

2016 BSAI Tier 3 rockfish presentations

NOAA
FISHERIES

Paul Spencer Alaska Fisheries Science Center

Outline

1) Catch information
2) Survey and fishery data
3) Iterative reweighting of composition data, modeling availability
4) Model evaluation
5) Retrospective analysis
6) Model fits to data
7) Calculation of B40\%
8) Management recommendations

BSAI Blackspotted/Rougheye catch by month and area, 2011-2016

BSAI Blackspotted/Rougheye bycatch rates by target fishery and area, 2004-2016

Bycatch rates, WAI	Bycatch rates, EAI
Bycatch rates, CAI	Bycatch rates, POP fishery

Distributions of bycatch rates in the POP fishery in the WAI area, 20122016

Square root of survey CPUE, 2012 - 2016 AI surveys

2012 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)

2014 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)

2016 AI Survey Blackspotted/Rougheye Rockfish CPUE (scaled wgt/km²)

Size compositions from recent Al surveys

Mean size and age in the Al survey

Proportion of tows with no catch

Square root of 2012 - 2016 EBS surveys

2010 EBS Survey Blackspotted/Rougheye Rockfish CPUE (wgt/km²)

2012 EBS Survey Blackspotted/Rough eye Rockfish CPUE (wgt/km ${ }^{2}$)

2016 EBS Survey Blackspotted/Rougheye Rockfish CPUE (wgt/km²)

EBS survey biomass estimates and CVs

Year	EBS slope survey
2002	$553(0.20)$
2004	$646(0.16)$
2008	$829(0.24)$
2010	$999(0.25)$
2012	$1,594(0.51)$
2016	$458(0.27)$

Smoothed survey biomass estimates

NOAA FISHERIES

BSAI blackspotted/rougheye fishery age composition data

1998 cohort appears to be stronger in 2009 than in 2011

1996
1997
1998
1999

BSAI blackspotted/rougheye AI survey age composition data

1998 and 1999 still appear to be relatively strong cohorts

BSAI blackspotted/rougheye EBS survey age composition data

1998 cohort is appears to be low

Updates to Assessment Model

- Recent comments from the BSAI Plan Team has encouraged evaluation of including EBS slope survey data into Tier 3 BSAI rockfish models
- For the BSAI blackspotted/rougheye rockfish model, this would require expanding the area of the model from Al to the BSAI

General approach for survey catchability

- In the current Al-only model for blackspotted/rougheye rockfish, the area of the Al survey matches the area of the modeled stock
- With a BSAI model, some portion of the modeled stock would not be "available" to the Al survey
- The "availability" of the stock was modeled from the relative proportions of smoothed estimates of survey biomass

Modification to survey catchability

Old approach

$$
S_{a, t}=q B_{a, t}
$$

New approach

$$
S_{a, t}=p_{A I, t} q B_{a, t}
$$

$B_{a, t}=$ modeled biomass at age a in year t (after adjusting for survey selectivity).
$S_{a, t}=$ Predicted AI survey biomass at age a and year t.
$q=$ survey catchability
$p_{A I}=$ proportion of stock in the AI area

Time series of relative proportion of BSAI survey biomass in Al subarea

Methods for re-weighting composition data (from Francis 2011)

General approach is that the "second stage" sample sizes $\left({\underset{\sim}{N}}_{j, y}\right)$ are the product of a "first stage" sample sizes $\left(\tilde{N}_{j, y}\right)$ and a weight

$$
N_{j, y}=w_{j} \tilde{N}_{j, y}
$$

A single weight for each data type (j)
The weights are updated with each model run, and iterated until they converge

Methods of data weighting

Inverse of residual variance (method TA1.2 in Francis 2011)
Weight by the inverse of the variance of the standardized residuals

McAllister-lanelli (method TA1.1 in Francis 2011) Weight by the harmonic mean of the ratios of effective sample size to the stage 1 sample size
"The Francis method" (method TA1.8 in Francis 2011) Weight by the inverse of the variance of standardized residual between the means of observed and predicted ages (or lengths). One data point per year.

Models evaluated (AI and BSAI models)

- Model 0
- Model 14
- Model 16.1
- Model 16.2
- Model 16.3
- Model 16.4
- Model 16.5
- Model 16.6
- Model 16.7

The 2014 Al model results
The 2014 model with AI data updated through 2016 BSAI model, with EBS slope survey data, age/length data weights set to 2014 values
Model 14, but reweighting with McAllister-lanelli method Model 14, but with reweighting with SDNR method Model 14, but with reweighting with Francis method Model 16.1, but reweighting with McAllister-lanelli method
Model 16.1, but with reweighting with SDNR method Model 16.1, but with reweighting with Francis method

Comparison with the 2014 assessment (with the age/length comps weights used in 2014)

Difference in updated models is due to reduced estimate of 1998 year class

Recent fishery length comp data do not support the high estimate of the 1998 year class in the 2014 assessment

NOAA FISHERIES

2016 Al survey estimate also does not support the high estimate of the 1998 year class in the 2014 assessment

- The 2016 Al survey estimate was projected from estimated 2014 numbers at age from the 2014 assessment
- Projected 2016 Al survey biomass (for AI area) 12996 t
- Observed 2016 AI survey biomass (for AI area) 9469 t

Biomass index for Al survey

AI and BSAI models were similar

Total biomass

AI and BSAI models were similar

Fit to Al survey

Fit to EBS survey

Agellength comp weights

Data weights * mean \# of hauls

BSAI Blackspotted/Rougheye retrospective pattern, Model 16.5

Mohn's rho $=0.72$
(0.78 in 2014 assessment)

BSAI Blackspotted/Rougheye retrospective pattern, Model 16.2

Mohn's rho $=0.81$
(0.78 in 2014 assessment)

Recommended model is 16.5 (BSAI model with McAllister-lanelli weights

- Trend in the EBS survey biomass index is consistent with model 0 and earlier assessments
- Recruitment from BSAI models are broadly consistent with the Al-only models, although some year-class strengths differ.
- Models with the Francis weights have marginal improvements to the survey indices, but large differences in biomass.

Fit to Al survey

Fit to fishery age and length compositions

Fit to survey age compositions

EBS Survey age composition data

Fishery and survey selectivity curves

NOAA FISHERIES

Estimated recruitment

Exploitation rates by area

How do we define $\mathrm{B}_{40 \%}$?

$$
\text { Stock status }=\frac{B}{\overline{R^{*}} S P R_{F A 4 \%}}=\frac{B}{B_{40 \%}}
$$

- 2010 - Mean recruitment based on 1977 - 1995 year classes
- 2012 -- Mean recruitment was based on all estimated year classes (1977-2006)
- 2014 -- Mean recruitment was based on the 1977-1998 year classes (Rationale: 10\% selection in the AI survey)
- 2016 - Proposed mean recruitment based on 1977-2000 year classes (Rationale: excludes 2002 year class, which is large and may be relatively uncertain)

Estimated recruitment and CVs

Recommended rule for choosing year classes is the cohorts that correspond to the age at 10% selection, plus (0.05/M)

This rule would include the 2002 year class in some models, but exclude it in other, even though the estimates of this year class (and its variability) are similar)

Relative stock status (Model 16.5)

Year classes 1977-2000: 2016 SSB = $B_{31 \%}$

Year classes 1977 - 2002: 2016 SSB = $\mathrm{B}_{24 \%}$

Effect of cohorts used for mean recruitment on depletion and ABC

	Model 16.2	Model 16.3	Model 16.4	Model 16.5	Model 16.6	Model 16.7
Final year class for mean recruitment	2000	2000	2006	2002	2002	2003
Mean recruitment (millions)	1.513	1.630	1.077	1.905	2.040	1.448
$B_{40 \%}(\mathrm{t})$	8632	9147	6545	10728	11299	8554
$\mathrm{~B}(2016) / \mathrm{B}_{40 \%}$	0.743	0.733	0.748	0.610	0.591	0.687
2017 ABC	469	488	318	383	381	391
2017 ABC , recs from 1977-2000 YC	469	488	357	501	511	489

Subarea ABCs

- In previous assessments, combining the survey biomass estimates from the EBS and Al surveys assumed equivalent selectivities and catchabilities
- In this assessment, the estimated selectivities and catchabilities can be used to produce an 'adjusted' EBS slope survey

$$
B_{a t j, t}=B_{t}\left(\frac{\sum_{a} q_{A 1} s_{A l, a} w_{a} N_{a, t}}{\sum_{a} q_{E B S} s_{E B S, a} w_{a} N_{a, t}}\right)
$$

EBS survey adjustment ratio

For 2016, the ratio is 0.53 .

Suggest that the biomass for the EBS slope is increased (relative to the Al) because of higher selectivity at younger ages

		Area			
	WAI	CAI	EAI	SBS	EBS slope
Unadjusted smoothed biomass	520	2,995	4,022	462	1,010
percentage	5.78%	33.24%	44.64%	5.13%	11.21%
Adjusted smoothed biomass	520	2,995	4,022	462	538
percentage	6.10%	35.08%	47.11%	5.41%	6.30%

Recommended ABC and OFL

	Total					
Area/subarea	Year	${\text { Biomass (t) }{ }^{1}}$	OFL	ABC	TAC	Catch 2
BSAI	2015	41,780	560	453	349	173
	2016	43,944	693	561	300	149
	2017	35,669	612	501	n / a	n / a
	2018	37,474	750	614	n / a	n / a
	2015		304	200	117	
Western/Central	2016		382	200	85	
Aleutian Islands	2017		207	n / a	n / a	
	2018		252	n / a	n / a	
			149	149	64	
Eastern AI/Eastern	2015		179	100	64	
Bering Sea	2016		294	n / a	n / a	
	2018		362	n / a	n / a	

Recommended maximum subarea species catch (MSSC)

		Area			
	WAI	CAI	EAI	SBS	EBS slope
Unadjusted smoothed biomass	520	2,995	4,022	462	1,010
percentage	5.78%	33.24%	44.64%	5.13%	11.21%
Adjusted smoothed biomass	520	2,995	4,022	462	538
percentage	6.10%	35.08%	47.11%	5.41%	6.30%

	WAI	CAI
	MSSC	MSSC
2017 MSSCs	31	176
2018 MSSCs	37	215

Other methods for apportioning the MSSC

Model 16.5

	WAI	CAI	EAI	SBS	EBS slope
Weighted average					
biomass	494	3977	4023	468	663
proportion	0.051	0.413	0.418	0.049	0.069
Unweighted average					
biomass	475	4650	3641	439	608
proportion	0.048	0.474	0.371	0.045	0.062
Model 16.2 (AI only, $A B C=469 t)$					
	WAI	CAI	EAI		WAI MSSC
Random effects model					
biomass	520	2995	4022		
proportion	0.069	0.397	0.534		32
Weighted average					
biomass	494	3977	4023		
proportion	0.058	0.468	0.474		27
Unweighted average					
biomass	475	4650	3641		
proportion	0.054	0.530	0.415		25

Reasons for reduction in WAI MSSC

- Reduction in estimated stock size and BSAI ABC (from 561 t to 501 t)
- With the 2016 model, the WAI percentage is relative to the entire BSAI area, not the Al subarea
- Increased survey abundance in the EAI, and reduced abundance in the WAI
- 'Small' changes in small percentages can have relatively large proportional differences

'Small' changes in small percentages can have relatively large proportional differences

From 2014 assessment

	Area			
	WAI	CAI	WAI+CAI	EAI
Weighted average biomass (t)	722	4,446	5,167	2,643
Proportion of biomass	9.2%	56.9%	66.2%	33.8%
Estimated 2014 biomass (from				
random effects model)	566	3,152	3,718	1,425
Proportion of biomass	11.0%	61.3%	72.3%	27.7%

	WAI	CAI	WAI-CAI
ABC (2015, weighted average)	39	239	278
ABC (2015, RE model)	46	257	304
ABC (2016, weighted average)	48	297	345
ABC (2016, RE model)	57	320	377

BSAI POP Outline

1) Catch information
2) Survey and fishery data
3) Iterative reweighting of composition data, modeling availability, removal of CPUE index
4) Model evaluation
5) Retrospective analysis
6) Model fits to data
7) Management recommendations

BSAI POP catch by month and area, 2011-2016

Survey CPUE, 2012 - 2016 AI surveys

NOAA FISHERIES

Survey CPUE, 2010 - 2016 EBS surveys

2016 EBS Survey POP CPUE (wgt/km²)

Year	EBS slope survey
2002	$72,665(0.53)$
2004	$112,273(0.38)$
2008	$107,886(0.41)$
2010	$203,421(0.38)$
2012	$231,046(0.38)$
2016	$357,369(0.68)$

POP fishery age composition data

NOAA FISHERIES

POP AI survey age composition data

Top 10 year classes since 1977

POP EBS survey age composition data

Top 10 year classes since 1977

Time series of relative proportion of BSAI survey biomass in Al subarea

Models evaluated

- Model 0
- Model 14
- Model 16.1
- Model 16.2
- Model 16.3
- Model 16.4
- Model 16.5

The 2014 Al model results
The 2014 model with AI data updated through 2016
Model 14, but with EBS slope survey data, age/length data weights set to 2014 values
Model 16.1, but removal of CPUE time series Model 16.2, but with reweighting age/length compositions with McAllister-lanelli method
Model 16.2, but reweighting with SDNR
Model 16.2, but reweighting with Francis method

Estimates of total biomass

Percent change in total biomass between models 16.1 (with CPUE index) and 16.2 (without CPUE index)

Fit to the Al survey

Fit to the EBS survey index

Agellength composition weights

Data weights

Data weights * mean input sample size

BSAI POP retrospective pattern

Mohn's rho $=-0.35$
(-0.34 in 2014 assessment)

Recommended model is 16.3 (McAllister-lanelli weights)

- Trend in the EBS survey biomass index is consistent trend in Al survey biomass index
- Removal of historical CPUE index had relatively little effect on model dynamics, and the methodology for these data is not well documented
- Models with the Francis weights have marginal improvements to the survey indices, but large differences in biomass

BSAI POP catch and fit to Al survey biomass

BSAI POP recruitment

BSAI fishery age composition

Al survey age composition

EBS survey age composition

EBS and AI survey selectivity

Survey catchability

Survey catchability (unadjusted for availability)
AI: $\quad 1.37$
EBS: 1.88

Fishery selectivity

NOAA FISHERIES

Phase plane plot

Reference points and ABCs

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2016	2017	2017	2018
M (natural mortality rate)	0.062	0.062	0.058	0.058
Tier	3a	3a	3a	3a
Projected total (age 3+) biomass (t)	557,886	542,162	767,767	753,302
Female spawning biomass (t)				
Projected	222,369	211,339	314,489	307,808
$B_{100 \%}$	423,008	423,008	536,713	536,713
$B_{40 \%}$	169,203	169,203	214,685	214,685
B35\%	148,053	148,053	187,849	187,849
$F_{\text {OFL }}$	0.109	0.109	0.101	0.101
$\operatorname{maxF}_{A B C}$	0.089	0.089	0.082	0.082
$F_{A B C}$	0.089	0.089	0.082	0.082
OFL (t)	40,529	38,589	53,152	51,950
$\operatorname{maxABC}(\mathrm{t})$	33,320	31,724	43,723	42,735
ABC (t)	33,320	31,724	43,723	42,735
	As determined	ear for:	As determined	ear for:
Status	2014	2015	2015	2016
Overfishing	No	n/a	No	n/a
Overfished	n / a		n/a	No
Approaching overfished	n / a		n/a	No

Smoothed survey time series by subarea

EBS survey adjustment ratio

For 2016, the ratio is 0.94 .

	Area				
	WAI	CAI	EAI	SBS	EBS slope
Unadjusted smoothed biomass	356,896	216,425	278,507	83,742	245,905
percentage	30.21%	18.32%	23.57%	7.09%	20.81%
Adjusted smoothed biomass	356,896	216,425	278,507	83,742	230,736
percentage	30.60%	18.56%	23.88%	7.18%	19.78%

Subarea ABCs

Area	Year	Age 3 Bio (t)	OFL	ABC	TAC	Catch 1
	2015	577,967	42,558	34,988	32,021	31,425
BSAI	2016	557,886	40,529	33,320	31,900	24,796
	2017	767,767	53,152	43,723		
	2018	753,302	51,950	42,735		
	2015			8,771	8,021	7,918
Eastern Bering Sea	2016		8,353	8000	3,743	
	2017		11,789	n / a	n / a	
	2018		11,523	n / a	n / a	
	2015		8,312	8,000	7,865	
Eastern Aleutian	2016		7,916	7900	5,780	
Islands	2017		10,441	n / a	n / a	
	2018		10,205	n / a	n / a	
	2015		7,723	7,000	6,834	
Central Aleutian	2016		7,355	7000	6,608	
Islands	2017		8,113	n / a	n / a	
	2018		7,930	n / a	n / a	
	2015		10,182	9,000	8,808	
		9,696	9000	8,663		
Western Aleutian	2016		13,380	n / a	n / a	
Islands	2017		13,077	n / a	n / a	
	2018					

Research topics

- Evaluate natural mortality for POP

BSAI Northern Rockfish Outline

1) Catch information
2) Survey and fishery data
3) Iterative reweighting of composition data, modeling availability
4) Model evaluation
5) Model fits to data
6) Retrospective analysis
7) Management recommendations

BSAI northern rockfish catch by month and area, 2011-2016

Square root of survey CPUE, 2012 - 2016 Al surveys

2012 AI Survey Northern Rockfish CPUE (scaled wgt/km ${ }^{2}$)

2014 AI Survey Northern Rockfish CPUE (scaled wgt/km²)

2016 AI Survey Northern Rockfish CPUE (scaled wgt/km²)

BSAI northern rockfish fishery age compositions

NOAA FISHERIES

BSAI northern rockfish survey age compositions

NOAA FISHERIES

Models evaluated

- Model 0
- Model 14
- Model 16.1
- Model 16.2
- Model 16.3

The 2014 Al model results
The 2014 model with data updated through 2016
Model 14, but with reweighting age/length compositions with McAllister-lanelli method
Model 14, but reweighting with SDNR
Model 14, but reweighting with Francis method

Estimates of total biomass

Fit to the Al survey

Weights for age/length composition data

Data weights

Data weights * mean input sample size

Recommended model is 16.1 (McAllister-lanelli weights)

Retrospective pattern

Mohn's rho $=-0.18$
(2014 assessment: -0.15)

Catch, and fit to AI survey

Recruitment

Fishery age composition

NOAA FISHERIES

Al survey age composition

Survey age composition data

NOAA FISHERIES

Fishery and AI survey selectivity

Phase plane plot

Reference points and ABCs

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2016	2017	$2017{ }^{*}$	2018*
M (natural mortality rate)	0.049	0.049	0.046	0.046
Tier	3a	3 a	3 a	3 a
Projected total (age 3+) biomass (t)	213,674	209,369	248,160	245,693
Female spawning biomass (t)				
Projected	91,648	88,326	107,660	106,184
$B_{100 \%}$	144,420	144,420	164,674	164,674
$B_{40 \%}$	57,768	57,768	65,870	65,870
$B_{35 \%}$	50,547	50,547	57,636	57,636
$F_{\text {OFL }}$	0.087	0.087	0.080	0.080
$\operatorname{maxF}_{A B C}$	0.070	0.070	0.065	0.065
$F_{A B C}$	0.070	0.070	0.065	0.065
OFL (t)	14,689	14,085	16,242	15,854
$\operatorname{maxABC}(\mathrm{t})$	11,960	11,468	13,264	12,947
ABC (t)	11,960	11,468	13,264	12,947
Status	As determined last year for: for:		As determined this year for:	
	2014	2015	2015	2016
Overfishing	No	n/a	No	n/a
Overfished	n / a	No	n / a	No
Approaching overfished	n / a	No	n / a	No

Future research plans

- Size at age differs between AI subarea, but the model does not incorporate this
- Slow-growing fish may also affect aging error matrix
- Examine whether different growth curves should be used for the fishery and population (most of the stock is in the western AI, but most of the catch is in the eastern and central AI)
- Options:
a) use weighted average when computing length at age
b) apply age-length keys by subarea

Growth

Generally, lower values of K and
$L_{\text {inf }}$ in the western AI compared to the central and eastern AI

Sampling of fishery length compositions by subarea may be disproportionate to fishery catch

Length composition by area, 2013

