by three equal sizes for selecting random pot sampling locations in EAG.

Figure C.3. Random sample of 22 cells selected in each of three sub strata in EAG during the 2019 fishery.

Surveys occur during the first month of each fishing season with one to two ADF&G biologists onboard the fishing vessel to collect fishery and biological data. Fishing operation takes place in a randomly selected set of grids in each stratum with long-line pots. The number of pots per string ranges from 30 to 40, 200 m apart, and a vessel carries on average 35 strings. Pot sizes range from 5.5 ft x 5.5 ft to 7 ft x 7 ft with large mesh sizes for retention of legal-sized king crab. A few small mesh size research pots are also deployed for special studies. Fishing operation is not standardized for depth or soak time to allow normal fishing practices.

There are multiple pots (typically about 5 pots) sampled for each long-line string with approximately 35 crab measurement made per pot. For example, if 100 crabs are caught in a sampled pot, the biologist measures every third crab. The following snapshot of an observation record provides an example of what stock assessment data are collected.

fishery	year	vessel	skipper	String#	pot_size	mesh_size	bait	subsample_rate	species_code	sex	size	legal
EAG	2015	20556	Chad_Hoefer	1	5x5	king(large)	halibut	2	923	1	187	1

Pot#	date_in	time_in	depth_start	start_lat	start_lon	depth_out	end_lat	end_lon	date_out	time_out	comments	soak_time
1	8/4/2015	17:00	132	52.74133	-170.692	133	52.7515	-170.675	8/17/2015	3:00		12.41667

2. Standardization of cooperative survey CPUE

Data

A unique property of the cooperative survey is that multiple pots from multiple strings are sampled. All sample measurements were taken in EAG except for 2018/19, during which measurements were also taken from WAG. There was no survey during 2020/21 due to COVID related restriction.

There are 27,255 records from five years (2015–2019) of surveys. After cleaning up for missing entries, the number of records reduced to 27,122 golden king crab.

Method

Data preparation for CPUE standardization:

- i.) Created two new columns by concatenating Vessel Code with String# as well as with String# and Pot# because String# and Pot# are not unique numbers to each vessel. The new column names were identified as VesString and VesStingPot. For example, a Vessel Code 20556 with a String# 3 was concatenated to be 205563 in a new column VesString, and a Vessel Code 205566 with a String#17 and a Pot# 5 was concatenated to be 20556175 in a new column VesStringPot.
- ii.) Raised the Catch in each record by the Sample Rate.
- iii.) Subset the data by large mesh king crab pot [Mesh ID not equal to 2 (i.e., small mesh pot)], legal size (> 135 mm CL), and EAG (EAGWAG=1). The female (Sex=2) and unclassified catch without any male crab (Sex=1) in a crab pot was set to 0 to account for the possibility of zero catch for expected male CPUE determination.
- iv.) Further subset the data by 5% to 95%, trimmed Soak time, and 1% to 99% trimmed Depth. This is to exclude catches from any unusual pot operations.
- v.) Summed up the catch across sizes for each Pot# and labelled it as SumCatch. Thus, each Pot# has a single catch number.

The sampling design (sampling crab from a pot within a string within a vessel) begged for application of a mixed effects model to analyze data, which was recommended by the CPT. However, we explored different model structures before finalizing on a model: a fixed effect model and two versions of a random effects model. The dispersion parameter value for the negative binomial error model and the degrees of freedom for cubic splines for soak time and depth were borrowed from the observer final GLM model estimates for EAG for the post rationalization period, 2005–2020.

Results

1. Fixed effect model:

Sum Catch = Y, family= negative binomial (θ =2.32)

The maximum set of model terms offered to the stepwise selection procedure was:

Sum Catch= Y+ns(Soak,df=3)+VesselStringPot+Captain+Block+ns(Depth, df=10), family= negative binomial (θ =2.32).

Final model: Sum Catch= Y + VesselStringPot + ns(Depth, df=10) + Block + ns(Soak, df=3) (C.1) $R^2 = 0.6088$ (Soak forced in).

 Random intercept model (model 1):
 Sum Catch = Y + ns(Depth, df=10) +ns(Soak, df=3) + (1|Vessel/VesStringPot)+(1|Block/VesselString) family= negative binomial (θ=2.32). (C.2)

We selected relevant fixed effect components from the final fixed effect model for the random intercept models 1 and 2. We used the "Ime4" library in R (R Core Team, 2020) with the "glmer()" function for model fitting. The glmer() function allows use of any type of error model to fit the data. The random intercept model 1 resulted in a singular fit (i.e., Vessel and VesStringPot:Vessel group variances were (very close to) zero):

Table C.1. Random intercept model 1 output.

Groups	Name	Variance	Std.Dev.	
VesStringPot:Vessel	(Intercept)	0.00000	0.00000	
VesString:Block	(Intercept)	0.35685	0.59737	
Block	(Intercept)	0.00059	0.02439	
Vessel	(Intercept)	0.00000	0.00000	

3. Therefore, we used the following simpler form of the random intercept model (model 2):

Sum Catch = Y + ns(Depth, df=10) + ns(Soak, df=3) + (1|Block/VesselString) (C.3) family= negative binomial (θ =2.32).

The random intercept model 2 converged with the following output:

Table C.2. Random intercept model 2 parameter estimates.

Random Effects:					
Groups	Name	Variance	Std.Dev.		
VesString:Block	(Intercept)	0.3569	0.5974		
Block	(Intercept)	0.0006	0.0244		
Fixed Effects:					
	Estimate	Std. Error	z_value	Pr(z)	
Intercept	3.0426	0.2776	10.959	0.0000	
Year2016	-0.2952	0.1005	-2.937	0.0033	
Year2017	-0.0621	0.1107	-0.561	0.5748	

Year2018	0.0963	0.1060	0.909	0.3634
Year2019	-0.3591	0.1052	-3.415	0.0006
ns(Depth, DF=10)1	0.6944	0.2399	2.895	0.0038
ns(Depth, DF=10)2	0.3130	0.3152	0.993	0.3206
ns(Depth, DF=10)3	0.0967	0.2740	0.353	0.7241
ns(Depth, DF=10)4	0.4526	0.3268	1.385	0.1661
ns(Depth, DF=10)5	0.0541	0.3188	0.170	0.8653
ns(Depth, DF=10)6	0.0146	0.3219	0.045	0.9639
ns(Depth, DF=10)7	0.7676	0.3270	2.348	0.0189
ns(Depth, DF=10)8	-0.0894	0.2574	-0.347	0.7285
ns(Depth, DF=10)9	0.3136	0.6123	0.512	0.6085
ns(Depth, DF=10)10	0.9769	0.2983	3.275	0.0011
ns(Soak, DF=3)1	0.2857	0.1638	1.744	0.0811
ns(Soak, DF=3)2	0.3628	0.4337	0.836	0.4029
ns(Soak, DF=3)3	0.7725	0.2448	3.156	0.0016

Inadequate time series (2015–2019) with fewer random effect levels (only three levels for Vessel and, somewhat better, four levels for Block) prevented us from exploring expanded model structures, such as a random intercept with a random slope model. Categorical variable levels above 5 is recommended to be ideal for determining variances of the distribution of random effect factors (Gelman and Hill 2007). Comparison of the random intercept model 2 (C.3) with that of the fixed effects model (C.1) by the Hausman's (1978) model selection test resulted in rejecting the null hypothesis that random effect model is consistent with the data (Chi Square = 1124.4, df = 18, p < $2.2e^{-16}$). However, because of limiting factors discussed above that could spoil any statistical test, we based our selection of random effects model 2 on the sampling design (i.e., multi-level sampling) implemented in data collection.

There is a plan to continue the cooperative survey in 2021/22, which will increase the time series of data to 6 years. Note that we do not have a flexibility to increase the number of Vessel levels from three but do have flexibility to increase the number of Block levels from four. Therefore, we intend to increase the number of Block levels by defining smaller areas in EAG for the next round of analysis.

Diagnostic test

The QQ plot for the fit assured that model 2 assumptions were correct (Figure C.4).

Random Effects Model 2 Fit, Cooperative Survey 2015-2019

Figure C.4. Studentized residual plot for the mixed random effects model fit using the 2015–2019 EAG data.

Comparison of standardized CPUE from cooperative survey data (2015–19) for EAG and the corresponding years' observer CPUE indices indicated a similar pattern except for 2019 (Figure C.5).

Figure C.5. Comparison of cooperative survey random effects model 2 CPUE indices (green) and observer non interaction factor model CPUE indices (red, 19.1) for EAG. The confidence limits are determined with ± 2 SE. Model estimated additional standard error was added to SE.

We standardized the yearly mean of predicted survey CPUEs for 2015–2019 by the geometric mean to obtain the CPUE indices for input to the assessment model (Table C.3).

Table C.3. The cooperative survey predicted legal male standardized (by geometric mean) CPUE indices by the mixed random effects model 2, standard errors (SE), and lower- and upper- 95% confidence limits with added model estimated additional standard error for EAG, 2015–2019 data.

	Predicted CPUE	Lower	Upper	Sample	
Year	index	SE	Limit	Limit	size
2015	1.11164	0.02666	0.60593	2.03943	335
2016	0.94664	0.02656	0.51610	1.73636	304
2017	1.10698	0.04148	0.58576	2.09200	206
2018	1.17588	0.03565	0.62952	2.19642	199
2019	0.73004	0.03749	0.38940	1.36867	289

We added a likelihood function with the 2015–2019 survey indices using Equations A.12 and A.13 to the likelihoods of observer indices (1995–2014) and fishery indices (1985–1998) and formulated a new model 21.1d. We maintained the same post-rationalization fishery catchability, total and retained selectivity for fitting survey indices. The reference points estimates were like those of 21.1a but a little lower.

EAG (Tier 3):

Biomass, total OFL, and ABC for the next fishing season in millions of pounds. Current MMB = MMB on 15 Feb. 2022

			Current	MMB/		Recruitment Years		OFL	ABC	ABC
Model	Tier	MMB35%	MMB	MMB 35%	F_{OFL}	to define <i>MMB</i> _{35%}	F35%		(P*=0.49)	(0.75*OFL)
EAG21.1d	3a	14.686	17.823	1.21	0.62	1987-2017	0.62	5.822	5.791	4.367

Biomass in 1000 t; total OFL and ABC for the next fishing season in t.

			C (D V V				
			Current	MMB/		Recruitment Years			ABC	ABC
Model	Tier	MMB35%	MMB	MMB35%	F_{OFL}	to Define MMB _{35%}	F35%	OFL	(P*=0.49)	(0.75*OFL)
EAG21.1d	3a	6661.73	8084.57	1.21	0.62	1987–2017	0.62	2,641.064	2,626.844	1,980.798

Figure C.6 provides the long-term trends in MMB by model 21.1d with the state quo knife-edge maturity size of 111 mm CL.

Figure C.6. Comparison of trends in golden king crab mature male biomass between models 21.1a and 21.1d for EAG, 1961–2021. Year 2021 refers to 2020/21 fishing season.
Appendix D: Male Maturity

Introduction

Sexual maturity is associated with alterations in both external morphology and internal physiology, on which bases different types of maturity can be defined: physiological, morphometric, and functional maturity. Although functional maturity is the true way of determining maturity, it requires elaborate lab or field experiments. Hence, crab researchers often adapt an indirect detection technique via morphometric measurement for maturity determination. Chelae allometry has been used to determine morphometric male size-at-maturity among several king crab (*Lithodidae*) stocks. Male golden king crab provides a better discrimination of chelae height against size at onset of maturity than other king crab stocks (Somerton and Otto 1986). Table D.1 lists the literature reported estimates of size-at-maturity of male golden king crab (*Lithodes aequispins*) stocks in Alaska. Breakpoint analysis has been used to estimate maturity in majority of cases.

Species	Sex	Size-at- Maturity (mm CL)	Method	Area	Sources
Lithodes aequispins	Male	114 (11.4)	Breakpoint analysis on log(chela height) vs. log(carapace length)	British Columbia, Canada	Jewett <i>et al</i> . 1985
		92 (2.4)	Breakpoint analysis on	St. Matthew Is.	Somerton and Otto
		107 (4.6) 130 (4.0)	log(chela height) vs. log(carapace length)	District Pribilof Is District Eastern Aleutian Is	1986
		117.9 to 158.0	Breakpoint analysis on log(chela height) vs. log(carapace length)	Various water inlets in southeast Alaska	Olson 2016
		108.6 (2.6)	Breakpoint analysis on	Bowers Ridge	Otto and
		120.8 (2.9)	log(chela height) vs. log(carapace length)	Seguam Pass	Cummiskey 1985
		110	Minimum size of successful mating (lab observation)	Prince William Sound	Paul and Paul 2001

Table D.1. Review of estimates of male size-at-maturity of golden (*Lithodes aequispins*) king crabs by regions in Alaska. Numbers in parentheses are standard errors (SE).

Method

We used the carapace length (mm CL) and chela height (up to one-tenth of a mm CH) data collected by the observer, retained catch, and cooperative surveys sampling during the 2018/19, 2019/20, and 2020/21 fishing seasons for male maturity investigation. We determined bend points and corresponding two segmented lines for different groups of data outside the assessment model using the 'segmented regression' package available in R version 3.6.3 (R Core Team 2020). This method has been used for golden king crab knife-edge maturity determination by Olson *et al.* (2018). They fitted chela height vs. carapace length whereas we fitted the log ratio of chela height

over carapace length vs. carapace length to determine the bend point. Log ratio provided better discrimination of our data points.

First, we fitted a linear regression model to the data pair using the R package as follows: $ln(CH/CL) = \beta_0 + \beta_1 CL$ (D.1) where β_0 and β_1 are regression parameters

The procedure of 'segmented regression' uses maximum likelihood to fit a somewhat different parameterization of the linear model. It can be approximated as $ln(CH/CL) = \beta_0 + \beta_1 CL + \beta_2 [CL - c] + \gamma I [CL > c] \qquad (D.2)$ where β_1 is a regression parameter and c is the break point and $\chi I [CL > c]$ is a dummy variable.

where β_2 is a regression parameter and c is the break-point, and $\gamma I[CL > c]$ is a dummy variable. When CL < c, the model reduces to,

$$ln(CH/CL) = \beta_0 + \beta_1 CL + \beta_2 [CL - c]$$
(D.3)

The γ term is a measure of the distance between the end of the first segment and the beginning of the next. The model converges when γ is minimized, thus this method constrains the segments to be (nearly) continuous.

We further refined the estimates by bootstrapping each data set (ln (CH/CL), CL pairs) 1000 times and applying 'segmented regression' to each bootstrapped sample. We used the bootstrap median bend point, intercept, and slope estimates to establish the two segmented lines (i.e., left hand line 1 was for immature and right-hand line 2 was for mature crab).

Data

We used the following data sets (Table D.2) for current maturity analysis. We restricted the size range to 85.0 mm CL to 142.0 mm CL (a plausible morphometric male maturity size range for golden king crab in the Bering Sea and Aleutian Islands (i.e., 92.0 mm CL – 3SE to 130 mm CL+3SE, Table D.1) for 'segmented regression' fit.

Table D.2. Golden king crab male carapace length and chela height data collected during 2018/19 - 2020/21 fishing seasons in the Aleutian Islands.

Measurement type	Source and season of	Group		
	data collection			
		Aleutian Islands	EAG	WAG
		(AI) 2018/19–	2018/19-	2018/19-
		2020/21	2019/20	2020/21
	Co-operative survey (2018/19, 2019/20)			
	Observer sampling			
	(2018/19, 2019/20)			
	Retained catch			
	sampling (2018/19,			
	2019/20)			
	Special sampling			
	WAG (2020/21)			
Carapace length		10760	5433	5327
and chela height				
records (all sizes)				
Carapace length		4025	1901	2124
and chela height				
records (85 mm				
CL-142 mm CL)				

Results

The median breakpoint ranged from 117.800 to 119.984 mm CL for the three 2018-2020 data sets (AI, EAG, and WAG). These values are one to two 5 mm CL bins higher than the WAG 1984 and EAG 1991 estimates considered previously (Table D.3). The focus of the current analysis is to establish separate maturity curves for AI, EAG, and WAG for MMB determination. Table D.4 lists the logistic maturity curve parameter estimates for AI, EAG, and WAG. The estimates for the three data sets are highly significant. We considered two options for MMB estimation: ≥ 111 mm CL (status quo knife edge maturity) and ≥ 116 mm CL applicable both regions.

Figures D.1, D.2, and D.3 show the fitted segmented regression lines overlayed on observed log (CH/CL) vs CL data for AI, EAG, and WAG, respectively.

Table D.3. Segment regression fit to 2018–2020 log (CH/CL) vs. CL data pairs and median estimates from 1000 bootstrap samples including breakpoints for EAG, WAG, and combined (AI) data sets. The data sets were truncated to 85.0–142.0 mm CL range for segmented regression fits. We also provide re-estimated parameters for the 1991 EAG and 1984 WAG data with the same size restriction for comparison. Intercept of line 2 was determined for each data set by solving the two lines at the bend point.

Estimate	SE	t-value	Pr(> t)	Breakpoint	SE	Remarks
				(mm CL)		

AI 2018– 20:							Fit to original data, 85.0– 142.0 mm CL range
Intercept						1.760	
line l	-1.76273	0.04974	-35.43610	0.00000	118.900		
Slope to	0.00185	0.00040	3.90320	0.00007			
add	0.00465	0.00053	8.70356	0.00000			
Slope line 2	0.00648						
-							
Intercept	-1.78187	0.00185			119.984	0.104	Bootstrap median estimates
line l	0.00200	0.00002					
Slope line 2	0.00200	0.00002					
Stope Inte 2	0.00000	0.00002					
EAG							Fit to original data, 85.0–
2018-20:							142.0 mm CL range
Intercept					112.574	4.125	
line 1	-1.74671	0.15258	-11.44750	0.00000			
Slope line I	0.00146	0.00149	0.98016	0.32713			
add	0.00515	0.00154	3 35423	0.00081			
Slope line 2	0.00661	0.00101	5.55 125	0.00001			
1							
Intercept					117.800	0.317	Bootstrap median estimates
line l	-1.81430	0.01115					
Slope line 1	0.00216	0.00012					
Slope line 2	0.00098	0.00230					
WAG							Fit to original data, 85.0–
2018-20:							142.0 mm CL range
Intercept					119.330	2.115	
line 1	-1.73808	0.05330	-32.60763	0.00000			
Slope line I	0.00164	0.00049	3.33148	0.00088			
add	0 00440	0.00061	7 19722	0 00000			
Slope line 2	0.00604	0.00001	1.19722	0.00000			
I							
Intercept					119.603	0.124	Bootstrap median estimates
line l	-1.74555	0.00188					
Slope line 1	0.001/1	0.00002					
Slope lille 2	0.00020	0.00005					
EAG 1991:							Fit to 85.0-142.0 mm CL
							range
Intercept	1 (01()	0.00000	5 0 0 401 1	0.00000	107.000	1.915	Estimates from 2457
line l	-1.60166	0.02286	-70.04911	0.00000			measurements
Slope to	0.000/0	0.00020	2./1400	0.00008			
add	0.00424	0.00029	14.45235	0.00000			
Slope line 2	0.00494						
WAG							
WAG 1984							Fit to 85.0–142.0 mm CL
Intercent					105.824	4,650	Estimates from 341
line 1	-1.67570	0.09222	-18.17129	0.00000			measurements

Slope line 1	0.00126	0.00097	1.29613	0.19582	
Slope to					
add	0.00332	0.00106	3.12254	0.00195	
Slope line 2	0.00458				

Figures D.1, D.2 and D.3 provide the segment regression lines fitted to the log (CH/CL) vs. CL data pairs for 2018–2020 in AI, EAG, and WAG, respectively.

Figure D.1. Segmented linear regression fit to log(CH/CL) vs. CL data of male golden king crab for 2018–2020 in AI.

Figure D.2. Segmented linear regression fit to log(CH/CL) vs. CL data of male golden king crab for 2018–2020 in EAG.

Figure D.3. Segmented linear regression fit to log(CH/CL) vs. CL data of male golden king crab for 2018–2020 in WAG.

Implication on mature male biomass estimation:

Figure D.4 provides the long-term trends in MMB by models 21.1a, 21.1b, and 21.1c with two maturity assumptions: status quo knifeedge maturity size of 111 mm CL (...1a, ...1b, ...1c) and higher maturity size of 116 mm CL (...1a1, ...1b1, ...1c1. Changes from status quo maturity assumption generally result in lower MMB values.

Figure D.7. Trends in golden king crab mature male biomass for models 21.1a, 21.1a1, 21.1b1, and 21.1c1 fits to EAG (left) and WAG (right) data, 1961–2021. Model 21.1a estimate has two standard error confidence limits. Year 2020 refers to 2019/20 fishing season.

Appendix E: Jittering

Jittering of model 19.1 parameter estimates

We followed the Stock Synthesis approach to do 100 jitter runs of model 19.1 parameter estimates to use as initial parameter values (as .PIN file in ADMB) to assess model stability and to determine whether a global, as opposed to local, minima has been reached by the search algorithm:

Following CPT suggestion, we increased the jittering to 50% from previously used 30%. A *Jitter* factor of 0.5 was multiplied by a random normal deviation rdev=N(0,1) to create a transformed parameter value based upon the predefined parameter:

$$temp = 0.5 * rdev * Jitterfactor * \ln(\frac{P_{\text{max}} - P_{\text{min}} + 0.0000002}{P_{val} - P_{\text{min}} + 0.0000001} - 1),$$
(E.1)

with the final jittered initial parameter value back transformed as:

$$P_{new} = P_{\min} + \frac{P_{\max} - P_{\min}}{1.0 + \exp(-2.0 \ temp)},$$
(E.2)

where P_{max} and P_{min} are upper and lower bounds of parameter search space and P_{val} is the estimated parameter value before the jittering.

The jitter results are based on the complete fishery data and are summarized for the selected model 21.1a in Tables E.1 and E.2 for EAG and WAG, respectively. All runs for EAG converged to the highest log likelihood values except for nonconvergent runs. We concluded from jitter results that optimization of 21.1a model achieved global minima for EAG. On the other hand, some runs for WAG converged to the highest likelihood, but few reference point estimates differed for the same minima, which was concerning at the time of assessment in May 2021. After SSC pointed out this discrepancy in June 2021, we reevaluated jitter runs for WAG with total size composition and biomass likelihoods computation restricted to a shorter period, 1995/96- 2020/21. This removed the discrepancy and jitter results for WAG are provided in this report for this restriction. Because of time limitation we did not choose the best model from this rerun for OFL and ABC determination. We will follow this procedure to choose an optimum model in the next assessment cycle.

Table E.1. Results from 100 jitter runs for scenario 21.1a for EAG. Jitter run 0 corresponds to the original optimized estimates. NA: model did not converge.

Jitter Run	Objective Function	Maximum Gradient	B35% (t)	OFL (t)	Current MMB (t)
0	-93.905830	0.001469	6,762	2,945	8,761
1	-93.905830	0.000097	6,762	2,945	8,761
2	-93.905830	0.000104	6,762	2,945	8,761
3	-93.905830	0.000481	6,762	2,945	8,761
4	-93.905830	0.000309	6,762	2,945	8,761

5	-93.905830	0.000103	6,762	2,945	8,761
6	-93.905830	0.000017	6,762	2,945	8,761
7	-93.905830	0.000149	6,762	2,945	8,761
8	-93.905830	0.000067	6,762	2,945	8,761
9	-93.905830	0.000041	6,762	2,945	8,761
10	-93.905830	0.000110	6,762	2,945	8,761
11	-93.905830	0.000241	6,762	2,945	8,761
12	-93.905830	0.000004	6,762	2,945	8,761
13	-93.905830	0.000191	6,762	2,945	8,761
14	-93.905830	0.000398	6,762	2,945	8,761
15	-93.905830	0.000193	6,762	2,945	8,761
16	-93.905830	0.000191	6,762	2,945	8,761
17	-93.905830	0.000433	6,762	2,945	8,761
18	-85.913090	0.000686	7,173	3,165	9,272
19	-93.905830	0.000003	6,762	2,945	8,761
20	-93.905830	0.000262	6,762	2,945	8,761
21	-93.905830	0.000117	6,762	2,945	8,761
22	-93.905830	0.000051	6,762	2,945	8,761
23	-93.905830	0.000028	6,762	2,945	8,761
24	-93.905830	0.000105	6,762	2,945	8,761
25	-93.905830	0.000319	6,762	2,945	8,761
26	-93.905830	0.000142	6,762	2,945	8,761
27	-93.905830	0.000094	6,762	2,945	8,761
28	-93.905830	0.000101	6,762	2,945	8,761
29	-93.905830	0.000739	6,762	2,945	8,761
30	-93.905830	0.000419	6,762	2,945	8,761
31	-93.905830	0.000111	6,762	2,945	8,761
32	-93.905830	0.000076	6,762	2,945	8,761
33	-93.905830	0.000334	6,762	2,945	8,761
34	-93.905830	0.000223	6,762	2,945	8,761
35	-93.905830	0.000056	6,762	2,945	8,761
36	-93.905830	0.000076	6,762	2,945	8,761
37	-93.905830	0.000003	6,762	2,945	8,761
38	-93.905830	0.000090	6,762	2,945	8,761
39	-93.905830	0.000180	6,762	2,945	8,761
40	-93.905830	0.000072	6,762	2,945	8,761
41	-93.905830	0.000038	6,762	2,945	8,761
NA	NA	NA	NA	NA	NA
43	-93.905830	0.000136	6,762	2,945	8,761
44	-93.905830	0.000106	6,762	2,945	8,761
45	-93.905830	0.000186	6,762	2,945	8,761
46	-93.905830	0.000244	6,762	2,945	8,761
47	-93.905830	0.000093	6,762	2,945	8,761
48	-93.905830	0.000196	6,762	2,945	8,761

49	-93.905830	0.000230	6,762	2,945	8,761
50	-93.905830	0.000396	6,762	2,945	8,761
51	-93.905830	0.000252	6,762	2,945	8,761
52	-93.905830	0.000060	6,762	2,945	8,761
53	-93.905830	0.000239	6,762	2,945	8,761
54	-93.905830	0.000133	6,762	2,945	8,761
55	-93.905830	0.000033	6,762	2,945	8,761
56	-93.905830	0.000057	6,762	2,945	8,761
57	-93.905830	0.000216	6,762	2,945	8,761
58	-93.905830	0.000613	6,762	2,945	8,761
59	-93.905830	0.000407	6,762	2,945	8,761
60	-93.905830	0.000644	6,762	2,945	8,761
61	-93.905830	0.000264	6,762	2,945	8,761
62	-93.905830	0.000130	6,762	2,945	8,761
63	-93.905830	0.000001	6,762	2,945	8,761
64	-93.905830	0.000016	6,762	2,945	8,761
65	-93.905830	0.000320	6,762	2,945	8,761
66	-93.905830	0.000136	6,762	2,945	8,761
67	-93.905830	0.000005	6,762	2,945	8,761
68	-93.905830	0.000122	6,762	2,945	8,761
69	-93.905830	0.000104	6,762	2,945	8,761
70	-93.905830	0.000014	6,762	2,945	8,761
71	-93.905830	0.000295	6,762	2,945	8,761
72	-93.905830	0.000131	6,762	2,945	8,761
73	-93.905830	0.000053	6,762	2,945	8,761
74	-93.905830	0.000087	6,762	2,945	8,761
75	-93.905830	0.000394	6,762	2,945	8,761
76	-93.905830	0.000061	6,762	2,945	8,761
77	-93.905830	0.000068	6,762	2,945	8,761
78	-93.905830	0.000147	6,762	2,945	8,761
79	-93.905830	0.000110	6,762	2,945	8,761
80	-93.905830	0.000028	6,762	2,945	8,761
81	-93.905830	0.000163	6,762	2,945	8,761
82	-93.905830	0.000212	6,762	2,945	8,761
83	-93.905830	0.000025	6,762	2,945	8,761
84	-93.905830	0.000085	6,762	2,945	8,761
85	-93.905830	0.000076	6,762	2,945	8,761
86	-93.905830	0.000479	6,762	2,945	8,761
87	-93.905830	0.000104	6,762	2,945	8,761
88	-93.905830	0.000135	6,762	2,945	8,761
89	-93.905830	0.000059	6,762	2,945	8,761
90	-93.905830	0.000480	6,762	2,945	8,761
91	-93.905830	0.000265	6,762	2,945	8,761
92	-93.905830	0.000136	6,762	2,945	8,761

93	-93.905830	0.000044	6,762	2,945	8,761
94	-93.905830	0.000231	6,762	2,945	8,761
95	-93.905830	0.000099	6,762	2,945	8,761
96	-93.905830	0.000115	6,762	2,945	8,761
97	-93.905830	0.000224	6,762	2,945	8,761
98	-93.905830	0.000451	6,762	2,945	8,761
99	-93.905830	0.000071	6,762	2,945	8,761
 100	-93.905830	0.000055	6,762	2,945	8,761

Table E.2 Results from 100 jitter runs for scenario 21.1a for WAG. Jitter run 0 corresponds to the original optimized estimates. Objective function minimum value was achieved for run# 14, 19, 50, 69, and 79 (yellow highlighted) without inconsistent reference point estimates. NA: model did not converge.

Jitter	Objective	Maximum			Current
Run	Function	Gradient	B35% (t)	OFL (t)	MMB (t)
0	9.650784	0.001604	5,253	1,631	5,639
1	9.650784	0.000249	5,253	1,631	5,639
2	9.650784	0.000079	5,253	1,631	5,639
3	9.329994	0.000040	5,709	1,656	5,813
4	9.650784	0.000058	5,253	1,631	5,639
NA	NA	NA	NA	NA	NA
6	9.650784	0.000160	5,253	1,631	5,639
7	9.650784	0.000026	5,253	1,631	5,639
8	9.650784	0.000177	5,253	1,631	5,639
9	9.650784	0.000092	5,253	1,631	5,639
NA	NA	NA	NA	NA	NA
11	9.329994	0.000073	5,709	1,656	5,813
12	9.650784	0.000440	5,253	1,631	5,639
13	9.650784	0.000079	5,253	1,631	5,639
14	<mark>5.533963</mark>	<mark>0.000067</mark>	<mark>5,784</mark>	<mark>1,705</mark>	<mark>5,904</mark>
15	9.650784	0.000006	5,253	1,631	5,639
16	9.650784	0.000042	5,253	1,631	5,639
17	9.650784	0.000338	5,253	1,631	5,639
18	9.650784	0.000168	5,253	1,631	5,639
19	<mark>5.533963</mark>	0.000053	<mark>5,784</mark>	<mark>1,705</mark>	<mark>5,904</mark>
20	9.650784	0.000160	5,253	1,631	5,639
21	9.650784	0.000246	5,253	1,631	5,639
22	9.650784	0.000124	5,253	1,631	5,639
23	9.650784	0.000231	5,253	1,631	5,639
24	9.650784	0.000097	5,253	1,631	5,639
25	9.650784	0.000047	5,253	1,631	5,639
26	9.650784	0.000212	5,253	1,631	5,639
27	9.650784	0.000097	5,253	1,631	5,639

28	10.213460	0.000027	5,759	1,722	5,911
29	9.650784	0.000339	5,253	1,631	5,639
30	9.650784	0.000034	5,253	1,631	5,639
31	9.650784	0.000549	5,253	1,631	5,639
32	9.650784	0.000265	5,253	1,631	5,639
33	9.650784	0.000129	5,253	1,631	5,639
34	9.650784	0.000178	5,253	1,631	5,639
35	9.650784	0.000196	5,253	1,631	5,639
36	9.650784	0.000077	5,253	1,631	5,639
37	9.329994	0.000026	5,709	1,656	5,813
38	9.650784	0.000151	5,253	1,631	5,639
39	9.329994	0.000342	5,709	1,656	5,813
40	9.650784	0.000148	5,253	1,631	5,639
41	9.650784	0.000026	5,253	1,631	5,639
42	9.650784	0.000113	5,253	1,631	5,639
43	9.650784	0.000311	5,253	1,631	5,639
44	9.650784	0.000050	5,253	1,631	5,639
45	9.650784	0.000250	5,253	1,631	5,639
46	9.650784	0.000188	5,253	1,631	5,639
47	9.650784	0.000036	5,253	1,631	5,639
48	9.650784	0.000068	5,253	1,631	5,639
49	9.650784	0.000089	5,253	1,631	5,639
50	<mark>5.533963</mark>	0.000219	<mark>5,784</mark>	<mark>1,705</mark>	<mark>5,904</mark>
51	9.650784	0.000054	5,253	1,631	5,639
51	,				
52	10.213460	0.000159	5,759	1,722	5,911
52 53	10.213460 9.650784	0.000159 0.000101	5,759 5,253	1,722 1,631	5,911 5,639
52 53 54	10.213460 9.650784 9.650784	0.000159 0.000101 0.000005	5,759 5,253 5,253	1,722 1,631 1,631	5,911 5,639 5,639
51 52 53 54 55	10.213460 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050	5,759 5,253 5,253 5,253	1,722 1,631 1,631 1,631	5,911 5,639 5,639 5,639
52 53 54 55 56	10.213460 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056	5,759 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010	5,759 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,722 1,722	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.0000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045 0.000040	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,722 1,722 1,722	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045 0.000040 0.000230	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,759 5,759 5,253 5,253	1,722 $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,722$ $1,722$ $1,722$ $1,631$ $1,631$	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.0000236 0.000099 0.000084 0.000041 0.000045 0.000040 0.000230 0.000159	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,759 5,759 5,759 5,253 5,253 5,253	1,722 $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,722$ $1,722$ $1,722$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000050 0.000056 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045 0.000045 0.000040 0.000230 0.000159 0.000267	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,759 5,759 5,759 5,759 5,253 5,253 5,253 5,253	1,722 $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,722$ $1,722$ $1,722$ $1,631$	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045 0.000045 0.000045 0.0000230 0.000159 0.000267 0.000108	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,759 5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253	1,722 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,631 1,722 1,722 1,631 1,631 1,631 1,631 1,631 1,631	5,911 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639 5,639
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 10.213460 10.213460 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784 9.650784	0.000159 0.000101 0.000005 0.000050 0.000056 0.000010 0.000320 0.000060 0.000236 0.000099 0.000084 0.000041 0.000045 0.000045 0.000045 0.0000159 0.000267 0.000108 0.000522	5,759 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,253 5,759 5,759 5,759 5,759 5,253 5,253 5,253 5,253 5,253 5,253	1,722 $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,631$ $1,722$ $1,722$ $1,631$	5,911 5,639 5,904 5,639

72	9.650784	0.000121	5,253	1,631	5,639
73	9.650784	0.000014	5,253	1,631	5,639
74	9.650784	0.000636	5,253	1,631	5,639
75	9.650784	0.000038	5,253	1,631	5,639
76	9.650784	0.000059	5,253	1,631	5,639
77	9.650784	0.000201	5,253	1,631	5,639
78	9.650784	0.000219	5,253	1,631	5,639
79	<mark>5.533963</mark>	<mark>0.000293</mark>	<mark>5,784</mark>	<mark>1,705</mark>	<mark>5,904</mark>
80	9.650784	0.000132	5,253	1,631	5,639
81	9.650784	0.000123	5,253	1,631	5,639
NA	NA	NA	NA	NA	NA
83	9.650784	0.000103	5,253	1,631	5,639
84	9.650784	0.000422	5,253	1,631	5,639
85	9.650784	0.000230	5,253	1,631	5,639
86	9.650784	0.000125	5,253	1,631	5,639
87	9.650784	0.000630	5,253	1,631	5,639
88	9.650784	0.000032	5,253	1,631	5,639
NA	NA	NA	NA	NA	NA
90	9.650784	0.000162	5,253	1,631	5,639
91	9.650784	0.000144	5,253	1,631	5,639
92	9.650784	0.000136	5,253	1,631	5,639
93	9.650784	0.000139	5,253	1,631	5,639
94	9.650784	0.000023	5,253	1,631	5,639
95	9.650784	0.000066	5,253	1,631	5,639
96	9.650784	0.000112	5,253	1,631	5,639
97	9.650784	0.000122	5,253	1,631	5,639
98	9.650784	0.000043	5,253	1,631	5,639
NA	NA	NA	NA	NA	NA
100	9.329994	0.000218	5.709	1.656	5.813

Appendix F: Progress in Gmacs

Introduction

Implementation of Aleutian Islands golden king crab stock assessment in gmacs started in 2020 and the effort is continuing.

Method

As a first step, we tried to compare EAG19.1 assessment results with that of gmacs. Estimated parameters from a modified EAG19.1 model (known as modifiedEAG19.1) that was reparametrized for gmacs computational formulas were input to gmacs ctl file. Parallel EAG19.1 data and projection files were also created for gmacs runs (gmacsEAG19.1CatchNo.ctl, gmacsEAG19.1CatchNo.dat, and gmacsEAG19.1CatchNo.prj). We compared time series of abundance composition (N- matrix), retained catch composition, and CPUE indices among originalEAG19.1, modifiedEAG19.1, and gmacsEAG19.1 for two options: (1) fixed parameters of modifiedEAG19.1 for gmacs run (run#10) and (2) free parameters of modifiedEAG19.1 for gmacs run (run#9).

Results

The gmacs ctl, dat, and prj files for EAG19.1 are provided in Tables F.1, F.2, and F.3, respectively. The abundance and retained catch compositions compare well among the three versions of EAG19.1 (originalEAG19.1, modifiedEAG19.1, and gmacsEAG19.1) in Figures F1, and F.2). The CPUE trends also compare well among the three versions (Figure F.3).

We found some differences in likelihood and reference points estimates between the original EAG19.1 model and its gmacs version. We will address those discrepancies before going into gmacs full implementation.

Table F1. gmacsEAG19.1.ctl file.

#	EAG19_1							
#								
#	Controls	for	leading	parameter	vector	theta		
#								
#	ntheta							
	9							
#								
#	ival	lb	ub	phz	prior	pl	p2	parameter
#								
	0.21	0.01	1	-3	2	0.18	0.04	М
	7.704441838	-10	20	-1	0	-10	20	R0
	12	-10	20	-3	0	-10	20	Rini
	8	-10	20	-1	0	-10	20	Rbar
	110	103	165	-2	1	72.5	7.25	R expected
	0.375940107	0.001	5.65	-3	0	0.1	5	R scale
	-0.05129329	-10	0.75	-1	0	-10	0.75	SigmaR
	0.73	0.2	1	-2	3	3	2	steepness
	0.001	0	1	-3	3	1.01	1.01	autocorrelation
#								
#	weight-at-length							
1								
#a,	in	kg						
	1.10E-07							
#b								
	3.335923							
#	Male	weight-at-length						
#								
#	Proportion	mature	by	sex,	males			
	00111111111111	1111						
#	Proportion	legal	by	sex,	males			

00000011111111111

#

##		GROWTH	PARAM	CONTROLS	##					
##		Two	lines	for	each	parameter				
#										
#		option	8	is	normal	distributed				
	8									
#		growth increment		model						
	1									
#		molt probability	function							
	2									
#		maximum	size-class							
#		Maximum	size-class		recruitment					
	5									
##		number	of	size-increment	periods					
	I	V ()	,		1					
##		Year(s)	size-increment	period	changes					
##		ayaab aa	of	malt	maniada					
##	1	number	01	mon	periods					
##	1	Vear(s)	molt	period	changes					
пп		rear(s)	mon	period	changes					
##		Beta	narameters							
	1	Dem	parameters							
#			Growth	parameters						
#										
#		ival	lb	ub	phz	prior	p1	p2		parameter
#					-	•	•	*		-
		22.456186	10	50	-:	3	0	0	20	alpha,
		0.069134986	-0.4	20	-:	3	0	0	10	beta,

	3.65852444	4	0.01	5		-3	0	0	3	growth	scale
	141.126413)	65	165		-2	0	0	999	moult	mu
	0.0889812	5	-0.1	2		-2	0	0	2	moult	cv
#											
#	The	custom		growth-increment		matrix					
#	custom	molt		probability	matrix						
#											
##	SELECTIVITY	CONTROL	.S								
#					_						
##	ivector	for		number	of	year	blocks	or		nodes	
##	Gear-1	Gear-2									
##	PotFishery	Trawl		Byc							
	ź	2	1	#	selectivity	periods					
)	0	#	male	only	fishery,				
	2	2	5	#	male	selectivity	type				
)	0	#	within	another	gear				
)	0	#	extra						
##	Gear-1	Gear-2									
		1	1	#	retention	periods					
	()	0	#	male	only	fishery,				
	2	2	6	#	male	retention	type				
		1	0	#	male	retention					
)	0	#	extra						
##											
##	Selectivity	P(capture		of	all	sizes)					
#											
##	gear	par		sel	phz	start	end				
#	index	index		par	sex	ival	lb	ub		prior	pl
#											

Gear-1

			1	1		1		0		125.5		105		180	0		100	190	-3	1960	2004
			1	2		2		0		10.35		0.01		20	0		0.1	50	-3	1960	2004
			1	3		1		0		137.1		105		180	0		100	190	-3	2005	2019
			1	4		2		0		6.556		0.01		20	0		0.1	50	-3	2005	2019
#		Gear-2																			
			2	5		1		0		1		0.99		1.02	0		10	200	-3	1960	2019
#																					
##		Retained																			
##		gear	par		sel		phz		start		end										
#		index	index		par		sex		ival		lb		ub		prior	pl		p2	mirror	period	
#		Gear-1																			
		-3	1	6		1		0		136.3		105		180	0		100	190	-3	1960	2019
		-1	1	7		2		0		2.161		1E-04		20	0		0.1	50	-3	1960	2019
#		Gear-2																			
		-2	2	8		1		0		1		0.99		1.01	0		10	200	-3	1960	2019
#		Number	of		asyptotic		paramete	ers													
	1																				
#		Fleet	Sex		Year		ival		lb		ub		phz								
			1	1		1960		1E-06		0		1		-3							
#																					
##		PRIORS	FOR		CATCHA	BILITY															
#																					
##		SURVEYS/INDICES	S ONLY																		
##		observer	and		fishery		CPUE														
##		ival	lb		ub		phz		prior		p1		p2		Analytic?	LAMI	BDA	Emphasis			
		0.000585278	8	1E-07		0.01		1		0		0.1		1	0		1	1			
		0.000483222	2	1E-07		0.01		1		0		0.1		1	0		1	1			
#																					
##		ADDITIONAL	CV		FOR		SURVE	YS/INDIC	CES												

#											
##	ival	lb	ub	phz	prior	pl	p2				
	0.000235	1E-07	0.01	-1	4	0.5	100	Fish cticket	CPUE	additional	var
	0.000189	1E-07	0.01	-1	4	0.5	100	obs	CPUE	additional	var
##											
##PENALTI	IES	FOR	AVERAGE	FISHING	MORTALITY	RATE	FOR	EACH	GEAR		
#											
##	Trap	Trawl									
##	Mean_F	Fema-Offset	STD_PHZ1	STD_PHZ2	PHZ_M	PHZ_F	Lb	Ub	Lb	Ub	Lb Ub
	0.388745475	0	3	15	-1	-1	-12	4	-10	10	-10 10
	0.000109758	0	4	15	-1	-1	-12	4	-10	10	-10 10
##	OPTIONS	FOR	SIZE	COMPOSTION	ΠΑΤΑ	##					
#	ret	tot	SIZE	com ob norv	DAIM						
#	101	101									
	2	2	Туре	of	likelihood						
	0	0	Auto	tail	compression						
	1	1	effective	sample	size	multiplier					
	-4	-4	Phz	for	estimating	effective	sample	size			
	1	2	Composition		aggregator						
	1	1	LAMBDA								
	1	1	Emphasis		Dritchlet						
#											
##	TIME	VARYING	NATURAL	MORTALIIY	RATES						
#											
	0	#	М	type							
##	М	is	relative	(YES=1;	NO=0)						
##	Phase	of	estimation								
3											

##		STDEV		in		m_dev		for		Random		walk		
	0.25													
##		Number		of		nodes		for		cubic		spline		
	1													
##		Year		position		of		the		knots				
	1960													
##		number		of		breakpoints		in		М		by	size	
	0													
#		line		groups		for		breakpoint						
	8							_						
##		Specific		initial		values		for		the		natural	mortality	devs
##		ıval		lb	~ -	ub	-	phz		extra	0			
##			3		0.5		5		4		0			
#														
# ##		OTHER		CONTROLS										
## #		UTHER		CONTROLS	•									
#														
π	1960	#		#start		rec dev								
	2019	#		#last		rec_dev								
	2017		-1	Estimated		rec_dev		nhase						
			-2	Estimated		sex-ratio		nhase						
			0.5	Expected		sex-ratio		phuse						
			-3	Estimated		rec ini		phase						
			1	VERBOSE		_		1						
			0	Initial		conditions								
			1	Lambda										
			0	Stock-Recrui	it-Rela	tionship								
			10	Maximum		·		phase						
			-1											

##	EMPHASIS		FACTORS		(CATCH)							
#ret_male	tot_male		Groundfish									
		4		2		1						
##	EMPHASIS		FACTORS		(Priors)							
##												
#	Log_fdevs		meanF		Mdevs		Rec_devs		Initial_devs		Fst_dif_dev	Mean_sex-Ratio
		10000		0		1		2		0	0	1
##	EOF											

Table F2. gmacs EAG19.1. dat file.

#		EAG19.1									
#		Gmacs		Main		Data	File				
#		GEAR_		INDEX		DESCRIPTION					
#			1	:		Pot	fishery	Retained		catch	
#			2	:		Pot	fishery	total		catch	
#			3	:		Trawl	bycatch				
#			4	:		Observer	CPUE				
#			5	:		Fishery	CPUE				
#		Fisheries:			1	Pot	Fishery,	1	2	Pot	Total
#		Cooperative		Survey:							
#											
	1960	#		start		year)					
	2019	#		terminal		year					
#202	0	#		Projection		year					
	6	#		Number		of	seasons:				
	2	#		Number		of	distinct	data		groups	
	1	#		Number		of	sexes				

	1	#		Number		of		shell		condition	types						
	1	#		Number		of		maturity		types							
	17	#		Number		of		size-class	ses								
	6	#		Season		when		recruitme	ent	occurs							
	6	#		Season		when		molting		and	growth	occur					
	5	#		Season		to		calculate		MMB							
	1	#		Season		for		Ν		output							
#		maximum		size-class													
	17																
#		size_breaks															
	100.5		105.5		110.5		115.5	1	20.5	125.5	130.5	135.5	140.5	145.5	150.5	155.5	160.5
	165.5		170.5		175.5		180.5	1	85.5								
#		Natural		mortality		per		season									
	2																
#		Proportion		of		the		total		natural	mortality						
#			1	Start		biologica	ıl	year		(Jul	1)	instantaneous	N	estimation			
#			2	to		mid		fishing		time							
#			3	instantanous		С		removal									
#			4	to		spawning	g	time									
#			5	instantaneous		byc		removal		and	estimate	MMB					
#			6	Rest		of		the		period	of	non	fishing				
				from		Feb			15	to Iul1-	June	30					
#Ins		Ν		Jul1-MidFish		Inst		С		15Feb	Ins						
	0		0.16667		0		0.463		0	0.3699	#1960						
	0		0.16667		0		0.463		0	0.3699	#1961						
	0		0.16667		0		0.463		0	0.3699	#1962						
	0		0.16667		0		0.463		0	0.3699	#1963						
	0		0.16667		0		0.463		0	0.3699	#1964						
	0		0.16667		0		0.463		0	0.3699	#1965						
	0		0.16667		0		0.463		0	0.3699	#1966						
	0		0.16667		0		0.463		0	0.3699	#1967						
	0		0.16667		0		0.463		0	0.3699	#1968						

0	0.16667	0	0.463	0	0.3699	#1969
0	0.16667	0	0.463	0	0.3699	#1970
0	0.16667	0	0.463	0	0.3699	#1971
0	0.16667	0	0.463	0	0.3699	#1972
0	0.16667	0	0.463	0	0.3699	#1973
0	0.16667	0	0.463	0	0.3699	#1974
0	0.16667	0	0.463	0	0.3699	#1975
0	0.16667	0	0.463	0	0.3699	#1976
0	0.16667	0	0.463	0	0.3699	#1977
0	0.16667	0	0.463	0	0.3699	#1978
0	0.16667	0	0.463	0	0.3699	#1979
0	0.16667	0	0.463	0	0.3699	#1980
0	0.43973	0	0.19	0	0.3699	#1981
0	0.48082	0	0.149	0	0.3699	#1982
0	0.48082	0	0.149	0	0.3699	#1983
0	0.3137	0	0.316	0	0.3699	#1984
0	0.16575	0	0.464	0	0.3699	#1985
0	0.24932	0	0.381	0	0.3699	#1986
0	0.08493	0	0.545	0	0.3699	#1987
0	0.29726	0	0.333	0	0.3699	#1988
0	0.31233	0	0.318	0	0.3699	#1989
0	0.26301	0	0.367	0	0.3699	#1990
0	0.27123	0	0.359	0	0.3699	#1991
0	0.27397	0	0.356	0	0.3699	#1992
0	0.46027	0	0.17	0	0.3699	#1993
0	0.24795	0	0.382	0	0.3699	#1994
0	0.22192	0	0.408	0	0.3699	#1995
0	0.3274	0	0.303	0	0.3699	#1996
0	0.28493	0	0.345	0	0.3699	#1997
0	0.26301	0	0.367	0	0.3699	#1998
0	0.24521	0	0.385	0	0.3699	#1999
0	0.17808	0	0.452	0	0.3699	#2000

0	0.1589		0	0.471	0	0.3699	#2001
0	0.15479		0	0.475	0	0.3699	#2002
0	0.15616		0	0.474	0	0.3699	#2003
0	0.14247		0	0.488	0	0.3699	#2004
0	0.43288		0	0.197	0	0.3699	#2005
0	0.33151		0	0.299	0	0.3699	#2006
0	0.36849		0	0.262	0	0.3699	#2007
0	0.30274		0	0.327	0	0.3699	#2008
0	0.3274		0	0.303	0	0.3699	#2009
0	0.29315		0	0.337	0	0.3699	#2010
0	0.26301		0	0.367	0	0.3699	#2011
0	0.27534		0	0.355	0	0.3699	#2012
0	0.2726		0	0.358	0	0.3699	#2013
0	0.24795		0	0.382	0	0.3699	#2014
0	0.22877		0	0.401	0	0.3699	#2015
0	0.42055		0	0.21	0	0.3699	#2016
0	0.40959		0	0.221	0	0.3699	#2017
0	0.34932		0	0.281	0	0.3699	#2018
0	0.3274		0	0.303	0	0.3699	#2019
Fishing	t	fleet	names				

#

Fishing

Trawl_Bycatch Pot_Fishery

Survey #

#	1	Are	1	the	1	seasons		discrete-insta	anta 1	neous 1		
#	3	Number		01		catch		data		Irames		
#	5	Number		of		rows		in		each	data	frame
#			1993	total		catch		is		missing,		
#		retained		catch		1981/82-2019/2	20					
	39		29		31							

names

29

62

##		CATCH		DATA		in	t											
##		Туре		of		catch:		1	=		retained,		2	=		discard,	0=	total
##		Units		of		catch:		1	=		biomass,		2	=		numbers		
#		Mult:		1=		use	da	ta	as		thy	are,			2	=	multip	ly
##		Retained		Catch		(in		1000	crab)									
#year		seas		fleet		sex	ob	s	cv		type	units		mult		effort	discare	l_mortality
	1981		3		1	1		204	0	.032	1		2		1	0	0.2	
	1982		3		1	1		529.8	0	.032	1		2		1	0	0.2	
	1983		3		1	1		662.3	0	.032	1		2		1	0	0.2	
	1984		3		1	1		801.1	0	.032	1		2		1	0	0.2	
	1985		3		1	1		1251	0	.032	1		2		1	0	0.2	
	1986		3		1	1		1375	0	.032	1		2		1	0	0.2	
	1987		3		1	1		968.6	0	.032	1		2		1	0	0.2	
	1988		3		1	1		1156	0	.032	1		2		1	0	0.2	
	1989		3		1	1		1420	0	.032	1		2		1	0	0.2	
	1990		3		1	1		892.7	0	.032	1		2		1	0	0.2	
	1991		3		1	1		1083	0	.032	1		2		1	0	0.2	
	1992		3		1	1		1127	0	.032	1		2		1	0	0.2	
	1993		3		1	1		767.9	0	.032	1		2		1	0	0.2	
	1994		3		1	1		1087	0	.032	1		2		1	0	0.2	
	1995		3		1	1		1150	0	.032	1		2		1	0	0.2	
	1996		3		1	1		848	0	.032	1		2		1	0	0.2	
	1997		3		1	1		780.6	0	.032	1		2		1	0	0.2	
	1998		3		1	1		740	0	.032	1		2		1	0	0.2	
	1999		3		1	1		709.3	0	.032	1		2		1	0	0.2	
	2000		3		1	1		704.7	0	.032	1		2		1	0	0.2	
	2001		3		1	1		730	0	.032	1		2		1	0	0.2	
	2002		3		1	1		643.9	0	.032	1		2		1	0	0.2	
	2003		3		1	1		643.1	0	.032	1		2		1	0	0.2	
	2004		3		1	1		637.5	0	.032	1		2		1	0	0.2	
	2005		3		1	1		624	0	.032	1		2		1	0	0.2	

2006	3	1	1	650.6	0.032	1	2	1	0	0.2
2007	3	1	1	633.3	0.032	1	2	1	0	0.2
2008	3	1	1	666.9	0.032	1	2	1	0	0.2
2009	3	1	1	679.9	0.032	1	2	1	0	0.2
2010	3	1	1	671	0.032	1	2	1	0	0.2
2011	3	1	1	668.8	0.032	1	2	1	0	0.2
2012	3	1	1	687.7	0.032	1	2	1	0	0.2
2013	3	1	1	720.2	0.032	1	2	1	0	0.2
2014	3	1	1	719.1	0.032	1	2	1	0	0.2
2015	3	1	1	763.6	0.032	1	2	1	0	0.2
2016	3	1	1	794	0.032	1	2	1	0	0.2
2017	3	1	1	802.6	0.032	1	2	1	0	0.2
2018	3	1	1	940.3	0.032	1	2	1	0	0.2
2019	3	1	1	1057	0.032	1	2	1	0	0.2

##	Total	Catch	(in		1000	crab,	no	mortality	applied)			
#year	seas	fleet	sex	obs		cv	type	units	mult	effort		discard_mortality
1990	3	;	1	1	1149	0.045	0	2	2	1	0	0.2
1991	3	;	l	1	4385	0.045	0	2	2	1	0	0.2
1992	3	;	1	1	4332	0.045	0	2	2	1	0	0.2
1994	3	;	1	1	1713	0.045	0	2	2	1	0	0.2
1995	3	;	1	1	2743	0.045	0	2	2	1	0	0.2
1996	3	;]	1	1	1452	0.045	0	2	2	1	0	0.2
1997	3	;]	1	1	1788	0.045	0	2	2	1	0	0.2
1998	3	;	1	1	2012	0.045	0	2	2	1	0	0.2
1999	3	;]	1	1	1556	0.045	0	2	2	1	0	0.2
2000	3	3	1	1	1707	0.045	0	2	2	1	0	0.2
2001	3	;	1	1	1353	0.045	0	2	2	1	0	0.2
2002	3	;	1	1	1120	0.045	0	2	2	1	0	0.2
2003	3	;]	1	1	1111	0.045	0	2	2	1	0	0.2
2004	3	;]	1	1	965.4	0.045	0	2	2	1	0	0.2
2005	3	;]	1	1	929.3	0.045	0	2	2	1	0	0.2

2006	3	1	1	857.3	0.045	0	2	1	0	0.2
2007	3	1	1	911.3	0.045	0	2	1	0	0.2
2008	3	1	1	931	0.045	0	2	1	0	0.2
2009	3	1	1	936.7	0.045	0	2	1	0	0.2
2010	3	1	1	944.2	0.045	0	2	1	0	0.2
2011	3	1	1	927	0.045	0	2	1	0	0.2
2012	3	1	1	986.8	0.045	0	2	1	0	0.2
2013	3	1	1	978.6	0.045	0	2	1	0	0.2
2014	3	1	1	1013	0.045	0	2	1	0	0.2
2015	3	1	1	1129	0.045	0	2	1	0	0.2
2016	3	1	1	1284	0.045	0	2	1	0	0.2
2017	3	1	1	1239	0.045	0	2	1	0	0.2
2018	3	1	1	1599	0.045	0	2	1	0	0.2
2019	3	1	1	1778	0.045	0	2	1	0	0.2

##	Trawl	fishery	discards		(in		1000	crab,	handling	mortality	rate	applied)
#year	seas	fleet	sex		obs	cv		type	units	mult	effort	discard_mortality
1989	:	5	2	1	0.388		1.58	2	2	2 1	0	1
1990	:	5	2	1	1.19		1.58	2	2	2 1	0	1
1991	:	5	2	1	0		1.58	2	2	2 1	0	1
1992	:	5	2	1	0.779		1.58	2	2	2 1	0	1
1993	:	5	2	1	0.719		1.58	2	2	2 1	0	1
1994	:	5	2	1	0.311		1.58	2	2	2 1	0	1
1995	:	5	2	1	0.569		1.58	2	2	2 1	0	1
1996	:	5	2	1	0.046		1.58	2	2	2 1	0	1
1997	:	5	2	1	0.076		1.58	2	2	2 1	0	1
1998	:	5	2	1	0.587		1.58	2	2	2 1	0	1
1999	:	5	2	1	0.284		1.58	2	2	2 1	0	1
2000	:	5	2	1	0.387		1.58	2	2	2 1	0	1
2001	:	5	2	1	0.934		1.58	2	2	2 1	0	1
2002	:	5	2	1	0.707		1.58	2	2	2 1	0	1
2003	:	5	2	1	0.392		1.58	2	2	2 1	0	1

	2004	5	2	1	0.059	1.58	2	2	1	0	1
	2005	5	2	1	0.252	1.58	2	2	1	0	1
	2006	5	2	1	0.679	1.58	2	2	1	0	1
	2007	5	2	1	0.697	1.58	2	2	1	0	1
	2008	5	2	1	0.808	1.58	2	2	1	0	1
	2009	5	2	1	0.718	1.58	2	2	1	0	1
	2010	5	2	1	2.415	1.58	2	2	1	0	1
	2011	5	2	1	1.208	1.58	2	2	1	0	1
	2012	5	2	1	2.058	1.58	2	2	1	0	1
	2013	5	2	1	0.894	1.58	2	2	1	0	1
	2014	5	2	1	1.327	1.58	2	2	1	0	1
	2015	5	2	1	0.303	1.58	2	2	1	0	1
	2016	5	2	1	0.717	1.58	2	2	1	0	1
	2017	5	2	1	0.538	1.58	2	2	1	0	1
	2018	5	2	1	0.495	1.58	2	2	1	0	1
	2019	5	2	1	1.468	1.58	2	2	1	0	1
##		RELATIVE	ABUNDANCE	DATA							
##		Units	of	abundance:	1	=	biomass,	2	=	numbers	
##		Number	of	relative	abundance	indicies					
##		sex:1=male;2=female;	0=both								
##		maturity:	1=immature;2=mature;0	=	both)						
#		Fishery	CPUE	index,	Observer	CPUE	index2				
	2										
#		Index	Туре	(1=Selecivity;	2=retention)						
#		AEPAEP									
	2	2									
##		Number	of	rows	in	each	index				
	39										
#		Fishery	CPUE	index	NB	error	in	GLM	fits	Obs &Fish	Ticket
#Inde	х	Year	Seas	fleet	Sex	maturity	index	cv	abundance	unit	timing

		1	1985	3	1	1	0	1.6287	0.051	2	0.5
		1	1986	3	1	1	0	1.2289	0.047	2	0.5
		1	1987	3	1	1	0	0.9552	0.049	2	0.5
		1	1988	3	1	1	0	1.0358	0.041	2	0.5
		1	1989	3	1	1	0	1.0765	0.034	2	0.5
		1	1990	3	1	1	0	0.9868	0.045	2	0.5
		1	1991	3	1	1	0	0.9046	0.043	2	0.5
		1	1992	3	1	1	0	0.9172	0.043	2	0.5
		1	1993	3	1	1	0	0.9145	0.049	2	0.5
		1	1994	3	1	1	0	0.8086	0.042	2	0.5
		1	1995	3	1	1	0	0.7798	0.043	2	0.5
		1	1996	3	1	1	0	0.7791	0.044	2	0.5
		1	1997	3	1	1	0	1.0505	0.045	2	0.5
		1	1998	3	1	1	0	1.2141	0.051	2	0.5
#	Observer	CPUE	index								
		1	1995	3	1	1	0	1.0034	0.032	2	0.5
		1	1996	3	1	1	0	0.9444	0.021	2	0.5
		1	1997	3	1	1	0	0.8742	0.021	2	0.5
		1	1998	3	1	1	0	1.0004	0.019	2	0.5
		1	1999	3	1	1	0	0.9154	0.018	2	0.5
		1	2000	3	1	1	0	0.8196	0.016	2	0.5
		1	2001	3	1	1	0	1.0429	0.018	2	0.5
		1	2002	3	1	1	0	1.1029	0.021	2	0.5
		1	2003	3	1	1	0	0.9714	0.019	2	0.5
		1	2004	3	1	1	0	1.4394	0.027	2	0.5
		2	2005	3	1	1	0	0.9829	0.026	2	0.5
		2	2006	3	1	1	0	0.8087	0.023	2	0.5
		2	2007	3	1	1	0	0.9017	0.022	2	0.5
		2	2008	3	1	1	0	0.8819	0.026	2	0.5
		2	2009	3	1	1	0	0.7266	0.031	2	0.5
		2	2010	3	1	1	0	0.7518	0.031	2	0.5

			_										_								
			2		2011		3		1	1	0	1.080)8	0.033		2	0.5				
			2		2012		3		1	1	0	1.040)7	0.03		2	0.5				
			2		2013		3		1	1	0	1.014	1	0.028		2	0.5				
			2		2014		3		1	1	0	1.335	51	0.032		2	0.5				
			2		2015		3		1	1	0	1.255	51	0.029		2	0.5				
			2		2016		3		1	1	0	1.05	56	0.027		2	0.5				
			2		2017		3		1	1	0	1.006	55	0.03		2	0.5				
			2		2018		3		1	1	0	1.236	51	0.032		2	0.5				
			2		2019		3		1	1	0	1.153	34	0.027		2	0.5				
##		Number		of		length		frequency		matrices											
#3						iongin		nequency													
110	2																				
###	2	Number		of		rows		in		each	matrix										
	35	Tumber	20	01		10.05				each	matrix										
#30	55		2)																		
#30		Number		of		bins		in		each	matrix	(columns		of	size		data)				
	17		17									,					,				
#17	- /		- ,																		
##		SIZE		COMPOSITION		DATA		FOR		ALL	FLEETS										
##		SIZE		COMP		LEGEND															
##		Sex:			1	=		male,		2	=	female,		0	=		sexes	combin	ned		
##		Туре		of		composition:			1	=	retained,		2	=	discare	ł,	0	=	total		
##		Maturity		state:			1	=		immature,	2	=		mature,		0	=	both	states		
##		Shell		condition:			0	=		both	shell	types		combined							
##		Туре			1	effective		sample:		Nsamp											
##		Retain		catch		size		comp		-											
##Year	:,	Seas,		Fleet,		Sex,		Туре,		Shell,	Maturity,	Nsamp,		DataVec							
			1985		3		1		1	1	0		0	47		0	0	0	0	0	0.002
			1986		3		1		1	1	0		0	9		0	0	0	0	0	0.001
			1987		3		1		1	1	0		0	50		0	0	0.004	0	0.00055	0.003

1988	3	1	1	1	0	0	291	0	0	0	0	0.00025	0.005
1989	3	1	1	1	0	0	655	0	0	0	0.000	0.00019	0.008
1990	3	1	1	1	0	0	135	0	0.000	0.000	0	0.00034	0.006
1991	3	1	1	1	0	0	116	0	0	0	0	0.00029	0.006
1992	3	1	1	1	0	0	41	0	0	0.000	0.000	0.00045	0.005
1993	3	1	1	1	0	0	281	0	0	0	0	0.00127	0.006
1994	3	1	1	1	0	0	264	0	0	0	0	0	0.005
1995	3	1	1	1	0	0	727	0	0	0.000	0	0.00013	0.003
1996	3	1	1	1	0	0	452	0	0.001	0	0.003	0.00446	0.011
1997	3	1	1	1	0	0	445	0	0	0	0	0.00055	0.006
1998	3	1	1	1	0	0	447	0	0	0	0	0.00015	0.002
1999	3	1	1	1	0	0	383	0	0	0	0	0	0.003
2000	3	1	1	1	0	0	360	0	0	0	0	0	0.002
2001	3	1	1	1	0	0	403	0	0.000	0	0	0	0.002
2002	3	1	1	1	0	0	336	0.0004	0	0	0	0	0.001
2003	3	1	1	1	0	0	335	0	0	0	0	0.0001	0.001
2004	3	1	1	1	0	0	231	0	0	0	0	0	0.000
2005	3	1	1	1	0	0	220	0	0	0	0	0	0.001
2006	3	1	1	1	0	0	193	0	0	0	0	0	0.000
2007	3	1	1	1	0	0	165	0.0003	0	0	0	0.00062	0
2008	3	1	1	1	0	0	163	0	0	0	0	0	0.001
2009	3	1	1	1	0	0	141	0	0	0	0	0	0
2010	3	1	1	1	0	0	151	0	0	0	0	0	0.000
2011	3	1	1	1	0	0	132	0	0	0	0	0	0.000
2012	3	1	1	1	0	0	155	0	0	0	0	0	0.001
2013	3	1	1	1	0	0	160	0	0	0	0	0	0.002
2014	3	1	1	1	0	0	139	0	0	0	0	0	0.001
2015	3	1	1	1	0	0	157	0	0	0	0	0	0.000
2016	3	1	1	1	0	0	184	0	0	0	0	0	0.002
2017	3	1	1	1	0	0	176	0	0	0	0.000	0	0.000
2018	3	1	1	1	0	0	180	0	0	0	0.001	0	0.000
2019	3	1	1	1	0	0	177	0	0	0	0	0	0.001

##	Total	catch	size	comp											
##Year,	Seas,	Fleet,	Sex,	Туре,		Shell,	Maturity,	Nsamp,	DataVec						
		1990	3	1	1	0	0	0	13	0.0942	0.086	0.084	0.093	0.12217	0.11
		1991	3	1	1	0	0	0	28	0.0462	0.064	0.078	0.084	0.10383	0.117
		1992	3	1	1	0	0	0	24	0.0703	0.085	0.084	0.108	0.11602	0.101
		1994	3	1	1	0	0	0	20	0.1205	0.111	0.092	0.089	0.10685	0.123
		1995	3	1	1	0	0	0	649	0.0365	0.049	0.069	0.088	0.10852	0.128
		1996	3	1	1	0	0	0	296	0.033	0.045	0.061	0.08	0.1005	0.123
		1997	3	1	1	0	0	0	413	0.0327	0.042	0.059	0.077	0.09885	0.121
		1998	3	1	1	0	0	0	333	0.0296	0.042	0.061	0.084	0.1087	0.129
		1999	3	1	1	0	0	0	352	0.0242	0.032	0.043	0.064	0.09039	0.121
		2000	3	1	1	0	0	0	287	0.0222	0.032	0.045	0.063	0.07697	0.111
		2001	3	1	1	0	0	0	296	0.0175	0.024	0.034	0.047	0.06295	0.092
		2002	3	1	1	0	0	0	254	0.0204	0.026	0.032	0.039	0.05208	0.084
		2003	3	1	1	0	0	0	242	0.0147	0.024	0.029	0.04	0.05596	0.09
		2004	3	1	1	0	0	0	174	0.0127	0.017	0.024	0.033	0.055	0.08
		2005	3	1	1	0	0	0	135	0.0066	0.009	0.01	0.016	0.02939	0.042
		2006	3	1	1	0	0	0	83	0.005	0.009	0.011	0.014	0.02415	0.038
		2007	3	1	1	0	0	0	78	0.0028	0.004	0.005	0.008	0.01826	0.033
		2008	3	1	1	0	0	0	66	0.0039	0.005	0.008	0.012	0.02182	0.042
		2009	3	1	1	0	0	0	55	0.004	0.005	0.009	0.015	0.02396	0.048
		2010	3	1	1	0	0	0	63	0.0074	0.009	0.014	0.02	0.03743	0.057
		2011	3	1	1	0	0	0	62	0.0049	0.007	0.01	0.014	0.02171	0.039
		2012	3	1	1	0	0	0	57	0.0023	0.005	0.007	0.007	0.01942	0.037
		2013	3	1	1	0	0	0	71	0.0038	0.007	0.01	0.016	0.0268	0.051
		2014	3	1	1	0	0	0	57	0.0042	0.006	0.01	0.016	0.02694	0.047
		2015	3	1	1	0	0	0	73	0.0053	0.009	0.014	0.022	0.03282	0.054
		2016	3	1	1	0	0	0	90	0.0087	0.008	0.014	0.019	0.04065	0.066
		2017	3	1	1	0	0	0	77	0.0058	0.007	0.013	0.02	0.03253	0.085
		2018	3	1	1	0	0	0	136	0.0038	0.006	0.01	0.017	0.04301	0.08
		2019	3	1	1	0	0	0	86	0.0007	0.002	0.005	0.009	0.02372	0.079

#

##	Trawl	byc	size	comp											
##Year,	Seas,	Fleet,	Sex,	Туре,	Sh	iell, l	Maturity,	Nsamp,	DataVec						
#1989		5	2	1	2	0	0	4	0	0.0545	0.127	0.091	0.073	0.09091	0.127
#1990		5	2	1	2	0	0	6	0.074	0.0465	0.039	0.066	0.078	0.03876	0.101
#1992		5	2	1	2	0	0	1	0	0.1667	0	0.167	0.167	0.16667	0
#1993		5	2	1	2	0	0	1	0	0	0.25	0	0.25	0	0
#1994		5	2	1	2	0	0	2	0.167	0.2407	0.185	0.167	0.074	0.03704	0.019
#1995		5	2	1	2	0	0	2	0.037	0.037	0.037	0.148	0.111	0.11111	0.185
#1996		5	2	1	2	0	0	2	0	0	1	0	0	0	0
#1997		5	2	1	2	0	0	4	0.096	0.0769	0.058	0.135	0.115	0.13462	0.115
#1998		5	2	1	2	0	0	7	0.088	0.0949	0.066	0.08	0.153	0.12409	0.058
#1999		5	2	1	2	0	0	7	0.152	0.1714	0.057	0.086	0.076	0.08571	0.029
#2000		5	2	1	2	0	0	8	0.197	0.171	0.068	0.063	0.063	0.05386	0.063
#2001		5	2	1	2	0	0	6	0.076	0.0714	0.107	0.103	0.083	0.05804	0.06
#2002		5	2	1	2	0	0	7	0.225	0.2143	0.132	0.093	0.126	0.03297	0.055
#2003		5	2	1	2	0	0	8	0.301	0.1399	0.07	0.091	0.063	0.05594	0.056
#2004		5	2	1	2	0	0	5	0.095	0.0476	0.048	0.048	0.048	0	0
#2005		5	2	1	2	0	0	6	0.268	0.1959	0.082	0.082	0.052	0.05155	0.021
#2006		5	2	1	2	0	0	7	0.269	0.1346	0.115	0.096	0.067	0.06731	0.058
#2007		5	2	1	2	0	0	8	0.257	0.2163	0.122	0.073	0.082	0.07755	0.037
#2008		5	2	1	2	0	0	7	0.229	0.2048	0.117	0.083	0.052	0.05714	0.052
#2009		5	2	1	2	0	0	8	0.174	0.0413	0.025	0.058	0.107	0.05785	0.058
#2010		5	2	1	2	0	0	12	0.184	0.2175	0.154	0.103	0.091	0.06647	0.063
#2011		5	2	1	2	0	0	6	0.324	0.1639	0.172	0.107	0.049	0.05328	0.02
#2012		5	2	1	2	0	0	9	0.063	0.0833	0.083	0.083	0.042	0.02083	0.021
#2013		5	2	1	2	0	0	8	0	0	0	0	0.059	0	0.059
#2014		5	2	1	2	0	0	8	0.063	0	0.031	0.125	0.094	0.09375	0.063
#2015		5	2	1	2	0	0	5	0.116	0.1053	0.116	0.116	0.137	0.12632	0.105
#2016		5	2	1	2	0	0	6	0.039	0.0789	0.118	0.118	0.158	0.14474	0.066
#2017		5	2	1	2	0	0	6	0.304	0.1957	0.098	0.054	0.043	0.03261	0.043
#2018		5	2	1	2	0	0	4	0.286	0.119	0.119	0.048	0.071	0.09524	0.048

#2019		5	2	1	2 0	0		4	0.158	0.1228	0.175	0.07	0.088	0.05263	0.105
#															
##	Growth	data	(increment)												
#	Туре	of	growth	increment											
0															
#	nobs_growth														
0															
#	Class-at-release;	Sex;	Class-at- recapture;	Years-at- liberty;	number	transition	matrix;								
	RecaptureFleet	Recapture	Year												
#not conside	ered														
##	eof														
9999															

Table F3. gmacs EAG19.1. prj file.

	0		Do	not	compute	MSY	(1=Yes)				
	1	1	if	future	F	is	to	be	fixed		
	1987	2017	for	Rbar		calc,					
	1985	2019	First	and	last	year	for	average	sex	ratio	
	2010	2019	First	and	last	year	for	average	F	for	discards
#	OFL	specifications									
	0.35	Target	SPR	ratio	for	Bmsy	proxy.				
	3	Tier									
	0.1	Alpha									
	0.25	Beta									
	1	Gamma									
	0.75	ABC-OFL	buffer								
	0	Produce	a	yield	curve or not						
#	Projection	material									
---	------------	--------------------	-------------	-----------	-------------	---	------	---------------------	------------	----------	-------------
	2020	#	Last	year	of	projection		from	the	terminal	year
	1	#	Number	of	strategies						
	0	0.7	Range	of	F	values					
	1	mortality	for	directed							
	2	Meme	replicates	per	draw						
	-3423.8	Fixed	BMSY	(negative	number	for		replicate-specific)			
	1	Stock-recruitment		option	(1=Mean	Rec;2=Ricker;3=BH;4=Mean		and	CV)		
	8	age-at-recruitment									
#											
	1960	2019	First	and	last	years		for	generating	future	recruitment
	2294	Mean	recruitment	for	projections						
	0.6	SigmaR	only	used	if	Stock_recruitment		option	2		
	0.2	ProwR									
	-999	first	rec_dev,	set	to		-999	to	generate	it	
#	Stata	atuataatu									
#	State	Annly	atrotagiaa	[OFI	ADCI	(1=1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-					
	0 00125202	Арріу 4	Maar	UFL,	ABC	(I-yes;0-no)		4)			
	0.00135305	#	Mean	weight	(mature	in		()			
	0.00196451	#	Mean	weight	(legal	in		t)			
#	Stop	after	XX	mcdraws							
	10000										

eof

9999

Figure F1. Comparison of time series of abundance by size (N-matrix) of EAG golden king crab, 1960–2019 [blue: OrignalEAG19.1; red: ModifiedEAG19.1; dark green: gmacs run#9 (free parameters); green: gmacs run#10(fixed parameters)]

Figure F2. Comparison of time series of retained catch by size of EAG golden king crab, 1985–2019 (blue: OrignalEAG19.1; red: ModifiedEAG19.1; dark green: gmacs run#9; green: gmacs run#10)

Figure F3. Comparison of time series of CPUE indices for EAG golden king crab, 1995–2019 (blue: OrignalEAG19.1A; red: ModifiedEAG19.1A; green: gmacs run#10AUpdate). For this comparison, the gmacs base model was slightly modified (update) to instantaneously remove catches at the middle of the fishing period.