NOAAA

BSAI Flathead Sole Complex

Cole Monnahan \& Rebecca Haehn November 2020 Plan Team

Brief intro \& background

- Tier 3a model, full assessment even years
- Complex comprises flathead sole and Bering flounder ($\sim 0.2 \%$ catch)
- Caught by non-pelagic trawl primarily, but ~15-30\% from pelagic trawl
- The model is very stable and consistent among variants with low retrospective bias

Model Structure

- Sex- and age-structured stock synthesis v3.30 (ages 3-21+)
- Sex-specific selectivity:
. Fishery: length, dome-shaped, blocks
- Survey: age, logistic
- Sex-specific growth estimated internally using conditional age-at-length data
- Estimated early recruitments for initial age structure
- Francis data weighting used

Model Structure

Parameters estimated outside the model:

- Natural mortality ($M=0.2$, both sexes)
- $\sigma_{R}=0.5$
- $q=1$ (no temperature link)
- Maturity (50\% at 9.7 yrs, 95% at 12.8)
- Ageing error matrix, length-weight relationship
- 1:1 sex ratio

Executive Summary

Projections based on
estimated catch:
8,669 t in 2020
11,519 t in 2021
11,519 t in 2022

	$B_{40 \%}$	74,221	74,221	71,280	71,280
62,567 t is 8.17\%	$B_{35 \%}$	0.47	0.47	0.46	0.46
decrease in ABC from	$F_{\text {OFL }}$	0.38	0.38	0.37	0.37
maxF	maBC	0.38	0.38	0.37	0.37
$F_{A B C}$	82,810	86,432	75,863	77,763	
	OFL (t)	68,134	71,079	62,567	64,119
	maxABC (t)	68,134	71,079	62,567	64,119

Changes in assessment inputs

- Updated catch biomass (final for 2018 and 2019; 2020 extrapolated catch)
- Fishery ages (2018-2019)
- Fishery lengths (2020)
- 2019 EBS shelf survey biomass \& updated linear regression to predict missing AI years
- Survey ages (1999, 2018-2019)
- Survey lengths (2019)

Changes in assessment methodology

- 2018 model included major improvements and exploration based on CIE review.
- Resulting model is very stable and consistent among alternatives.
- 2018 accepted model: 18.2c
- No new models considered: 18.2c (2020)

Changes in assessment methodology

SSC October 2019: The SSC recommends the authors complete the risk table and note important concerns or issues associated with completing the table.

Risk table added, no areas of concern were found (all level 1) so no reduction from maxABC recommended

Response to SSC comments

December 2018 SSC: The author notes that average summer bottom temperature may not be adequate to describe the relationship among the environmental drivers of flathead sole stock distribution and behavior. The SSC recommends that this continue to be explored. -No exploration of environmental drivers were done this year. Using spatially-varying coefficient models in VAST seem promising alternative

Data inputs

Data inputs: catch history

Catch distribution

SpeciesBering_flounder flathead_sole

Stable SSB trends

Good fit to index

Good retrospective patterns

Pretty good composition fits

Total biomass (age 3+) is increasing due to recent large recruitments

Have not matured so SSB declining but projected to increase w/ similar catches

Status trends

Risk table

- Model fits well, consistently above target biomass
- Data suggest no apparent ecosystem concerns, although predation pressure may be rising (E . Siddon)
- No ESP, but catches fraction of ABC ($\sim 16 \%$)

Assessment-related considerations	Population dynamics considerations	Environmental/ ecosystem considerations	Fishery Performance considerations
Level 1: no increased concerns			

Future work

- Explore estimation of natural mortality (\& catchability?)
- Revisit temperature/catchability relationship using VAST, which would allow for more sophisticated relationships (e.g., spatiallyvarying cold pool effect)
- Split pelagic trawl fishery off and estimate separate selectivity
- Use VAST to estimate BS \& AI joint index, replacing the linear regression approach used

Questions? Discussion?

Projections based on estimated catch: 8,669 t in 2020 $11,519 \mathrm{t}$ in 2021
11,519 t in 2022

$62,567 \mathrm{t}$ is 8.17% decrease in ABC from 2020	$\mathrm{B}_{40 \%}$ $B_{35 \%}$	84,824 74,221	84,824 74,221	81,463 71,280	81,483 71,280
	$F_{\text {OFL }}$	0.47	0.47	0.46	0.46
	$\operatorname{maxF}_{\text {ABC }}$	0.38	0.38	0.37	0.37
	$F_{\text {ABC }}$	0.38	0.38	0.37	0.3
	OFL (t)	82,810	86,432	75,863	77,763
	maxABC (t)	68,134	71,079	62,567	64,119
	ABC (t)	68,134	71,079	62,567	64,119

