GOA Deepwater Flatfish

November 2019

Carey McGilliard, Andrea Havron, Wayne Palsson, and Stephanie Zador

What is the deepwater flatfish complex?

Historically:

- Dover
- Greenland turbot
- Deepsea sole (AKRO does not track catches)
- Unidentified

Since 2011 AK Regional Office Includes:

- Dover
- Greenland turbot
- Kamchatka flounder

Catch by species for the deepwater flatfish complex

T 7	Greenland	Dover		m 1	• •		Greenland	Dover	Kamchatka	m 1
Year	turbot	sole	Unidentified	Total	-	ear	turbot	sole	Flounder	Total
1978	51	827		878	20		3	453	12	467
1979	24	530		554	20		0	260	4	265
1980	57	570		627	20		15	216	15	245
1981	8	457		465	20		3	284	69	356
1982	23	457		480	20	15	26	198	35	259
1983	145	354		499	20	16	4	231	5	240
1984	18	132		150	20	17	8	188	67	263
1985	0	43		43	20	18	3	144	40	186
1986	0	23		23	20	19	9	72	4	86
1987	44	56		100						
1988	256	1,087		1,343						
1989	56	1,521		1,577						
1990	0	2,348		2,348						
1991			10,196	10,196						
1992			8,497	8,497						
1993	19	1,869	1,935	6,706						
1994	3	2,538	537	3,078						
1995	78	1,416	721	2,215						
1996	6	1,485	704	2,195						
1997	3	2,676	996	3,674						
1998	10	2,111	168	2,289						
1999	6	1,833	447	2,285						
2000	5	813	167	985						
2001	4	654	146	804						
2002	4	411	146	560						
2003	3	899	51	902						
2004	1	646	41	647						
2005	1	378	41	379						
2006	10	327	74	337						
2007	1	235	47	236						
2008	4	517	53	521						
2009	0	435	42	435						
2010	0	546		546						

Time Series of Catches (Dover only, as input to models)

Year

GOA survey bottom trawl biomass trends by Regulatory Area

GOA survey bottom trawl biomass trends by Regulatory Area

GOA survey bottom trawl biomass index

Using RE model to filll deptharea gaps

Year

GOA survey bottom trawl biomass index

Using RE model to filll deptharea gaps

Year

Length-weight residuals

Survey cpue

Distribution of age composition, males and females aggregated

Female age-length plots by year and cohort

fact	tor(Col	hort)				
٠	1939	٠	1963	٠	1980	•	1997
•	1947	٠	1964	٠	1981	•	1998
•	1948	•	1965	٠	1982	•	1999
٠	1949	•	1966	٠	1983	•	2000
٠	1950	٠	1967	٠	1984	•	2001
٠	1951	٠	1968	٠	1985	•	2002
٠	1952	٠	1969	٠	1986	•	2003
٠	1953	٠	1970	٠	1987	•	2004
٠	1954	٠	1971	٠	1988	•	2005
٠	1955	٠	1972	٠	1989	•	2006
•	1956	٠	1973	٠	1990	•	2007
٠	1957	٠	1974	٠	1991	٠	2008
٠	1958	٠	1975	٠	1992	•	2009
•	1959	٠	1976	٠	1993	•	2010
٠	1960	٠	1977	٠	1994	٠	2011
٠	1961	٠	1978	٠	1995	٠	2012
•	1962	٠	1979	•	1996	•	2013

Male age-length plots by year and cohort

Taci	tor(Cor	IOTU)				
•	1940	٠	1963	٠	1980	٠	1997
+	1941	٠	1984	٠	1981	٠	1998
•	1942	٠	1965	٠	1982	٠	1999
•	1949	٠	1966	٠	1983	٠	2000
•	1950	•	1967	٠	1984	•	2001
•	1951	٠	1968	٠	1985	٠	2002
•	1952	٠	1969	٠	1986	٠	2003
•	1953	•	1970	٠	1987	•	2004
	1954	•	1971	٠	1988	•	2005
	1955	٠	1972	٠	1989	٠	2006
•	1956	•	1973	٠	1990	٠	2007
	1957	٠	1974	٠	1991	•	2008
•	1958	٠	1975	٠	1992	٠	2009
•	1959	•	1976	٠	1993	٠	2010
	1960	٠	1977	٠	1994	٠	2011
•	1961	٠	1978	•	1995	٠	2012
	1962	٠	1979	٠	1996	٠	2013

factor(Cohort)

Female age-length plots by depth and cohort

TB		or(Col	non)				
	•	1939	٠	1963	٠	1980	٠	1997
	•	1947	•	1964	٠	1981	•	1998
	e.	1948	•	1965	٠	1982	٠	1999
	e.	1949	•	1966	٠	1983	٠	2000
	•	1950	٠	1967	٠	1984	٠	2001
	•	1951	٠	1968	٠	1985	•	2002
	e.	1952	٠	1969	٠	1986	•	2003
	•	1953	٠	1970	٠	1987	٠	2004
	•	1954	٠	1971	٠	1988	٠	2005
	•	1955	٠	1972	٠	1989	•	2006
	•	1956	٠	1973	٠	1990	•	2007
	•	1957	٠	1974	٠	1991	٠	2008
	•	1958	٠	1975	٠	1992	٠	2009
	•	1959	٠	1976	٠	1993	٠	2010
	e.	1960	٠	1977	٠	1994	•	2011
	•	1961	٠	1978	٠	1995	٠	2012
	•	1962	•	1979	٠	1996	•	2013

Male age-length plots by depth and cohort

• 1940 • 1963 • 1980 • 1997 • 1941 • 1964 • 1981 • 1998 • 1942 • 1965 • 1982 • 1999 • 1942 • 1965 • 1982 • 1999 • 1949 • 1968 • 1983 • 2000 • 1950 • 1967 • 1984 • 2001 • 1950 • 1967 • 1984 • 2001 • 1951 • 1967 • 1984 • 2002 • 1951 • 1968 • 1985 • 2002 • 1952 • 1969 • 1988 • 2004 • 1954 • 1971 • 1988 • 2005 • 1955 • 1972 • 1989 • 2007 •	fact	tor(Col	hort)				
• 1941 • 1904 • 1981 • 1935 • 1942 • 1965 • 1982 • 1999 • 1949 • 1968 • 1983 • 2000 • 1950 • 1967 • 1983 • 2001 • 1950 • 1967 • 1984 • 2001 • 1951 • 1968 • 1985 • 2002 • 1951 • 1968 • 1985 • 2002 • 1952 • 1969 • 1986 • 2003 • 1953 • 1970 • 1987 • 2004 • 1954 • 1971 • 1988 • 2005 • 1955 • 1972 • 1989 • 2007 • 1957 • 1973 • 1990 • 2007 •	٠	1940	٠	1963	٠	1980	•	1997
1942 1963 1982 1983 1949 1966 1983 2000 1950 1967 1984 2001 1951 1967 1984 2002 1951 1968 1985 2002 1951 1968 1985 2002 1952 1969 1986 2003 1953 1970 1987 2004 1953 1970 1987 2004 1954 1971 1988 2005 1955 1972 1989 2006 1955 1972 1989 2007 1955 1972 1989 2007 1958 1973 1990 2007 1957 1974 1990 2007 1958 1975 1992 2009 1959 1976 1993 2010 1960 1977 1994 2011 1961 1978 1995 2012	٠	1941	٠	1964	٠	1981	•	1998
1949 1960 1965 1983 2000 1950 1967 1984 2001 1951 1968 1985 2002 1951 1968 1985 2002 1951 1968 1985 2002 1951 1969 1985 2003 1952 1969 1986 2003 1953 1970 1987 2004 1953 1970 1987 2005 1954 1971 1988 2005 1955 1972 1989 2006 1955 1972 1989 2007 1958 1973 1990 2007 1957 1974 1990 2007 1958 1975 1991 2008 1958 1975 1992 2009 1959 1976 1993 2010 1960 1977 1994 2011 1961 1978 1995 2012	٠	1942	•	1965	•	1982	٠	1999
• 1951 • 1968 • 1985 • 2002 • 1952 • 1969 • 1986 • 2003 • 1953 • 1970 • 1987 • 2004 • 1953 • 1970 • 1987 • 2004 • 1954 • 1971 • 1988 • 2005 • 1955 • 1972 • 1989 • 2006 • 1958 • 1973 • 1989 • 2007 • 1958 • 1973 • 1990 • 2007 • 1957 • 1974 • 1991 • 2008 • 1958 • 1975 • 1992 • 2010 • 1959 • 1977 • 1993 • 2011 • 1960 • 1977 • 1994 • 2012 •	٠	1949	•	1966	•	1983	٠	2000
• 1952 • 1969 • 1988 • 2003 • 1953 • 1970 • 1987 • 2004 • 1953 • 1970 • 1987 • 2004 • 1954 • 1971 • 1988 • 2005 • 1955 • 1972 • 1989 • 2006 • 1958 • 1973 • 1990 • 2007 • 1957 • 1974 • 1991 • 2008 • 1958 • 1974 • 1991 • 2008 • 1958 • 1975 • 1991 • 2008 • 1958 • 1975 • 1992 • 2009 • 1959 • 1976 • 1993 • 2010 • 1960 • 1977 • 1994 • 2011 •	٠	1950	٠	1967	٠	1984	٠	2001
 1953 1970 1987 2004 1954 1971 1988 2005 1955 1972 1989 2006 1958 1973 1990 2007 1957 1974 1991 2008 1958 1975 1991 2008 1958 1975 1992 2009 1959 1976 1993 2010 1960 1977 1994 2011 1961 1978 1995 2012 	٠	1951	٠	1968	•	1985	٠	2002
1953 1970 1987 2004 1954 1971 1988 2005 1955 1972 1989 2006 1955 1972 1989 2007 1956 1973 1990 2007 1957 1974 1991 2008 1958 1975 1992 2009 1959 1976 1993 2010 1960 1977 1994 2011 1961 1978 1995 2012	٠	1952	٠	1969	٠	1986	٠	2003
1954 1971 1989 2003 1955 1972 1989 2006 1958 1973 1990 2007 1957 1974 1991 2008 1958 1974 1991 2008 1958 1975 1992 2009 1959 1976 1993 2010 1960 1977 1994 2011 1961 1978 1995 2012	٠	1953	٠	1970	٠	1987	٠	2004
• 1955 • 1972 • 1985 • 2000 • 1956 • 1973 • 1990 • 2007 • 1957 • 1974 • 1991 • 2008 • 1958 • 1975 • 1992 • 2009 • 1959 • 1976 • 1993 • 2010 • 1960 • 1977 • 1994 • 2011 • 1961 • 1978 • 1995 • 2012	٠	1954	٠.	1971	•	1988	•	2005
• 1950 • 1973 • 1950 • 2007 • 1957 • 1974 • 1991 • 2008 • 1958 • 1975 • 1992 • 2009 • 1959 • 1976 • 1993 • 2010 • 1960 • 1977 • 1994 • 2011 • 1961 • 1978 • 1995 • 2012	٠	1955	٠	1972	•	1989	٠	2006
• 1957 • 1974 • 1991 • 2009 • 1959 • 1976 • 1993 • 2010 • 1960 • 1977 • 1994 • 2011 • 1961 • 1978 • 1995 • 2012	٠	1956	•	1973	٠	1990	٠	2007
• 1958 • 1975 • 1952 • 2003 • 1959 • 1976 • 1993 • 2010 • 1960 • 1977 • 1994 • 2011 • 1961 • 1978 • 1995 • 2012	•	1957	•	1974	•	1991	•	2008
 1960 1977 1994 2011 1961 1978 1995 2012 	٠	1958	٠	1975	•	1992	٠	2009
• 1961 • 1978 • 1995 • 2012	٠	1959	٠	1976	•	1993	٠	2010
1301 - 1378 - 1330 - 2012	•	1960	٠.	1977	•	1994	٠	2011
• 1982 • 1979 • 1998 • 2013	٠	1961	٠	1978	٠	1995	٠	2012
	٠	1962	٠	1979	•	1996	٠	2013

GOA Dover sole residuals from sexspecific von-Bertalanffy models fit to survey data 2001-2015 outside the assessment model.

The blue points are more than 1 residual standard error below the curve and the red points are more than 1 RSE above the curve.

Models

Challenges for the Dover model

- Ageing error
- Time-varying growth, spatial growth
- Ontogenetic movement
- Inconsistent depth coverage by the GOA trawl survey over years
- Very small fishery (~3% of the catch limit is caught on average)
- No fishery age data

PT, Sept, 2019: The Team recommends that, time permitting, the exploratory two-box model be included in the assessment as an appendix.

Included.

 PT, Sept, 2019: The author's "clean up" model performed better than the [CIE] reviewer requested runs and it was proposed for moving forward. The Team agreed that the author's preferred model was appropriate to present on in November.

The "cleaned-up" model will be presented, along with logical advances made after seeing the newest data.

• SSC, Dec. 2015: The SSC requests the authors to consider whether survey data from 1984 and 1987 are comparable or whether they should be removed from the analysis

Considered and removed

GOA Bottom Trawl Survey Longitude by Date

Date

30 minute tows in 1984 and 1987,

15 min tows in more recent years

 SSC, Dec. 2015: The SSC also asks the assessment authors to look into the decline in survey biomass in 2015. Given longevity and natural mortality rate of these flatfish species, the SSC questions whether such a decline is biologically reasonable, given relatively low fishery catches in recent years. As part of a broader analysis for all flatfish species, the SSC requests the assessment authors to consider whether a factor, such as temperature, could have negatively affected survey catchability for some flatfishes in 2015

2017 and 2019 survey biomass was equally low.

Three hypotheses are considered for this:

- 1. Observation error
- 2. Change in catchability
- 3. Change in natural mortality

These were explored within the context of estimating catchability and natural mortality in general

SSC, Dec. 2015: Finally, the SSC noted some odd selectivity curves for the full coverage survey (Fig. 10, p. 604). The authors are requested to consider the validity of a selectivity curve that appears asymptotic on the left-hand side of the curve, but drops precipitously to zero on the right-hand side of the curve. Is the right-hand side of the relationship informed by convincing data or should a straightforward asymptotic selectivity curve be assumed?

The "cleaned-up" model uses data inputs that better inform some selex parameters, and fixes selectivity parameters that are still poorly estimated

Top CIE Reviewer Requests

- Estimate catchability with a prior
- Remove all 1984 and 1987 data
- Stop estimating so many early-period recruitment deviations
- Even one year of fishery age data would help
- Francis data weighting

Data used in the models

Source	Туре	Years
Fishery	Catch biomass	1978-Oct. 19, 2019
Fishery	Catch length composition	1991-Oct. 19, 2019
GOA survey bottom trawl	Survey biomass	Triennial: 1984-1999, Biennial: 2001-2019
GOA survey bottom trawl	Catch length composition	Triennial: 1990-1999, Biennial: 2003-2019 (1984, 1987, and 2001 data are excluded)
GOA survey bottom trawl	Catch age composition, conditioned on length	Triennial: 1990-1999, Biennial: 2003-2019 (1984, 1987, 1990, and 2001 data are excluded)

2015 Model Structure (last accepted assessment) Growth:

- Conditional age-at-length approach
- Estimated parameters of the von-Bertalanffy growth within the model
- Estimated CV of length-at-age for youngest and oldest fish within the model

2015 Model Structure (last accepted assessment) Selectivity:

- Fishery selectivity length-based, double-normal
- "Full coverage" survey selectivity: age-based, sex-specific double-normal, asymptotic.
- "Shallow coverage" survey selectivity: age-based, sex specific double-normal, dome-shape allowed

2015 Model Structure (last accepted assessment) Other details:

- Estimated initial equilibrium F (but this is low, as are historical catches)
- Ageing error incorporated (borrowed from West Coast Dover sole assessment)
- Recruitment deviations prior to 1984 ("early-period recruits") were estimated separately from main-period recruits (1984-2008)

2015 Model Fixed Parameters

- Natural mortality (0.085, as for previous assessments)
- Catchability (1, as for previous assessments)
- Weight-length relationship
- Maturity-at-age
- SigmaR = 0.49

Parameters Estimated within the 2015 model

- Ln(RO)
- Recruitment deviations (1965-2012) (no SR curve)
- Length-based, asymptotic fishery selectivity
- Age-based double-normal shallow and full coverage survey selectivity (separately), full coverage survey selectivity restricted to be asymptotic and to reach 1 at a reasonable age
- Yearly fishing mortality rates
- Parameters of the von-Bertalanffy growth curve
- CV of length-at-age for youngest and oldest fish

Bridging Analysis to 2019 Models

• 2015 Accepted Model

Selectivity Estimates:	
Highlighted	

values correspond to a parameter on/near a bound

	Fisł	nery		overage rvey		v Coverage urvey
		Std.		Std.		
Double-normal selectivity parameters	Est	Dev.	Est	Dev.	Est	Std. Dev.
Peak: beginning size for the plateau	48.81	1.27	45.00	0.09	23.16	1.80
Width: width of plateau	Fixed		Fixed		-0.28	0.25
Ascending width (log space)	4.26	0.24	11.96	1.21	5.06	0.22
Descending width (log space)	Fixed		Fixed		-0.73	14.80
Initial: selectivity at smallest length or age						
bin	Fixed		Fixed		-498	11236.20
Final: selectivity at largest length or age bin	Fixed		Fixed		-4.99	0.44
Male Peak Offset	-9.28	1.37	-13.35	1.41	-15.00	0.05
Male ascending width offset (log space)	-1.46	0.37	4.68	119.24	-2.74	0.65
Male descending width offset (log space)	Fixed		Fixed		3.75	14.12
Male "Final" offset (transformation required)	Fixed		Fixed		0.03	0.88
Male apical selectivity	Fixed		Fixed		0.58	0.06

Selectivity	
Estimates:	

Highlighted values correspond to a parameter on/near a bound

		Fish	ery		overage rvey		v Coverage urvey	
			Std.		Std.			
Double-normal selectivity parameter	<u>ſS</u>	Est	Dev.	Est	Dev.	Est	Std. Dev.	
Peak: beginning size for the plateau		48.81	1.27	, 45.00	Limits	the	1.80	
Width: width of plateau	Forces th			Fixed		wness of	0.25	
Ascending width (log space)	to end u		0.24	11.96	the cur betwe	rve en 0 and	0.22	
Descending width (log space)	age 45			Fixed		-0.73	14.80	
Initial: selectivity at smallest length of	or age							
bin		Fixed		Fixed		-498	11236.20	
Final: selectivity at largest length or a	age bin	Fixed		Fixed		-4.99	0.44	
Male Peak Offset		-9.28	1.37	-13.35	1.41	-15.00	0.05	
Male ascending width offset (log spa	ce)	-1.46	0.37	4.68	119.24	-2.74	0.65	
Male descending width offset (log sp	ace)	Fixed		Fixed		3.75	14.12	
Male "Final" offset (transformation r	equired)	Fixed		Fixed		0.03	0.88	
Male apical selectivity		Fixed		Fixed		0.58	0.06	

Selectivity Estimates:
Highlighted values correspond to a parameter on/near a bound

	Fisl	hery		verage vey		v Coverage urvey
	- ·	Std.	- .	Std.		
Double-normal selectivity parameters	Est	Dev.	Est	Dev.	Est	Std. Dev.
Peak: beginning size for the plateau	48.81	1.27	45.00	0.09	23.16	1.80
Width: width of plateau	Fixed		Fixed		-0.28	0.25
Ascending width (log space)	4.26	0.24	11.96	1.21	5.06	0.22
Descending width (log space)	Fixed		Fixed		-0.73	14.80
Initial: selectivity at smallest length or age bin	Fixed		v survey		-498	11236.20
Final: selectivity at largest length or age bin	Fixed		s none of y oldest		-4.99	0.44
Male Peak Offset	-9.28	fish		1.41	-15.00	0.05
Male ascending width offset (log space)	-1.46	0.37	1 62	110 7/	-2.74	0.65
Male descending width offset (log space)	Fixed		Males re selectivit	ach peak tv more	3.75	14.12
Male "Final" offset (transformation required)	Fixed		than 15 y	years	0.03	0.88
Male apical selectivity	Fixed		before fe	emales?	0.58	0.06

Bridging Analysis to 2019 Models

- 2015 Accepted Model
- "Cleaned-up" version of 2015 model
 - Disaggregated age 1-3 age data
 - Omitted 1984 and 1987 survey data (all)
 - Historical F = 0
 - Omit early recruitment deviations
 - Francis data weighting
 - Timing of survey refined to occur in June in model
 - Fixed poorly informed selectivity parameters (desc limb survey selex param, "final" male param)

• No parameters on bounds in cleaned-up model

Bridging Analysis to 2019 Models

- "Cleaned-up," but estimate M and q
- "Cleaned-up," estimate M and q with a block on 2014-2019 M and q (estimated separately in these years)

Distribution of natural mortality estimates

(weighted average of methods)

http://barefootecologist. com.au/shiny m.html

Author: Jason Cope

Bridging Analysis

Index

CleanedUp2015 EstMQ_NoBlock EstMQ_BlockMQ

Year

Bridging Analysis: Problem with retrospective pattern

Bridging Analysis: Key Parameter Values

	2015 Model + new data		Cleaned-up 2015 Model + new data		Est time- invariant M and Q (Model 19.0)		Est M & Q 1978-2014, est separate 2014-2019 M & Q	
Parameter	Est	Std. Dev.	Est	Std. Dev.	Est	Std. Dev.	Est	Std. Dev.
Natural mortality (f)	0.085		0.085		0.069	0.003	0.066	0.003
Natural mortality (m)	0.085		0.085		0.057	0.003	0.053	0.003
Natural mortality (f), 2014-2019							0.105	0.02
Natural mortality (m), 2014-2019							0.111	0.02
Length at age 3 (f)	26.30	0.50	24.26	0.75	24.55	0.76	24.47	0.77
Length at age 59 (f)	52.55	0.46	51.24	0.34	50.83	0.31	50.75	0.31
von Bertalanffy k (f)	0.11	0.01	0.15	0.01	0.16	0.01	0.16	0.01
CV in length at age 3 (f)	0.15	0.01	0.16	0.01	0.16	0.01	0.16	0.01
CV in length at age 59 (f)	0.10	0.00	0.10	0.00	0.10	0.00	0.10	0.00
Length at age 3 (m)	23.82	0.84	26.65	0.93	26.53	0.89	26.54	0.91
Length at age 59 (m)	43.50	0.21	43.80	0.30	43.48	0.28	43.44	0.27
von Bertalanffy k (m)	0.24	0.02	0.20	0.02	0.20	0.02	0.20	0.02
CV in length at age 3 (m)	0.17	0.01	0.15	0.01	0.15	0.01	0.15	0.01
CV in length at age 59 (m)	0.09	0.00	0.08	0.00	0.08	0.00	0.08	0.00
$\ln(\mathbf{R}_0)$	9.44	0.04	9.65	0.04	9.36	0.14	9.13	0.11
Log catchability (ln(q))	0.00	NA	0.00		-0.17	0.12	0.12	0.10
Log catchability (ln(q)), 2014- 2019							-0.16	0.10

2019 Candidate Models

Model 19.0: "Cleaned-up," but M and q estimated (time-invariant)

=> Low recent survey bio. due to observation error

Model 19.1: As for 19.0, but M block 2014-2019

=> Low recent survey bio. due to change in natural mortality

Model 19.2: As for 19.0, but q fixed at 19.1's estimate for 1978-2013, q estimated 2014-2019

=> Low recent survey bio. due to change in catchability

Model 19.3: As for 19.0, but Q fixed at 19.1's estimate for 1978-2013; M and q block 2014-2019

=> Low recent survey bio. due to both change in natural mortality and change in catchability

Data used in the 2019 candidate models

2019 Candidate Models

2019 Candidate Models

2019 Candidate Models: Key Parameter Values

	Mode	l 19.0	Mode	el 19.1	Mode	el 19.2	Mode	el 19.3
	Est t invaria and	ant M	Est M & Q, est separate M 2014-2019		Est M, est separate Q 2014-2019		Est M, est separate M & Q 2014-2019	
Parameter	Est	Std. Dev.	Est	Std. Dev.	Est	Std. Dev.	Est	Std. Dev.
Natural mortality (f)	0.069	0.003	0.067	0.003	0.068	0.003	0.068	0.003
Natural mortality (m)	0.057	0.003	0.055	0.003	0.056	0.003	0.055	0.003
Natural mortality (f), 2014-2019			0.135	0.02			0.113	0.02
Natural mortality (m), 2014-2019			0.14	0.02			0.119	0.02
Length at age 3 (f)	24.55	0.76	24.54	0.77	24.51	0.77	24.51	0.77
Length at age 59 (f)	50.83	0.31	50.78	0.31	50.78	0.31	50.77	0.31
von Bertalanffy k (f)	0.16	0.01	0.16	0.01	0.16	0.01	0.16	0.01
CV in length at age 3 (f)	0.16	0.01	0.16	0.01	0.16	0.01	0.16	0.01
CV in length at age 59 (f)	0.10	0.00	0.10	0.00	0.10	0.00	0.10	0.00
Length at age 3 (m)	26.53	0.89	26.58	0.91	26.51	0.91	26.55	0.91
Length at age 59 (m)	43.48	0.28	43.45	0.27	43.45	0.27	43.44	0.27
von Bertalanffy k (m)	0.20	0.02	0.20	0.02	0.20	0.02	0.20	0.02
CV in length at age 3 (m)	0.15	0.01	0.15	0.01	0.15	0.01	0.15	0.01
CV in length at age 59 (m)	0.08	0.00	0.08	0.00	0.08	0.00	0.08	0.00
$ln(R_0)$	9.36	0.14	9.33	0.14	9.36	0.07	9.36	0.07
Log catchability (ln(q))	-0.17	0.12	-0.12	0.13	-0.12	Fixed	-0.12	Fixed
Log catchability (ln(q)), 2014-2019					-0.44	0.07	-0.32	0.08

Model 19.3: Retrospective pattern

Year

Model 19.3: Aggregated length comps

Model 19.3: Yearly fishery length comps

Model 19.3: More yearly fishery length comps

Model 19.3: Yearly "fullcoverage" survey length comps

Model 19.3: Yearly "shallowcoverage" survey length comps

Model 19.3: Yearly fits to mean age-at-length (full-coverage survey)

Model 19.3: Yearly fits to mean age-at-length (full-coverage survey)

Model 19.3: Yearly fits to mean age-at-length (shallow-coverage survey)

Risk Table:

- Assessment: 2
- Population dynamics: 1
- Environmental/ecosystem: 1
- Fishery performance: 1

	Assessment- related considerations	Population dynamics considerations	Environmental/ecosystem considerations	Fishery Performance
Level 1: Normal	Typical to moderately increased uncertainty/minor unresolved issues in assessment.	Stock trends are typical for the stock; recent recruitment is within normal range.	No apparent environmental/ecosystem concerns	No apparent fishery/resource- use performance and/or behavior concerns
Level 2: Substantially increased concerns	Substantially increased assessment uncertainty/ unresolved issues.	Stock trends are unusual; abundance increasing or decreasing faster than has been seen recently, or recruitment pattern is atypical.	Some indicators showing an adverse signals relevant to the stock but the pattern is not consistent across all indicators.	Some indicators showing adverse signals but the pattern is not consistent across all indicators
Level 3: Major Concern	Major problems with the stock assessment; very poor fits to data; high level of uncertainty; strong retrospective bias.	Stock trends are highly unusual; very rapid changes in stock abundance, or highly atypical recruitment patterns.	Multiple indicators showing consistent adverse signals a) across the same trophic level as the stock, and/or b) up or down trophic levels (i.e., predators and prey of the stock)	Multiple indicators showing consistent adverse signals a across different sectors, and/or b different gear types
Level 4: Extreme concern	Severe problems with the stock assessment; severe retrospective bias. Assessment considered unreliable.	Stock trends are unprecedented; More rapid changes in stock abundance than have ever been seen previously, or a very long stretch of poor recruitment compared to previous patterns.	Extreme anomalies in multiple ecosystem indicators that are highly likely to impact the stock; Potential for cascading effects on other ecosystem components	Extreme anomalies in multiple performance indicators that an highly likely to impact the stock

Executive Summary

- Projection model for Dover sole using output from age-structured model (Model 19.3)
- Used age 3 recruits
- 2019 catch estimated as 2019 current catch up to Oct 19 + 5-yr average Oct 19-Dec 31 catch
- 2020-2021 catch estimated as 2014-2018 average catch for Dover sole
- No management definitions for Kamchatka flounder

Species	Quantity	As estim <i>specified</i> for	<i>last</i> year	As estimated or <i>recommended this</i> year for:		
		2019	2020	2020*	2021*	
	<i>M</i> (natural mortality rate)	0.085	0.085	0.113(f), 0.119(m)	0.113(f), 0.119(m)	
	Tier	3a	3a	3a	3a	
	Projected total (3+) biomass (t)	145,926	147,001	86,827	84,771	
	Projected Female spawning biomass (t)	49,385	49,418	27,935	27,011	
	$B_{100\%}$	57,871	57,871	19,032	19,032	
Dover sole	$B_{40\%}$	23,148	23,148	7,613	7,613	
	$B_{35\%}$	20,255	20,255	6,661	6,661	
	F _{OFL}	0.12	0.12	0.11	0.11	
	$maxF_{ABC}$	0.1	0.1	0.09	0.09	
	F_{ABC}	0.1	0.1	0.09	0.09	
	OFL (t)	11,190	11,337	6,919	6,796	
	maxABC (t)	9,318	9,441	5,847	5,743	
	ABC (t)	9,318	9,441	5,847	5,743	
	Tier	6	6	6	6	
Greenland	OFL (t)	238	238	238	238	
turbot	maxABC (t)	179	179	179	179	
	ABC (t)	179	179	179	179	
-	Tier	6	6	6	6	
Deepsea sole	OFL (t) maxABC (t)	6 4	6 4	6 4	6 4	
5010	ABC (t)	4	4	4	4	
	OFL (t)	11,434	11,581	7,163	7,040	
	maxABC (t)	9,501	9,624	6,030	5,926	
Deepwater Flatfish Complex	ABC (t)	9,501	9,624	6,030	5,926	
	Status	As determ year	nined last	As determined <i>this</i> year for:		
		2017	2018	2018	2019	
	Overfishing	no	n/a	no	n/a	
	Overfished	n/a	no	n/a	no	
	Approaching overfished	n/a	no	n/a	no	

Area Apportionment (PT chose method in 2016)

- Dover sole proportions from area- and depthspecific random effects models to smooth survey biomass and fill in depth/area gaps
- Greenland turbot and
 deepsea sole
 proportions based on
 average survey
 biomass for each
 species since 2001

				West		
Species	Year	Western	Central	Yakutat	Southeast	Total
		0.8%	33.3%	36.0%	29.9%	100.0%
Dover Sole	2020	47	1,945	2,104	1,751	5,847
Dovel Sole	2021	46	1,911	2,067	1,719	5,743
		100.0%	0.0%	0.0%	0.0%	100.0%
Greenland	2020	179	0	0	0	179
Turbot	2021	179	0	0	0	179
		0.7%	72.8%	14.5%	12.0%	100.0%
Deepsea	2020	0	3	1	0	4
Sole	2021	0	3	1	0	4
Deepwater	2020	226	1,948	2,105	1,751	6,030
Flatfish	2021	225	1,914	2,068	1,719	5,926

• ABCs are applied at the complex level

Extra slides, if needed:

2015 Model Alternative

- Projection model for Dover sole using output from age-structured model
- Used age 3 recruits
- 2019 catch estimated as 2019 current catch up to Oct 19 + 5-yr average Oct 19-Dec 31 catch
- 2020-2021 catch estimated as 2014-2018 average catch for Dover sole
- No management definitions for Kamchatka flounder

		As estin	nated or	As estimated or		
		specified	•	recommended this year		
Species	Quantity	fo	r:	for:		
~ F	C	2019	2020	2020*	2021*	
		2019	2020	2020*	2021	
	M (natural mortality rate)	0.085	0.085	0.085	0.085	
	Tier	3a	3a	3a	3a	
	Projected total (3+) biomass (t)	145,926	147,001	99,530	101,696	
	Projected Female spawning biomass (t)	49,385	49,418	29,908	29,972	
	B100%	57,871	57,871	42,132	42,132	
Dover sole	$B_{40\%}$	23,148	23,148	16,853	16,853	
20101 5010	$B_{35\%}$	20,255	20,255	14,746	14,746	
	Fofl	0.12	0.12	0.11	0.11	
	$maxF_{ABC}$	0.1	0.1	0.09	0.09	
	F _{ABC}	0.1	0.1	0.09	0.09	
	OFL (t)	11,190	11,337	6,718	7,021	
	maxABC (t)	9,318	9,441	5,615	5,868	
	ABC (t)	9,318	9,441	5,615	5,868	
	Tier	6	6	6	6	
Greenland	OFL (t)	238	238	238	238	
turbot	maxABC (t)	179	179	179	179	
	ABC (t)	179	179	179	179	
	Tier	6	6	6	6	
Deepsea	OFL (t)	6	6	6	6	
sole	maxABC (t)	4	4	4	4	
	ABC (t)	4	4	4	4	
	OFL (t)	11,434	11,581	6,962	7,265	
	$\max ABC(t)$	9,501	9,624	5,798	6,051	
	ABC (t)	9,501	9,624	5,798	6,051	
Deepwater Flatfish	Status	As detern year		As determine for	•	
Complex	status	2017	2018	2018	2019	
I	Overfishing	no	n/a	no	n/a	
	Overfished	n/a	no	n/a	no	

Model 19.0 Alternative

- Projection model for Dover sole using output from age-structured model
- Used age 3 recruits
- 2019 catch estimated as 2019 current catch up to Oct 19 + 5-yr average Oct 19-Dec 31 catch
- 2020-2021 catch estimated as 2014-2018 average catch for Dover sole
- No management definitions for Kamchatka flounder

		As estin	nated or	As estimated or		
		specified		recommended this year		
Species	Quantity	fo	r:	fo	r:	
-		2019	2020	2020*	2021*	
		2017	2020	2020	2021	
	M (natural mortality rate)	0.085	0.085	0.069(f), 0.057(m)	0.069(f), 0.057(m)	
	Tier	3a	3a	0.037(III) 3a	0.037(III) 3a	
	Projected total (3+) biomass (t)	145,926	147,001	111,338	113,380	
	Projected Female spawning biomass (t)	49,385	49,418	35,371	35,600	
	B100%	57,871	57,871	49,199	49,199	
Dover sole	$B_{40\%}$	23,148	23,148	19,680	19,680	
Dover sole	B35%	20,255	20,255	17,220	17,220	
	F _{OFL}	0.12	0.12	0.07	0.07	
	$maxF_{ABC}$	0.1	0.1	0.06	0.06	
	F_{ABC}	0.1	0.1	0.06	0.06	
	OFL (t)	11,190	11,337	6,294	6,480	
	maxABC (t)	9,318	9,441	5,306	5,463	
	ABC (t)	9,318	9,441	5,306	5,463	
	Tier	6	6	6	6	
Greenland	OFL (t)	238	238	238	238	
turbot	maxABC (t)	179	179	179	179	
	ABC (t)	179	179	179	179	
_	Tier	6	6	6	6	
Deepsea sole	OFL (t) maxABC (t)	6 4	6 4	6 4	6 4	
5010	ABC (t)	4	4	4	4	
	OFL (t)	11,434	11,581	6,538	6,724	
	maxABC (t)	9,501	9,624	5,489	5,646	
	ABC (t)	9,501	9,624	5,489	5,646	
Deepwater		As determ	nined last	As determin	ed this year	
Flatfish	Status	year		fo		
Complex		2017	2018	2018	2019	
	Overfishing	no	n/a	no	n/a	
	Overfished	n/a	no	n/a	no	
	Approaching overfished	n/a	no	n/a	no	

How do these length-at-age plots compare to another long-lived GOA fish: Pacific Ocean Perch?

POP: Female lengthat-age by cohort and year

factor(Cohort)										
•	1915	٠	1944	٠	1963	٠	1981	•	1999	
•	1920	•	1945	٠	1964	٠	1982	•	2000	
٠	1923	•	1946	٠	1965	٠	1983	٠	2001	
+	1927	•	1947	٠	1966	•	1984	•	2002	
•	1930	•	1948	٠	1967	٠	1985	٠	2003	
•	1931	•	1949	٠	1968	٠	1986	•	2004	
٠.	1932	•	1950	•	1969	٠	1987	•	2005	
•	1933	•	1951	٠	1970	٠	1988	٠	2006	
۰.	1934	•	1952	٠	1971	٠	1989	•	2007	
•	1935	•	1953	٠	1972	•	1990	•	2008	
•	1936	•	1954	٠	1973	٠	1991	٠	2009	
+	1937	+	1955	٠	1974	•	1992	+	2010	
•	1938	•	1956	٠	1975	•	1993	٠	2011	
•	1939		1957	٠	1976	•	1994	•	2012	
•	1940	٠	1959	٠	1977	•	1995	٠	2013	
•	1941	•	1960	٠	1978	•	1996			
•	1942	•	1961	٠	1979	٠	1997			
•	1943	•	1962	٠	1980	•	1998			

Age

POP: Male length-atage by cohort and year

Age

factor(Cohort) 96,

POP: Female lengthat-age by cohort, depth, and area

factor(Cohort)

•	1915	•	1944	٠	1963	٠	1981	٠	1999
•	1920	•	1945	٠	1964	٠	1982	٠	2000
•	1923	•	1946	٠	1965	٠	1983	٠	2001
•	1927	•	1947	٠	1966	•	1984	٠	2002
•	1930	•	1948	٠	1967	٠	1985	٠	2003
•	1931	•	1949	٠	1968	٠	1986	٠	2004
•	1932	•	1950	٠	1969	٠	1987	•	2005
•	1933	٠	1951	٠	1970	٠	1988	٠	2006
•	1934	•	1952	٠	1971	•	1989	٠	2007
•	1935	٠	1953	٠	1972	٠	1990	٠	2008
•	1936	•	1954	٠	1973	٠	1991	٠	2009
•	1937	٠	1955	٠	1974	٠	1992	٠	2010
•	1938	٠	1958	٠	1975	٠	1993	٠	2011
•	1939	•	1957	٠	1976	٠	1994	٠	2012
•	1940	•	1959	٠	1977	+	1995	٠	2013
•	1941	•	1960	٠	1978	+	1996		
•	1942	٠	1961	٠	1979	٠	1997		
•	1943	٠	1962	٠	1980	٠	1998		

POP: Male length-atage by cohort, depth, and area

factor(Cohort) 196°

Francis (2011) Data Weighting Method

- Purpose:
 - Initial: to investigate whether effective sample sizes of fishery length comps were reasonable relative to effective sample sizes of survey composition data
 - To assign weights to composition data sources that account for the influence of intra-year correlations in length or age comps that are not explicitly modeled, to avoid preventing the model from fitting the biomass index well
- Examples of correlations not in the model: time-varying selectivity, time- and age-varying natural mortality
- Background:
 - Length and age comp data are often overdispersed relative to the variance assumed by the multinomial likelihood in the model
 - McAllister and Ianelli (1997), Appendix 2: calculates weights to account for overdispersed data relative to variance
 of the multinomial, ignores correlations
 - Pennington and Volstad (2004): Intra-haul correlation lowers effective sample size
 - E.g. fish of similar ages or lengths are often caught together in a haul
 - The precision of the mean lengths or ages based on a sample of fish from marine surveys is much lower relative to the precision of the mean length or age based on a random sample of the population
 - Precision for some marine surveys is close to the number of hauls, not number of fish
 - Francis (2011):
 - Same concept as for Pennington and Volstad, (measuring precision of means), except applied to intra-year correlations, rather than
 intra-haul correlations
 - Same idea as McAllister and Ianelli, but accounts for correlations by comparing variation in mean lengths or ages relative to expected means by year (where means are assumed to be normally distributed)
- Potential alternative: explicitly model time-varying effects that influence proportions at length and age so that residuals are not as correlated

Conditional age-at-length standard deviation plots

Std Dev =
$$\sqrt{age^2}$$
 (proportion-at-age)-(age × proportion-at-age)²

- Observed standard deviations are often low (or 0) for larger length bins because there are few samples (or 1 sample) in those bins
- Expected standard deviations at larger length bins are a direct function of the modeled numbers at age and length.
 - standard deviations reflect the model's interpretation of the population variability in ages within a length bin and not a standard deviation calculated from a sample.
- Variability in expected standard deviation can occur from year to year due to fluctuations in recruitment and fishing mortality