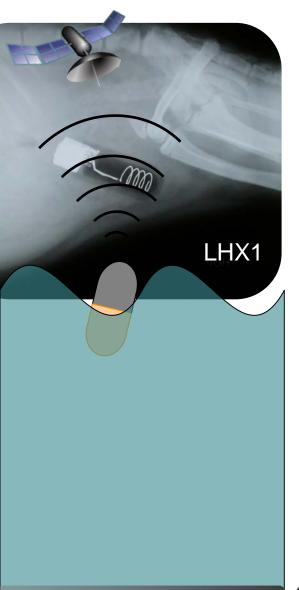
consummate and consumed predators	sea lions, sharks, killer whales who eats whom?
Markus Horning	Alaska SeaLife Center

vital rate telemetry: survival/mortality, reproduction


- *LHX tags*: how do they work?
- *LHX tags in Steller sea lions*: what have we learned?
- *cold and old*: the enigmatic Pacific sleeper shark

LHX tags

How do they work?

• Life-long implants that monitor vital signs *(with Wildlife Computers Inc. - Horning & Hill, J. Ocean. Engin. 2005)*

LHX-1: 42 x 123mm, 118g

LHX-2: 33 x 97mm, 54g

Sensors: temperature, light, dielectric (surrounding medium) accelerometers, "parturition detection"

- *Post-mortem* satellite-linked data retrieval (Argos)
- Known fate data: spatio-temporally unlimited re-sight effort
 → high resolution data better than 1 day
- 2 tags per animal to increase and determine event detection probability, ideally
- Determination of causes of mortality from temperature, light and dielectric sensors (Horning & Mellish, Endangered Species Research 2009)

Controls

=908 LHX female released 2005 (age 1.5) resight w. pup 2018 (age 15)

- LHX tags *studies in quarantined captivity @ASLC:* low morbidity, zero mortality, *full recovery in 45 days* (Mellish et al., JEMBE 2007; Horning et al., BMC Vet. Res. 2008; Petrauskas et al., J. Exp. Zool. 2008; Walker et al., AABS 2009)
- Survival confirmed *>45d* for all released animals
- No differences in dive behavior from LHX tags or captivity (Mellish et al., JEMBE 2007; Thomton et al., ESR 2008)
- P_{detect} > 0.98 (carcass simulations & live returns)

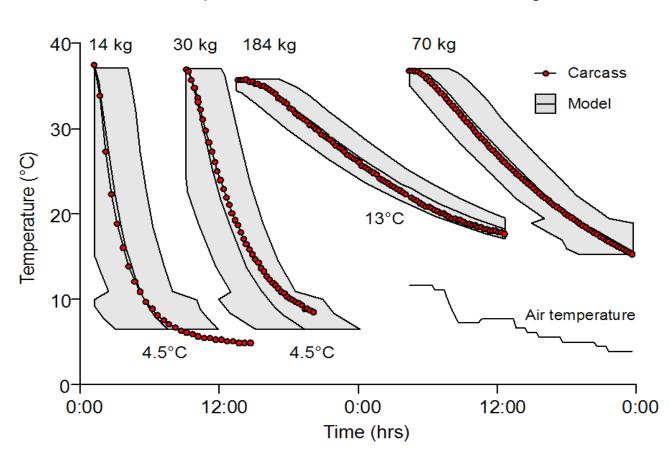
 → likely no mortalities undetected in study group (Horning & Mellish, PLoS ONE 2012)
- No differences detected in survival to brand re-sight controls Mean annual survival ages 1-5 years: LHX 0.82 (95%: 0.71 – 0.89) captive FR (ctrl) 0.83 (95%: 0.72 – 0.90) non-captive (Shuert et al., PLoS ONE 2015)

Markus Horning

Alaska SeaLife Center

Timeline

- 45 weaned Steller sea lions released with dual LHX tags in PWS/KF from 2005 through 2014 (Mellish et al. Aquatic Mammals 2006 Horning et al. BMC Veterinary Research 2008)
- > 65,000 monitoring days
- 80 juveniles monitored via external satellite transmitters
- 10 carcass tests with dual LHX tags
- Data from >130 Argos transmitters (internal + external)
- Longest monitoring 14 years (to age 15)
 Longest confirmed survival >14 years
 Three oldest females confirmed with pups



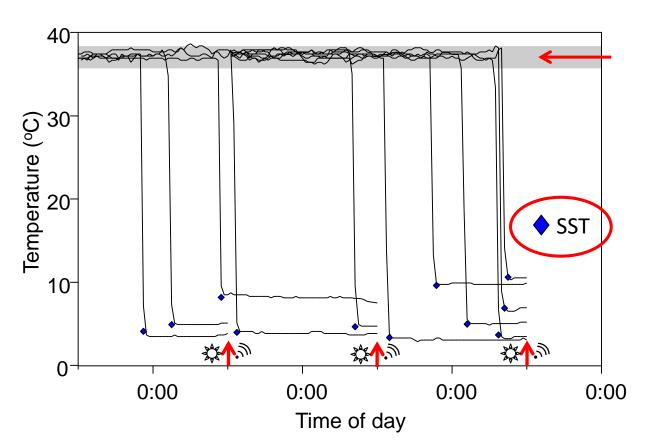
LHX tags

'Non-traumatic' death: Tag stays in whole carcass

<u>Gradual cooling</u> <u>with delayed extrusion</u>

- delayed sensing of light, air, and transmits: death by disease, starvation, entanglement, drowning...
- allows estimation of mass at time of death from cooling rates

Examples from 4 sea lion carcass cooling tests:

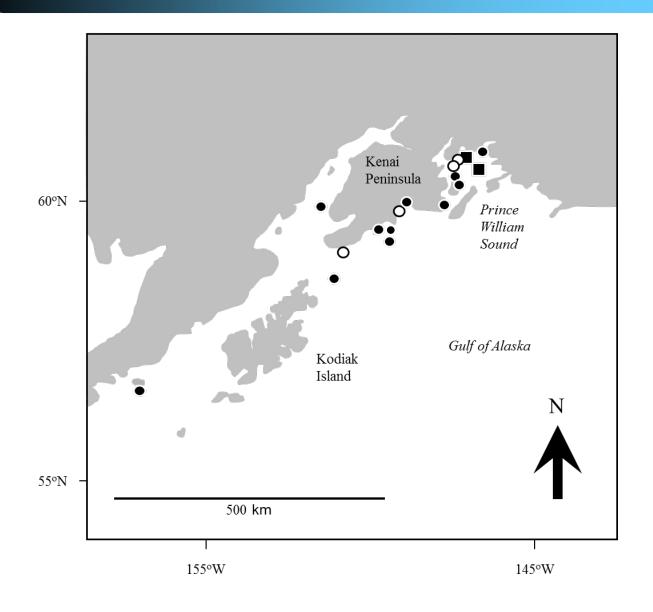

(Horning & Mellish, Endangered Species Research 2009)

PREDATION: Tag comes out of carcass

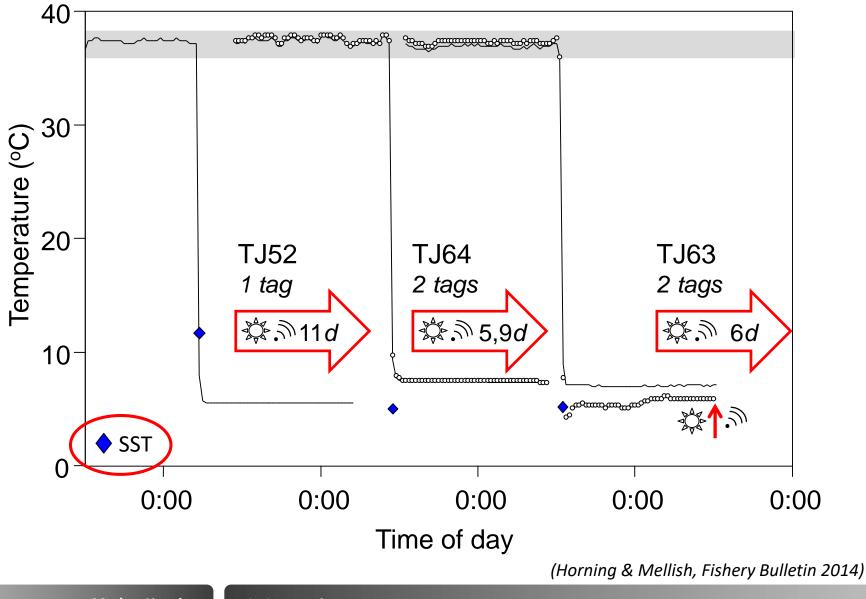
LHX tags

<u>Rapid cooling with</u> <u>immediate extrusion</u>

 immediate sensing of light, air, and transmits: dismemberment, predation

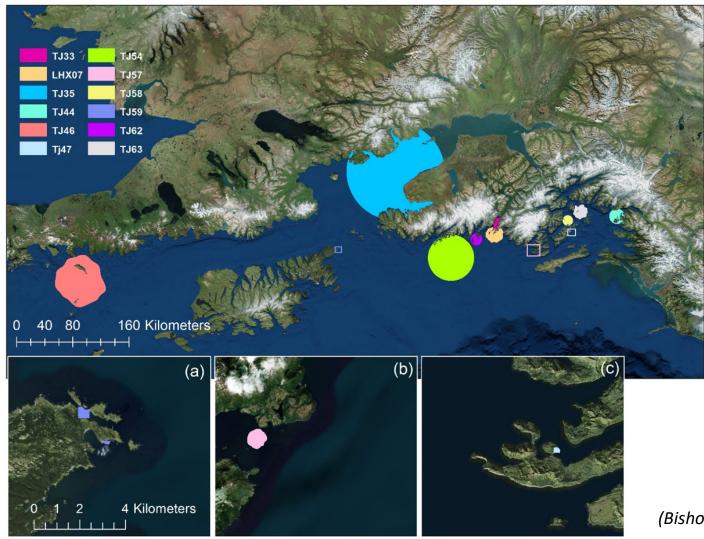


Examples from 11 deceased Steller sea lions:


(Horning & Mellish, Fishery Bulletin 2014)

Results - locations of detected events

- 20 mortalities detected from 14 mo to 4.1 yrs age
- All 18 events with data were due to predation (circles)


Results - 3 of 18 predation events

Pacific sleeper shark

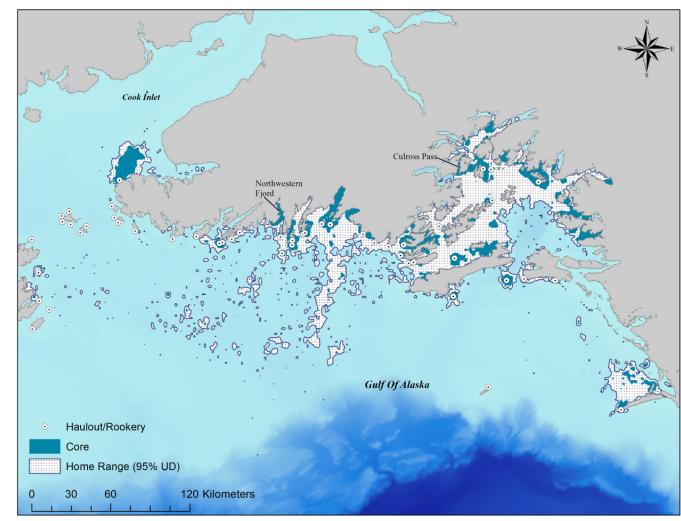
Markus Horning Alaska SeaLife Center

what predators?

Predation locations

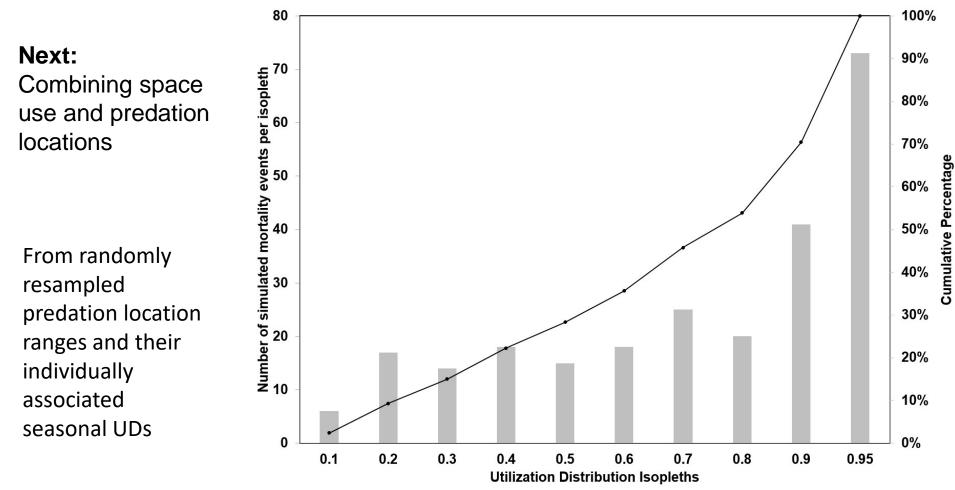
95% confidence range *n* = 12

excluded: location delays >5d


(Bishop, Brown et al. in prep)

Utilization Distributions (UD): juvenile Steller sea lion space use

Next:


Combining space use and predation locations

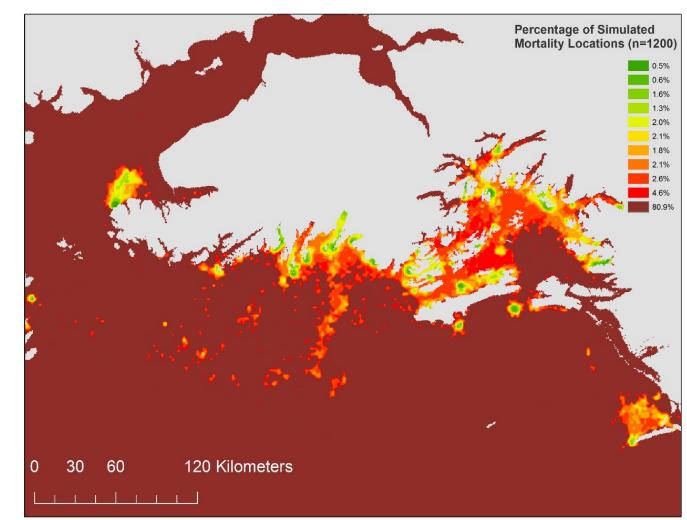
From n=84 juvenile SSL (1-3 yrs) satellite tracked for avg. 77 days between 2000 and 2014

(Bishop et al., Movement Ecology 2018)

what predators?

(Bishop, Brown, Sattler et al. in prep)

Not a spatial analysis!


Reclassified UD levels by % of simulated predation locations associated with UD level

Does not suggest a specialist predator!

But: more time dry or shallower diving is associated with slightly higher probability of predation: Near haulouts/surface: <u>killer whales??</u>

what predators?

Possible predation risk heat map (conceptual!)

(Bishop, Brown, Sattler et al. in prep, Dubel et al. in prep)

Alaska SeaLife Center

harbor seals in western Aleutian Islands

inside surgical unit

surgical unit on back deck of R/V Norseman

Alaska SeaLife Center

Photo by S. Steingass

pilot project with NMFS/MML

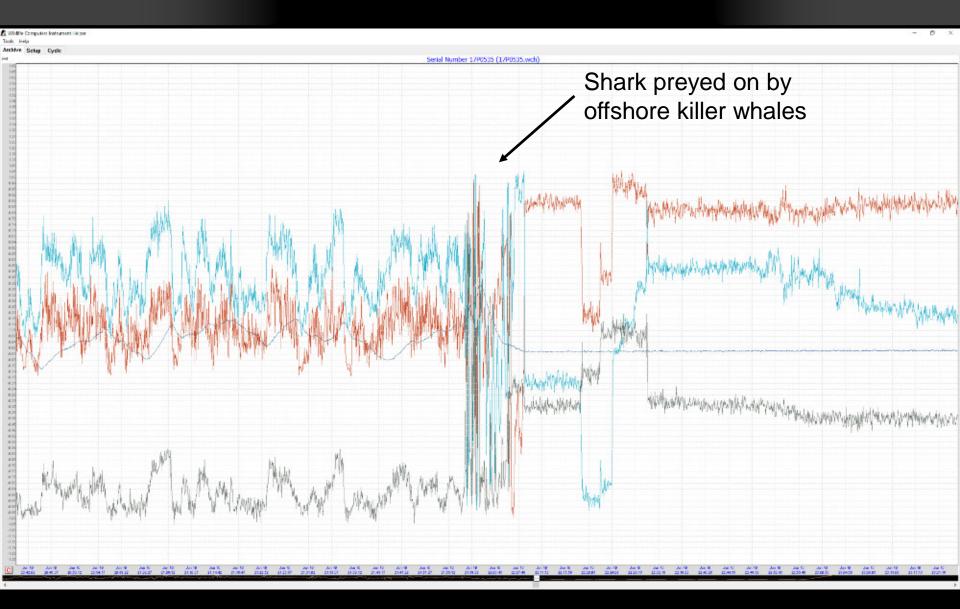
10 harbor seals released with dual LHX tags between Adak and Attu in 2016

3 returns to date:1 non-predation2 predation

Somniosus pacificus

New project: catch, keep, study, tag & release

Somniosus pacificus


New project: catch, keep, study, tag & release

Markus Horning Alaska SeaLife Center

Somniosus pacificus

New project: catch, keep, study, tag & release

Markus Horning

Alaska SeaLife Center

Markus Horning JoAnn Mellish (Steller sea lions) Amy Bishop, Ally Dubel, Renae Sattler (Steller sea lions & sleeper sharks) Peter Boveng (harbor seals) Chris Lowe (sleeper sharks)

> Alaska SeaLife Center Oregon State University Alaska Dept. Fish & Game California State University Long Beach Wildlife Computers, Inc.

> > National Science Foundation North Pacific Research Board Pollock Conservation Cooperative NOAA North Pacific Fisheries Foundation

Veterinarians: Marty Haulena, Pam Tuomi, Carrie Goertz, Kathy Woodie, Shawn Johnson, Rachel Berngartt, Stacie DiRocco, *et al.*

Permits: NMFS # 1034-1685; 881-1668; 881-1890, 14325, 14335, 14336, 19309, DFO-SA, ADFG ARP #CF-18-041, etc..

References

Bishop A, Brown C, Rehberg M, Torres L, Horning M (2018) Juvenile Steller sea lion (*Eumetopias jubatus*) utilization distributions in the Gulf of Alaska. *Movement Ecol.* 6:6

Shuert C, Horning M, Mellish JE (2015) The Effect of Novel Research Activities on Long-term Survival of Temporarily Captive Steller Sea Lions (Eumetopias jubatus). <u>PLoS ONE</u> 10(11):e0141948. OA

Horning M, Mellish JE (2014) In cold blood: evidence of Pacific sleeper shark (*Somniosus pacificus*) predation on Steller sea lions (*Eumetopias jubatus*) in the Gulf of Alaska. <u>*Fishery Bulletin*</u> 112:297-310.

Horning M, Mellish JE (2012) Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Post-weaning mortality in a Density Dependent Conceptual Framework. <u>*PLoS ONE*</u>7(1):e30173.

Horning M, Mellish JE (2009) Spatially explicit detection of predation on individual pinnipeds from implanted post-mortem satellite data transmitter. *Endangered Species Research* 10:135-143.

Thomton J, Mellish JE, Hennen D, Horning M. (2008) Juvenile Steller sea lion dive behavior following temporary captivity. <u>Endangered Species Research</u>. 4:195-203

Horning M, Haulena M, Tuomi P, Mellish J (2008) Intraperitoneal implantation of life-long telemetry transmitters in otariids. <u>BMC Veterinary</u> <u>Research 2008</u> 4: 51. OA

Mellish J, Thomton J, Horning M (2007) Physiological and behavioral response to intra-abdominal transmitter implantation in Steller sea lions. *J. Exp. Mar. Biol. Ecol.* 351:283-293.

Mellish JE, Calkins DG, Christen DR, Horning M, Rea LD, Atkinson SK. 2006. Temporary Captivity as a Research Tool: Comprehensive Study of Wild Pinnipeds Under Controlled Conditions. Aquatic Mammals 32 (1): 58-65.

Horning M, Hill RD (2005) Designing an archival satellite transmitter for life-long deployments on oceanic vertebrates: The Life History Transmitter. *IEEE Journal of Oceanic Engineering* 30: 807-817.