

NOAA FISHERIES

September 22, 2021

Designing for change: the impact of altering sampling design and density on survey indices

Jason Conner (AFSC-RACE), Stan Kotwicki, Kotaro Ono and Lewis Barnett

Background

Survey effort may be reduced or altered within a timeseries for various reasons:

- Insufficient funding
- Logistical challenges including black swan events
- Shifts in species distributions
- Evolving management concerns

Estimation of Precision

Simple Example: Aggregating 2 Indices

- True = no change in abundance (black line) between Years 1 and 2
- 2 indices (red and blue lines) detecting opposing trends in abundance
- If the variances of the indices are equal, the resulting trend would be the same as the true trend
- However, Index 1 has 50% of the variance of Index 2 (error ribbons), therefore the resulting trend (purple dashed line) shifts toward Index 1

How accurate are the estimates of variance for each index?

Simulated Sampling Designs

- Simple Random Sampling (SRS)
- Stratified Random Sampling (STR)
- Systematic Sampling (SYS) Current

Systematic Sampling Overview

- Logistically less expensive
- Can be more precise than random designs if assumptions are met – specifically, that the population does not vary at the frequency of sampling
- There is no unbiased estimator for the variance of the mean (Cochran 1977)

Systematic Sampling Variance

- Variance of the mean is often estimated using the estimator for simple random sampling.
 - known to likely overestimate the true variance of the mean (Strand 2017)
- CIE review of the Bering Sea bottom trawl survey in 2012 recommended exploration of alternative estimators
 - Zinger (1980) estimator requires supplemental random samples
 - D'Orazio (2003) estimators local variance in 2 dimensions, post-stratified

Sampling Density

- 350 Present sample size, 132 vessel-days
- 263 Sampling reduced to 88 vessel-days
- 175 Sampling reduced to 66 vessel-days
- 525 Sampling increased to 198 vessel-days

Methods

Study Cases

- Arrowtooth flounder (Atheresthes stomias)
 - affinity for depths greater than 100 m
- Walleye pollock (Gadus chalcogrammus)
 - strongly dependent on bottom temperature
- Pacific cod (Gadus macrocephalus)
 - dependent on bottom temperature, present at most stations
- Yellowfin sole (*Limanda aspera*)
 - strong affinity for depths shallower than 50 m

Typical Distributions of Study Species

Spatiotemporal Operating Model

- Developed by Kotwicki and Ono (2019)
- Delta-GLM model
 - occurrence binomial with logit link
 - abundance Gaussian with log link
- Spatial/temporal dependencies included through the use of Mátern covariance function and a first-order autoregressive process (AR1)
- Covariates depth, surface temperature, bottom temperature
- Implemented using R-package INLA
- Realized distributions produced by 10 MCMC samples from the joint posterior distribution of the model parameters for each year mapped to 4 km² raster

Survey Simulations

- 4 Species
- 3 Designs
- 4 Sample Densities
- 100 surveys per year (N=35), for each MCMC sample (N=10)

Parameters - "True" Values

- True mean CPUE is the arithmetic mean of all values (N=68,744) from an MCMC sample per year
- True standard error of mean CPUE (SEM) is the standard error of simulated survey mean CPUEs (N=100) per each MCMC (N=10) and year (N=35)

Estimators

- Mean CPUE
 - SRS & SYS arithmetic mean of samples
 - STR area-weighted stratified mean of samples
- SEM of CPUE
 - SEM_{SRS} & SEM_{STR} prescribed estimators for standard error of the mean
 - SEM_{SYS} "borrowed" estimator SEM_{SRS} (Current)
 - SEM_{ST4} local SEM, non-overlapping strata of 4 stations
 - SEM_{LO5} local SEM, overlapping strata of station and 4 nearest stations

Alternative SEM Estimators

Χ	

Diagnostics per Realized Distribution

• Relative Bias (RB)

$$\mathsf{RB} = \frac{\left(\sum_{i=1}^{R} Y_{i}^{estimated} / R\right) - Y^{true}}{Y^{true}}$$

• Relative Estimation Error (REE)

$$\mathsf{REE} = \frac{\sqrt{\left(\sum_{i=1}^{R} (Y_i^{estimated} - Y^{true})^2 / R\right)}}{Y^{true}}$$

i = a survey simulation *R* = number of survey iterations (N=100)

From Liu et al. 2009

Results

Summary

- Point estimates are accurate for all species, designs and densities, and relative bias is small and consistent over time
- SEM_{SYS} shows considerable positive relative bias
- ${\rm SEM}_{\rm LO5}$ and ${\rm SEM}_{\rm ST4}$ have error distributions similar to random sampling designs
- The SYS design studied (random start) yields more precise point estimates than random sampling designs

Aggregate RB of Mean CPUE - Accuracy

RB of Mean CPUE per Year - Accuracy

Sampling density = 350. Trend line is similar at each sampling density

RB of the SEM - Precision

Sampling density = 350. Trend is similar at each sampling density

Recall the simple scenario where a stock assessment model aggregates 2 indices. If Index 2 represents the current SEM_{SYS} estimate, the resulting trend will be shifted to other indices.

REE of the SEM – Accuracy and Precision

Sampling density = 350. Trend is similar at each sampling density

Percent Relative Standard Error (aka CV)

Conclusions

- Appropriate to continue SYS survey design
- Current strata increases precision for random designs
- Simulations can approximate the increase in error with reduced sampling
- If the assumptions of the OM are viable, then it would be appropriate to accept an SEM estimator that is less-biased than the currently employed SRS estimator

Plan Team Questions

- 1. What would the Plan Team require to adopt an alternative estimator for the variance of the mean in a stock assessment?
- 2. Would the Plan Team recommend investigating bias correction for these estimators?
- 3. What does the Plan Team consider an acceptable range of CVs for survey indices?
- 4. Should GAP consider adopting a random-start systematic design in the Bering Sea? (requires a new simulation study)

References

- Cochran, W.G., 2007. Sampling techniques. John Wiley & Sons.
- D'Orazio, M., 2003. Estimating the variance of the sample mean in two-dimensional systematic sampling. JABES 8, 280–295. <u>https://doi.org/10.1198/1085711032174</u>
- Kotwicki, S., Ono, K., 2019. The effect of random and density-dependent variation in sampling efficiency on variance of abundance estimates from fishery surveys. *Fish and Fisheries* 20, 760–774. <u>https://doi.org/10.1111/faf.12375</u>
- Liu, Y., Chen, Y., Cheng, J., 2009. A comparative study of optimization methods and conventional methods for sampling design in fishery-independent surveys. ICES Journal of Marine Science 66, 1873–1882. <u>https://doi.org/10.1093/icesjms/fsp157</u>
- Strand, G.-H., 2017. A study of variance estimation methods for systematic spatial sampling. Spatial Statistics 21, 226–240.
- Zinger, A., 1980. Variance Estimation in Partially Systematic Sampling. *Journal of the American Statistical Association* 75, 206–211.

Supplemental Slides

Systematic Sampling Details

Target Sampling Density	Distance Between Stations (km)	Systematic Realizations	Random Realizations	Range of Sampling Densities
175	53.065	729	$2.34 \ge 10^{21}$	169 - 180
263	43.3	484	$1.37 \ge 10^{22}$	256 - 271
350	37.53	361	$3.58 \ge 10^{22}$	344 - 355
525	30.64	256	$6.90 \ge 10^{22}$	517 - 532

- Dimensions of square systematic sampling grids for each target sampling density.
- The number of realizations is the same as the number of sampling units within each grid cell.
- The standard sampling density for the BTS is 350 stations.

RB of SEM per Year

NOAA FISHERIES