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Invasive tunicate restructures invertebrate community
on fishing grounds and a large protected area on Georges
Bank
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Abstract Marine invasive species can profoundly

alter ecosystem processes by displacing native species

and changing community structures. The invasive

tunicate Didemnum vexillum was first found on the

northern edge of Georges Bank in 1998. It can form

encrusting colonies on gravel substrates that are also a

preferred habitat for a number of other invertebrates.

In this study we used data collected via HabCam, a

vessel-towed underwater imaging system, to investi-

gate the distribution ofD. vexillum and its relationship

to other epibenthic macroinvertebrates in a portion of

Georges Bank that includes fishing grounds and an

area protected from bottom-fishing. This novel tech-

nology provides imaging of epibenthic species distri-

butions in areas of the benthic environment that were

previously unobservable. We found that D. vexillum

density is negatively correlated with the Atlantic sea

scallop (Placopecten magellanicus), barnacles (genus

Balanus), the tube anemone (genus Cerianthus), the

green sea urchin (Strongylocentrotus droebachiensis),

the globular sponge of the genus Polymastia, and

Bryozoa. However D. vexillum is positively correlated

with Cancer spp. Crabs, the tube forming polychaete,

Filograna implexa, and Asterias spp. sea stars. The

hypothesis that D. vexillum restructures the inverte-

brate community is supported by principal compo-

nents analysis, revealing it as a primary driver of

variation in the community when present. Addition-

ally, there is an effect of the closed area as compared to

fishing grounds on the structure of the invertebrate

community and the abundance of certain species as

consistent with previous studies, bottom-fishing

affects invertebrate community structure. Principal

components analysis revealed that bottom-fishing also

appears to weaken clustering among species in the

invertebrate community as compared to the commu-

nity structure in the closed area. Biodiversity in high

gravel sites of the epibenthic environment, as mea-

sured by the Shannon diversity index, also declined

with increasing D. vexillum percent cover, while the

open and closed areas were not significantly different

in their level of biodiversity. D. vexillum appears to be

the key driver of biodiversity decline in the epibenthos
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when present, rather than other processes such as

direct disturbance and extraction from dredging. This

research evaluates ecological responses to the pres-

ence of an invasive tunicate and suggests that this

invasive species is a major force in shaping the

ecological interactions in invaded areas.

Keywords Essential fish habitat � Vessel-towed
underwater camera system � Sea squirt � Non-
indigenous species � Ascidians � Marine protected

areas � Hurdle models � Hierarchical models

Introduction

Invasive species in marine environments have been

shown to displace native species, change community

structure and food webs, and alter fundamental

ecosystem processes (Molnar et al. 2008). It has been

difficult for researchers to disentangle the effects of

habitat modification and invasive species on native

species diversity leading to debate about the direct and

indirect processes driving invasive species dominance

(MacDougall and Turkington 2005; Didham et al.

2005; Chabrerie et al. 2008). Habitats with invasive

species are generally modified by other processes,

therefore it is frequently unclear if the invasive species

drive native species loss and declines in biodiversity,

if they are opportunists taking advantage of habitat

modified by other processes in which low diversity

enables their dominance, or if disturbance causes both

ecological change and invasion independently (Mac-

Dougall and Turkington 2005; Didham et al. 2005;

Chabrerie et al. 2008). While the driver hypothesis

states that invasive species drive ecosystem changes,

the passenger hypothesis posits that other processes

drive ecological change and invasive species then are

able to dominate environments as an indirect conse-

quence (MacDougall and Turkington 2005). Although

some studies have supported the passenger hypothesis

(MacDougall and Turkington 2005; Chabrerie et al.

2008; Grarock et al. 2014; South and Thomsen 2016),

other studies have found that invasive species are the

drivers of ecological change (Hermoso et al. 2011;

White et al. 2013). Another alternative hypothesis is

the ‘back-seat driver’ hypothesis which states that the

invasive species requires and benefits from distur-

bance to ecosystem processes leading to the decline of

native species, but then the invasive contributes to

further declines of native species (Bauer 2012), which

other studies have also supported (Berman et al. 2013;

Fenesi et al. 2015). Although disentangling these

forces is difficult, large scale in situ observations of

invasive species in habitats characterized by different

disturbance regimes can help elucidate the forces

driving community change.

In 1998, an invasive sea squirt Didemnum vexillum

was detected on Georges Bank, and has since

colonized at least 230 km2 of pebble-gravel habitat

on Georges Bank (Valentine et al. 2007a, b; Bullard

et al. 2007; Cohen et al. 2011; Moore et al. 2014). This

tunicate originated from coastal Japan (Stefaniak et al.

2012) and is a global invader that has spread to

Europe, New Zealand and both coasts of North

America (Kott 2002; Bullard et al. 2007; Gittenberger

2007; Epelbaum et al. 2009; Cohen et al. 2011;

Stefaniak et al. 2012; Moore et al. 2014). It is

considered a nuisance species because it can foul ship

hulls and maritime structures in addition to invading

shellfish aquaculture sites and fishing grounds (Daley

and Scavia 2008; Carman et al. 2009).D. vexillum can

reproduce both sexually and asexually. However

asexual reproduction and fragmentation are most

likely the primary method by which the species

spreads (Lengyel et al. 2009; Morris and Carman

2012), since larvae only remain in the water column

for generally\1 day (Osman andWhitlatch 2007) and

growth from fragments can also occur in cold water

temperatures, which occur on the seafloor of Georges

Banks (Carman et al. 2014). Even though there is

limited information on the ability of this species to

spread naturally via floating debris or other means,

anthropogenic transport is considered the primary

vector for the long-distance spread of this species

(Osman andWhitlatch 2007; Herborg et al. 2009). The

most probable transport vector forD. vexillum is direct

transport of colonies fouled on aquaculture equipment,

boat hulls, fishing gear or other mobile structures, or

the indirect transport of colony fragments where small

parts of the colonies break off during transport or

disturbance by dredging or trawling (Herborg et al.

2009).

The characteristics of D. vexillum such as early

maturation, rapid colony growth due to asexual

budding, spread via colony fragmentation, ease of

attachment to firm substrates, toleration of a wide

range of temperatures, and the lack of natural
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predators have resulted in rapid population growth

(Bullard et al. 2007; Carman et al. 2009; Valentine

et al. 2009). The combination of these characteristics

leads D. vexillum to outcompete other benthic epi-

fauna and macrobiota. For example, it has been shown

to inhibit other benthic species from settling and

growing on colony surfaces due to acidic and organic

allelopathic compounds in their tunics (Valentine et al.

2007a; Carman et al. 2009; Morris and Carman 2012).

A particular concern is that this tunicate has invaded

the gravel habitat of the Atlantic sea scallop, which

supports a highly valued commercial shellfish fishery

on Georges Bank (Kaplan et al. 2017). Scallop spat are

not able to settle onD. vexillum, so the invasion of this

tunicate can make productive habitat inaccessible to

scallops (Morris et al. 2009; Dijkstra and Nolan 2011;

Kaplan et al. 2017). Additionally, in experimental

studies scallops covered by D. vexillum became

exhausted more quickly and were not able to swim

as far as the control sea scallops without D. vexillum

encrustation, which has implications for D. vexillum’s

ability to increase sea scallop vulnerability to preda-

tion and limit their access to food rich habitats

(Dijkstra and Nolan 2011).

Dredging disturbances during commercial fishing

for sea scallops reduce the diversity and abundance of

benthic communities in the region (Auster et al. 1996;

Collie et al. 1998). Further studies indicate that

bottom-fishing gear damages epifaunal taxa, thereby

reducing habitat complexity (Jennings and Kaiser

1998; Fogarty and Murawski 1998). Additionally

studies have found that the spread of D. vexillum is

greater in areas open to bottom-fishing andD. vexillum

is negatively correlated with the commercially valu-

able Atlantic sea scallop P. magellanicus (Kaplan

et al. 2017). However, no studies in this region have

examined the interaction of disturbance from dredging

with the spread of an invasive species and the relative

influence of these processes on the macroinvertebrate

community of Georges Bank. The presence of closed

areas on Georges Bank provides a unique opportunity

as a location for collecting control data to compare to a

habitat disturbed by dredging on benthic community

structure.

In this study we used photo-transects to explore the

spatial distribution of benthic marine invertebrates and

D. vexillum in areas protected and unprotected from

bottom-fishing on Georges Bank. We hypothesize that

the presence of D. vexillum alters the observable

primary cover in the epibenthic macroinvertebrate

community and is the primary driver of macroinver-

tebrate biodiversity decline supporting the driver

hypothesis of invasive species impacts. We assess

how the invertebrate community changes in the

presence of D. vexillum using principal components

analysis and we evaluated correlations between

invertebrate species density and D. vexillum density.

We also investigate whether bottom-fishing influences

associations among species using a principal compo-

nents analysis, and assess if the abundances of these

invertebrates is greater in areas open or closed to

bottom-fishing. Using the closed area as a control to

compare to the fished area, we evaluate if D. vexillum

or disturbance and extraction from bottom-fishing is

the main driver of biodiversity loss. This work can

further our understanding of invasive species as a

direct or indirect influence on biodiversity and

ecological communities. The closed area, where

bottom-fishing is prohibited, and the open area

disturbed by bottom-fishing provide a natural exper-

iment for assessing the impact of an invasive species

relative to dredging extraction and disturbance on

biodiversity of invertebrate communities.

Materials and methods

Study area

Georges Bank is a shallow, highly productive, sub-

merged plateau with depths ranging up to 100 m deep

off the coast of New England that supports several

valuable commercial fisheries (Butman and Beardsley

1987). Surficial sediments of Georges Bank are

dominated by large expanses of sand substrate inter-

spersed with gravel and gravel/sand regions that

mainly occur on its northern and western portions

(Twichell et al. 1987). On the northeastern part of the

bank, currents transport sand into deep water leaving

gravel habitat along the northern edge. The study site

is located in the northeastern portion of Georges Bank,

inside and adjacent to a zone protected from bottom-

fishing known as Closed Area II (Fig. 1). The portion

to the west of 67�200 is open to fishing, while the

portion to the east, in Closed Area II, has been closed

to all groundfish and scallop gear since December

1994 and contains both sand and gravel substrates as

well as high densities of D. vexillum in some locations
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(Fig. 1). The area to the west of Closed Area II is open

to fishing and therefore experiences benthic distur-

bance through bottom-fishing (Collie et al. 1998; Asch

and Collie 2008). These two areas, one closed and one

open to fishing, were utilized to compare the effects of

D. vexillum on other benthic invertebrate species in

areas of differing disturbance levels.

Data collection

The habitat camera mapping system (HabCam) is a

vessel-towed underwater camera system which carries

digital still cameras, strobes, and a variety of oceano-

graphic sensors.

Data for this project were collected from HabCam

version 2 (v2), an imaging system that provides visual

surveys of benthic marine organisms without dis-

turbing the habitat itself (Howland et al. 2006; Taylor

et al. 2008; York et al. 2008). These data can be used to

evaluate physical features of the environment that

drive spatial and temporal variability of benthic

invertebrates. The HabCam vehicle is towed at speeds

of 5–6 knots during which it collects data at a rate of

about six images per second providing a continuous

band of data input along the survey track, which

ranged from 40 to 72 m depth. The equipment on

HabCam v2 includes a digital still camera (UNIQ

Vision, Inc. UP-1800-CL), and four machine vision

strobes (Perkin Elmer MVS-5000) mounted in under-

water housings placed radially around the camera

50 cm apart. Other sensors on HabCam v2 include a

CTD (SBE 37-IS MicroCat, Seabird electronics Inc.)

for conductivity and temperature measurements, a YSI

6600 Sonde multiparameter sensor, and a Benthos

altimeter (PSA-916), which measures distance from

the vehicle to the bottom. The data for this project

were collected on the F/V Kathy Marie using HabCam

v2 in July of 2012 (Fig. 1).

Fig. 1 Map of Closed Area II with HabCam track showing percent D. vexillum cover from 2012 survey
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Data processing

HabCam images were annotated to distinguish mem-

bers of the invertebrate community, which were

identified to species, genus or family level depending

on the species for one in every 200 images collected

during the July 2012 survey by one of the co-authors

(Karen Hopkins analyzed all images and participated

in the 2012 survey). Thus, image analysis was

standardized by having the same person analyze all

photos. Species could be distinguished between the

5–10 mm range depending on the altitude of the

camera. In total 5309 images were annotated for

members of the invertebrate community both in and

adjacent to Closed Area II (Fig. 1). This study focused

on epibenthic diversity of organisms[5 mm in size

and infaunal organisms or smaller bodied species were

not assessed.

Locations of invertebrates were identified as being

inside or outside of the closed area using the intersect

and difference geoprocessing tools in Quantum GIS

(QGIS development team 2015) and these were

subsequently separated for analyses. Density esti-

mates for each species were obtained by dividing

species counts by the area of the field of view for each

image. Sediment composition was evaluated visually

based on the fraction of the image covered. Bryozoa

and D. vexillum percent cover was also determined

based on visual estimates of the fraction of the image

thatwas covered.

Data analysis

Species interactions with D. vexillum

Correlations of benthic invertebrates with D. vexillum

were assessed in the open and closed areas using hurdle

models where the presence or absence of the species

was modeled using a generalized linear model (GLM)

under a binomial distribution, then the nonzero count

data were modeled using a Poisson distribution to

identify the relationship between the density of each

species usingD. vexillum as a predictor (Potts and Elith

2006). The coefficients from presence-absence and

count model predictions were then multiplied to create

the final hurdle model investigating the relationship

betweenD. vexillum and other benthic species. Hurdle

models were used since there were a large number of

images containing zero species. Over-dispersion was

detected for many species; therefore for these species a

Poisson quasi-likelihood was used to fit the GLMs, in

which the variance is given by U * l, where l is the

mean density and U is the overdispersion parameter,

thus allowing the variance to be greater than the mean.

Additionally, gravel substrate was used as a predictor

in all models with gravel held at the mean value for

model predictions to control for the effect of substrate,

since substrate also was a main predictor of species

distributions. The invertebrate taxa analyzed in this

study tend to associate with particular substrates, with

the majority of taxa having a strong association with

gravel habitat. To avoid co-linearity only gravel

substrate was used as a predictor. Data for all species

and percent gravel cover were first averaged based on

approximately 1 km blocks to reduce localized noise

as well as spatial auto-correlation and then these data

were used in hurdle models. Additionally, associations

among species were assessed using principal compo-

nents analysis (PCA) in the presence and absence ofD.

vexillum to assess if D. vexillum restructures associa-

tions among species. A scaled correlation matrix was

used for all principal components analyses since

species were assessed on different scales, as counts

or percent coverage.

Disturbance effect on invertebrate community

The influence of disturbance caused by bottom-fishing

in relation to the protected area on the invertebrate

community was analyzed using analysis of covariance

(ANCOVA) with the percentage gravel substrate as a

covariate, since most of the species analyzed appear to

correlate positively with gravel. Co-linearity was

observed between the two most dominant substrate

types, gravel and sand (adjusted R2 = 0.875), and

hence only gravel was used as a covariate in the

analyses. The influence of D. vexillum and the

disturbance effect were also assessed by measuring

species diversity using the Shannon diversity index

calculated per site. Areas containing high gravel

([50%) were separated from non-gravel areas for

the site-level biodiversity analyses.

Results

A total of 16 taxa were resolved to the level of species

or higher taxonomic group (genus, family and
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phylum) in images processed. These included sponges

(two genera: Lophon Günther, 1880; and Polymastia

Bowerbank, 1862), sea stars (one genus: Asterias

Linneaus, 1758; and one species Crossaster papposus

Linnaeus, 1767), anthozoan cnidarians (one genus:

Cerianthus Delle Chiaje 1830), polychaete worms

(one genus: Mxyicola Koch in Renier, 1847; and one

species: Filograna implexa Berkeley, 1835), bivalves

(one family: Mytilidae Rafinesque, 1815; and one

species: Placopecten magellanicus Gmelin, 1791),

barnacles (one genus: BalanusCosta 1778), crabs (two

species: Cancer borealis Stimpson, 1895; and Cancer

irroratus Say, 1817), Bryozoa (phylum), sea urchins

(one species: Strongylocentrotus droebachiensis O.F.

Müller, 1776) and ascidians (two species: Boltenia

ovifera Linnaeus, 1767; and D. vexillum Kott 2002).

Species interactions with D. vexillum

Based on model fits using the hurdle models, species

demonstrating a negative correlation to percent cov-

erage of D. vexillum were the Atlantic sea scallop (P.

magellanicus), barnacles (genus Balanus), the tube

anemone (genus Cerianthus), the green sea urchin (S.

droebachiensis), the globular sponge of the genus

Polymastia, and Bryozoa (Fig. 2a–f). A positive

correlation was observed with the Cancer crabs (C.

irroratus, and C. borealis,), sea stars of the genus

Asterias (primarily A. vulgaris, but A. forbesi may

have also been present), sponges of genus Lophon, and

the lacy tubeworm (F. implexa) (Fig. 2g–k). Several

species showed no significant correlation with D.

vexillum in the hurdle models including the sunstar C.

papposus, mussels of the family Mytilidae, marine

worms of the genus Myxicola and the stalked tunicate

(B. ovifera) (Fig. 2l–m).

HabCam images are shown of D. vexillum with

some species which it positively associates with such

as Asterias sea stars, the Cancer crab C. borealis, the

encrusting sponge of the genus Lophon as well as

species it negatively associates with, such as sea

scallops (P. magellanicus) and barnacles (Balanus sp.)

(Figure 3a–d). Sea stars appear to traverse areas with

patchy D. vexillum infestation (Fig. 3c). However, no

other species are apparent in areas that are almost

entirely covered with D. vexillum (Fig. 3a).

In high gravel habitat, principal components anal-

ysis (PCA) demonstrated thatD. vexillumwas a strong

driver of variation among sites when present in the

community in closed and open areas (Fig. 4). The

invertebrate community without D. vexillum appears

to be characterized by three distinct associations,

whereas groupings among these species are rearranged

in the presence of D. vexillum (Fig. 4a–d). The

community of species that exists in the area despite

the presence of D. vexillum is comprised of species

such as the sunstar C. papposus, Bryozoa, mussels of

the family Mytilidae, and the stalked tunicate B.

ovifera, which appear in the PCA as a distinct

community orthogonal to the D. vexillum community

(Fig. 4b, d). Also, the marine worm (Myxicola), the

sunstar C. papposus and the Jonah crab (C. borealis)

were not found in open area sites without D. vexillum,

showing overall lower species richness. The sunstar C.

papposus was also not present in closed area sites

withoutD. vexillum. However, absence ofC. papposus

and C. borealis in particular areas may simply be due

to these species being relatively rare on Georges Bank.

The total number of C. papposus sunstars found was

19 individuals identified in 5309 images annotated in

this study, while 18 Jonah crabs C. borealis were

observed. By contrast, over 100 individuals of all other

invertebrate species in this study were observed;

relative abundances of the study species is shown in a

rank abundance plot (Fig. 7 in Appendix).

Disturbance effect on invertebrates

The effect of disturbance from bottom-fishing in

comparison to the protected area was assessed using

ANCOVA with significant interactions shown

(Table 1, Fig. 5a, b). Barnacles of the genus Balanus,

sea scallops (P. magellanicus), the green sea urchin (S.

droebachiensis), Bryozoa, mussels (family Mytili-

dae), the marine worm (genus Myxicola), globular

sponges (genus Polymastia), and the stalked tunicate

(B. ovifera) were more abundant in the closed area

than the open area (Fig. 5). On the contrary, species

found in greater abundance in the area open to bottom-

fishing include: Asterias sea stars, the tube anemone

(genus Cerianthus), the encrusting sponge (genus

Lophon), the sunstar C. papposus, D. vexillum, the

lacy tubeworm (F. implexa), and the Cancer crabs

(Fig. 5). Associations among taxa change in the open

area as compared to the closed area indicating bottom-

fishing influences these relationships (Fig. 4a–d). A

cluster of taxa associated withD. vexillum is present in

both the open and closed area PCA, though this group
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is more closely clustered in the area closed to bottom-

fishing than the area open to bottom-fishing. However,

Asterias sea stars and the crab C. borealis associate

more closely with the D. vexillum community in the

area open to bottom-fishing, but are not part of that

community in the closed area (Figs. 3, 4).

Fig. 2 Model fits for

relationship of D. vexillum

and other invertebrate

species in benthic

community using hurdle

models
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Fig. 2 continued
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Didemnum vexillum and bottom-fishing impacts

on biodiversity

Biodiversity as measured by the Shannon index per

site for areas with high gravel cover demonstrated a

decline with increasing D. vexillum percent coverage

(Fig. 6). Additionally the Shannon index as measured

per site was not significantly different between the

areas open and closed to bottom-fishing (Table 2). The

total abundance of all counted taxa in the closed area

was 4459 individuals, whereas in the open areas the

total abundance was 1150 individuals.D. vexillum and

Bryozoa were assessed by percent coverage and not

included in count totals or biodiversity index

calculation.

Discussion

The presence of D. vexillum appears to shift associ-

ations among taxa since it is a major driver of variation

among sites when present in the community. Increas-

ing percent coverage of D. vexillum also induced a

decline in biodiversity of macroinvertebrates as mea-

sured by the Shannon index, although the effect of the

different extractive pressure and disturbance regimes,

as measured by sites in areas open or closed to bottom-

fishing, had no significant effect on the decline in

biodiversity (Fig. 6; Table 2). This finding indicates

that D. vexillum is the major driver of biodiversity

decline among macroinvertebrates in the epibenthic

environment particularly when it comes to dominate

the community, rather than other causes of habitat

modification such as disturbance and extraction via

bottom-fishing. Our results on the effects of D.

vexillum on invertebrate biodiversity corroborate

another study on the impact ofD. vexillum on epifauna

and macrofauna on Georges Bank, which used bottom

photographs and a Naturalist dredge to determine that

D. vexillum percent cover was inversely related to

macrofauna and appears to outcompete epifaunal and

macrofaunal taxa (Lengyel et al. 2009). In contrast, the

results from a study conducted in Long Island sound at

shallower depths (30 m), sampled below D. vexillum

colonies using core samples and suction samples and

did not find significant differences in invertebrate

Fig. 3 Images from Habcam with invertebrate species posi-

tively associating with D. vexillum shown in circles, species

with negative association with D. vexillum shown in squares.

aD. vexillum covering benthic environment. bCancer crab with

D. vexillum patches. c Sea scallops (P. magellanicus), barnacles
(Balanus), sea stars (Asterias), and encrusting sponge of the

genus Lophon. d Sea stars (Asterias) over D. vexillum patches

Invasive tunicate restructures invertebrate community on fishing grounds
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richness between samples taken fromD. vexillummats

and those taken outside, with infauna and deposit

feeders actually having greater abundance in areas

covered by D. vexillum (Mercer et al. 2009). Addi-

tionally, a study conducted in Alaska also at shallower

depths (4–7 m) than our study did not find a significant

relationship between D. vexillum cover and overall

species richness or abundance though significant

differences between infested and uninfested plots

were found for sessile species, but not for mobile fauna

(McCann et al. 2013).

The results from our study apply to the epibenthic

environment of depths ranging from 40 to 70 m on

Georges Bank and not to infaunal biodiversity, which

was not assessed in this study. Assessing invertebrate

communities found within sedimentation and deeper

than the epibenthic environment may yield different

results on the impact of D. vexillum on benthic

communities. Nonetheless, our results are consistent

with other studies from our study area, but contrast to

studies of D. vexillum from other areas and depth

ranges (Lengyel et al. 2009; Mercer et al. 2009;

McCann et al. 2013). It is also necessary to note that in

this study several taxonomic groups were not discern-

able to species level, with some being evaluated at

genus, family or phylum. Therefore, results and the

Fig. 4 Sites with[ 50% gravel substrate a closed areas

without D. vexillum, PC 1 = 0.23 proportion of variance, PC

2 = 0.11, b closed areas withD. vexillum present, PC 1 = 0.27,

PC 2 = 0.20, c open areas without D. vexillum, PC 1 = 0.24,

PC 2 = 0.21 and, d open areas with D. vexillum present, PC

1 = 0.18, PC 2 = 0.14
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conclusions drawn may be different if taxonomic

groups were discernable to species level. Additionally,

organisms were identifiable in images when larger

than 5 mm therefore, our study evaluates the relation-

ship of D. vexillum with macroinvertebrates only and

the effect of D. vexillum on smaller bodied inverte-

brates may differ than the results shown. Future

studies may evaluate the relationship ofD. vexillum on

invertebrates smaller than 5 mm by collecting grab

samples, which would also enable higher taxonomic

resolution.

Macroinvertebrate taxa associated together in the

absence of D. vexillum appear to aggregate based on a

positive or negative association with D. vexillum,

creating a realignment in the invertebrate community

when it is present (Fig. 4). D. vexillum positively

associates with some invertebrates, which may have

more tolerance to the acidic tissues the tunicate

produces, while it appears to have negative associa-

tions with other key species of the benthic environ-

ment that may be more sensitive to its presence. For

example theCancer crabsC. borealis andC. irroratus,

the lacy tubeworm F. implexa and Asterias sea stars

are positively correlated with D. vexillum when

modeling each species’ response to D. vexillum

independently (Fig. 2). In assessing the multivariate

PCA of high gravel habitat, more motile species, such

as the Cancer crab C. irroratus, as well as less motile

species such as the lacy tubeworm F. implexa, the

marine worm Myxicola and the encrusting sponge of

the genus Lophon seem to form a distinct community

withD. vexillum. Conversely species such as barnacles

of the genus Balanus, the Atlantic sea scallop (P.

magellanicus), the tube anemone of the genus Ceri-

anthus, the green sea urchin (S. droebachiensis), and

mussels of the family Mytilidae negatively correlate to

D. vexillum. It is important to note that the majority of

taxa which negatively associate with D. vexillum are

also less abundant in the area open to bottom-fishing

since these species are more sensitive to disturbances

due to bottom-fishing (Asch and Collie 2008), or in the

case of P. magellanicus, directly harvested. Other

studies have shown that disturbed habitat is more

susceptible to invasive species (Lozon and MacIsaac

1997; Marvier et al. 2004), which was also found in

this study since the open area disturbed by bottom-

fishing is more heavily invaded. Furthermore, D.

vexillummay be more abundant in the open area since

fishing vessels are likely a vector for its spread

(Herborg et al. 2009); dredging may fragment colonies

that can attach to bottom-fishing gear and further its

spread in the benthos. Therefore, the disturbance

caused by dredging and commercial fishing vessels

acting as a vector for its spread may interact to

introduce and then allow D. vexillum to proliferate in

the more disturbed habitats. Alternatively, the space

opened by dredging could allow for the highly fecund

D. vexillum to take advantage of disturbed habitat

Table 1 Closed area effect

on invertebrate taxa of

Georges Bank

Analysis of covariance

(ANCOVA)

Significance levels:

* p\ 0.05; ** p\ 0.01;

*** p\ 0.001

Taxa Closed area effect (±) Gravel coefficient Interaction

Balanus *** (?) 0.021** **

P. magellanicus *** (?) 0.016***

Asterias *** (-) 0.009***

S. droebachiensis * (?) 0.006*** **

Bryozoa *** (?)

Mytilidae ** (?)

Cerianthus 0.004***

Mxyicola * (?)

Lophon *** (-) 0.001** **

Polymastia * (?)

Crossaster

Didemnum *** (-) 0.13*** **

F. implexa *** (-) 0.01***

B. ovifera ** (?)

C. irroratus *** (-) 0.0003*** *

C. borealis **(-) 1.06 9 10-4*
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Fig. 5 The effect of the

closed area on abundances

of benthic invertebrate taxa

in a low gravel and b high

gravel habitats. ANCOVA

results are reported in

Table 1
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more quickly than other species. However, once the

area has been invaded by D. vexillum, its presence,

rather than the process of bottom-fishing is likely the

strongest driver of biodiversity decline.

Since several taxa analyzed in this study have a

negative correlation with the presence of D. vexillum,

there may be a decline in the abundance of members of

the invertebrate community in areas infested with D.

vexillum. Alterations to the benthic habitat on Georges

Bank due to D. vexillum may also affect productivity

of fisheries in the region since the gravel habitat it

prefers is also habitat for juvenile fishes and scallop

spat, though more research is necessary to determine

this invasive species’ impact on fishery productivity.

Predators of D. vexillum include sea urchins (S.

droebachiensis and S. franciscanus, though S. fran-

ciscanus is a Pacific coast species), although in

experimental tests these predators prefer other food

sources when available (Epelbaum et al. 2009).

Unexpectedly, the green sea urchin (S. droebachien-

sis) was found to be negatively correlated to D.

vexillum and is not part of its community cluster in

either open or closed area PCAs when D. vexillum is

present. Another study in New Zealand indicated that

sea star and sea urchin predators may limit the spread

of D. vexillum (Forrest et al. 2013), although the

species of predators examined in these studies are not

found on Georges Bank. Therefore the spread of D.

vexillum on Georges Bankmay at least be partially due

to the lack of natural predators and competitors.

The lacy tubeworm F. implexa, was found to

positively associate with D. vexillum and is part of the

same community in the multivariate analysis. Consis-

tent with other studies, encrusting taxa such as the lacy

tubeworm have been found in disturbed shallow

habitat in high densities and are known as early

colonizers (Asch and Collie 2008; Collie et al. 2009).

The lacy tubeworm may also have a relationship with

the Cancer crabs, since crab species are also known to

utilize the calcareous tubes the lacy tube worms

produce as habitat to reduce risk of predation (Heck

and Hambrook 1991). Furthermore, laboratory exper-

iments have indicated that Cancer crabs can prey on

other species of solitary ascidians such as Ascidiella

aspersa, Ciona intestinalis, and Styela clava, which

are not found on Georges Bank, but not on colonial

ascidians such as D. vexillum (Dijkstra and Harris

2007).

Bottom-fishing also appears to restructure some

associations among species as found in our multivari-

ate analysis. Most species associated with D. vexillum

are scavengers that are more abundant in the open area

impacted by bottom-fishing. Specifically Asterias sea

stars, and the crab C. borealis were more closely

associated with species found in the D. vexillum

community in the open areas whereas these species

were not associated with the D. vexillum group in the

closed areas (Fig. 4). Asterias sea stars were also

found to be more abundant at disturbed sites in high

Fig. 6 Didemnum vexillum impacts on biodiversity as mea-

sured by Shannon index of biodiversity per site in high gravel

habitat only. A generalized additive model was used to predict

Shannon index response toD. vexillum, gravel percent cover and

Area (closed or open) (Table 2)

Table 2 Generalized additive model fit for Shannon index response to D. vexillum, gravel and area (open or closed) predictors

Response variable D. vexillum (edf) Area (SE) Gravel (edf)

Shannon index

Deviance explained = 65%

***

(3.91)

-0.065

(0.05)

Not significant

*

(6.60)

*** p\ 0.001; **p\ 0.01; *p\ 0.05
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gravel habitat (Fig. 5), which may be explained by the

fact that they scavenge and have been reported to feed

on organisms damaged by bottom-fishing (Ramsay

et al. 1998; Jenkins et al. 2004). Sea stars may be

tolerant ofD. vexillum tissues as demonstrated by their

close spatial association in HabCam images (Fig. 3).

Moreover, sea star predation as well as intra and

interspecific interactions among sea stars have been

shown to affect the distributions of invertebrate prey

species (Gaymer et al. 2004; Shank et al. 2012). The

most motile species analyzed in this study are the

Cancer crabs and their motility may enable them to

inhabit and traverse areas infested with D. vexillum

without having a significant negative impact on their

distribution in these areas. Moreover,Cancer crabs are

also scavengers that may colonize disturbed habitats

and consume prey items damaged or discarded from

bottom-fishing (Collie et al. 2009). Studies have

shown that they utilize chemical cues to detect, locate

and identify food items (Rebach 1996); thus the

presence of discards and prey items damaged by

bottom-gear may attract these crabs to the open area.

Scavengers including Cancer crabs and Asterias sea

stars in the Irish Sea have been shown to aggregate

around damaged scallops in particular, having impli-

cations for an increase in incidental scallop mortality

caused by dredge gear (Jenkins et al. 2004). Cancer

crabs have also been shown to break open even lightly

damaged scallop shells (Jenkins et al. 2004). There-

fore, Cancer crabs higher abundance in the open area

may be explained by greater access to food resources

as a result of bottom-fishing.

Bottom-fishing may alter interactions among spe-

cies that together drive variation among the sites as

observed in the PCA. The clustering among three

species groups identified by color in the closed area

PCAwithoutD. vexillum appears more diffuse and not

as tightly clustered in the open area PCAs (Fig. 4).

Species may associate with each other to form

mutualistic relationships that serve an ecological

purpose such as predator avoidance in the case of

Cancer crabs using calcerous tubes formed by the lacy

tubeworm F. implexa (Heck and Hambrook 1991),

although this relationship may be altered in the

presence of bottom-fishing if these tubes are crushed.

Generally, scallop dredging on Georges Bank creates a

high level of disturbance as compared to natural

disturbances created by storm events (Jennings and

Kaiser 1998). Previous research has shown that areas

impacted by bottom-fishing are found to have lower

abundance of organisms, lower species richness and

lower diversity as compared to areas that are undis-

turbed (Collie et al. 1998; Asch and Collie 2008).

Additionally, bottom-fishing affects the physical

structure of the benthos and benthic community

functional groups (Tillin et al. 2006; Hinz et al.

2009). Heavily trawled areas have been found to have

greater abundances of motile animals, as well as

infaunal and scavenging invertebrates, while attached

filter-feeding, and larger more sedentary animals are

more abundant in areas with lighter trawling effort

(Tillin et al. 2006). However our results indicate that

area as a factor did not have a significant effect on the

decline in biodiversity as measured by the Shannon

index per site, which was driven primarily by D.

vexillum.

Studies conducted in the Gulf of Alaska and Irish

Sea show that most motile organisms are less severely

affected by chronic and experimental trawling than

Anthozoa, sponges, Bryozoa, tubicolous polychaetes

and barnacles (Freese et al. 1999; Bradshaw et al.

2002). Species with softer tissues are more vulnerable

to bottom-fishing impacts as compared to encrusting

species with more durable or hard exteriors (Asch and

Collie 2008). In this study encrusting sponges of the

genus Lophon were more abundant in the open area

than the closed area whereas globular sponges of the

genus Polymastia demonstrated the opposite relation-

ship since their softer tissues may make them more

sensitive to bottom-fishing impacts (Asch and Collie

2008). The effects of bottom-fishing may be cumula-

tive, therefore small-scale experimental studies cannot

capture longer-term large-scale spatial and temporal

trends that can be extrapolated to the ecosystem level

(Hinz et al. 2009). In contrast to small-scale experi-

mental studies, this observational study evaluates a

large area in situ providing detailed observations of

ecological interactions in the northern edge of Georges

Bank, though more data is needed to evaluate trends

over time.

Didemnum vexillum may also be more widespread

in habitat disturbed by dredging since disturbed

habitats are generally more susceptible to invasive

species (Lozon and MacIsaac 1997; Didham et al.

2007). It is also present in the closed area, albeit at

lower densities than the open area; however, even in

K. A. Kaplan et al.
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the closed area, its presence still has a strong impact in

driving variation among sites. D. vexillum appears to

be a key driver of ecological change in the study area

regardless of disturbance regime, which is consistent

with other studies supporting the driver hypothesis of

invasive species impacts on native communities

(Light and Marchetti 2007). The area effect, repre-

senting different levels of disturbance from bottom-

fishing processes, was not significant in affecting the

Shannon index as measured per site, which would be

expected to show a significant effect if bottom-fishing

was a driver of biodiversity loss as indicated in the

passenger and back-seat driver hypotheses (MacDou-

gall and Turkington 2005; Bauer 2012). Therefore, the

results from this study are most consistent with the

driver hypothesis in characterizing the effects of this

invasive species on biodiversity.

In this study we examined interactions of an

invasive tunicate D. vexillum with other taxa of the

invertebrate community on Georges Bank and found it

appears to restructure the invertebrate community

when present. This study demonstrates the impact of

this invasive tunicate is stronger in altering the

ecological community and biodiversity than direct

disturbance caused by bottom-fishing. Furthermore,

we have demonstrated the extensive impacts an

invasive species can have on benthic communities

and biodiversity using advanced technology for

observing a commercially important region over a

large scale. Large scale in situ studies comparing

fished and protected areas provide valuable insights

into understanding ecological interactions in these

communities, which can be used to implement

ecosystem-based strategies into marine management.
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