Aleutian Islands Golden King Crab 2023 Final Assessment

CPT May 2023

Siddeek, MS, B Daly, T Jackson

Response to Comments, Jan 2023

CPT \#2: "The time-period for setting the years that define average recruitment should be justified, for example using a plot of years versus the variances of the recruitment deviations. This type of analysis should be included in all future assessments."

The time for setting the years that define average recruitment was brought up by the SSC in February 2022 and we responded to this question by showing that there were very little differences in the MMB trends and reference point estimates between two hypothetical periods.

The variance analysis is a good suggestion. However, because of limited time available we postpone this analysis to the next assessment cycle. Can explore in Jan 2024.

Response to Comments, Jan 2023

CPT \#3: "The fits to the three CPUE series should be reported on separate plots."

Done. See Figures 19, 20, and 33.
CPT \#4: "The combined model (i.e., fitting the data for the EAG and WAG as a single-area model) led to an OFL that is similar to the sum of those for the assessments of the EAG and WAG separately for the model 21.1 e 2 specifications. However, no fit diagnostics were provided for the combined model so the 2023 assessment should include an appendix with the fit diagnostics."

Because of limited time available we did not take up this analysis in this assessment cycle. Will explore in Jan 2024.

Response to Comments, Jan 2023

CPT \#5: "The rationale for considering model $21.1 f$ should be included in the assessment document, along with plots that show the extent to which the trend in CPUE varies among locations."

We have provided the rationale for including the Year:Area interaction CPUE model in Appendix B. Because of limited time between January and May, we did not explore the extent to which the trend in CPUE varies among location. This can be done in the next assessment cycle.

Response to Comments, Jan 2023

CPT \#8: "Recommendation for 2024 assessment: Models 21.1e2CPUE5Wt and 21.1fCPUE5Wt fit the CPUE data for the EAG much better than the base model (as expected) but without an obvious visual change in the fit to the size-composition data. Models that are forced to achieve better fits to the CPUE indices should be explored; in particular it is necessary to conduct analyses to identify the data sources that preclude the model fitting the CPUE index data well."

Will revisit in Jan 2024.

Figure 6. Historical commercial harvest (from fish tickets; metric tons), total allowable catch (TAC), and catch-per-unit effort (CPUE, number of crab per pot lift) of golden king crab in EAG, 1985/86-2022/23 (note: 1985 refers to the 1985/86 fishing year).

WAG CPUE

Figure 7. Historical commercial harvest (from fish tickets; metric tons)), total allowable catch (TAC), and catch-per-unit effort (CPUE, number of crab per pot lift) of golden king crab in WAG, 1985/86-2022/23 (note: 1985 refers to the 1985/86 fishing year).

Figure 8. Catch distribution by statistical area in 2022/23.

CPUE Standardization (Appendix B)

Negative Binominal GLM
Null Model
$\ln \left(\right.$ CPUE $\left._{i}\right)=$ Year $_{\mathrm{y}_{\mathrm{i}}}$
Full Model
$\ln \left(\right.$ CPUE $\left._{\mathrm{I}}\right)=$ Year $_{\mathrm{y}_{\mathrm{i}}}+\mathrm{ns}\left(\right.$ Soak $_{\mathrm{si}}$, df $)+$ Month $_{\mathrm{m}_{\mathrm{i}}}+$ Vessel $_{\mathrm{vi}}+$ Captain $_{\mathrm{ci}}+$ Block $_{\mathrm{ai}}+$
Gear $_{\mathrm{gi}}+\mathrm{ns}\left(\right.$ Depth $_{\text {di }}$, df),
Negative Binominal GLM w/ interaction
Null Model
$\ln \left(\right.$ CPUE $\left._{\mathrm{i}}\right)=$ Year $_{\mathrm{y}_{\mathrm{i}}}:$ Block $_{\text {ai }}$
Full Model
$\ln \left(\right.$ CPUE $\left._{\mathrm{I}}\right)=$ Year $_{\mathrm{y}_{\mathrm{i}}}:$ Block $_{\mathrm{ai}}+$ ns(Soak ${ }_{\text {si }}$ df) + Month $_{\mathrm{m}_{\mathrm{i}}}+$ Vessel $_{\mathrm{vi}}+$ Captain $_{\mathrm{ci}}+$ Geargi $_{\text {g }}+\mathrm{ns}\left(\right.$ Depth $_{\text {di }}$, df$)$

Figure B.1. The 1995/96-2022/23 observer pot samples enmeshed in 10 blocks for the Aleutian Islands golden king crab.

1x1 cells fished within blocks (Table B.2)

Block	$\mathrm{N}_{\text {ever }}$
1	375
2	1,364
3	1,765
4	915
5	452
6	1,026
7	812
8	2,172
9	1,042
10	334

CPUE Index w/ Year:Block

- $C P U E_{i j}=e^{Y B_{i j}+\sigma_{i j}^{2} / 2}$
- $B_{i}=\sum B_{i j}=\sum N_{\text {ever }_{j}} C P U E_{i j}$
- If there is no fishing in a block within year i, a log-linear model is fit to estimate $\widehat{B_{i, j}}$

$$
\ln \left(\hat{B}_{i, j}\right)=\text { Year }_{i}+\text { Block }_{j}
$$

- $I_{i}=\frac{B_{i}}{\sqrt[n]{\prod_{i=1}^{m} B_{i}}}$

EAG CPUE Standardization

w/o Yr:Block

Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Year + Gear + Captain + ns $($ Soak, 4$)+$ Month
AIC=203,808
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Year + Captain + ns $($ Soak, 4$)+$ Month
for the 1995/96-2004/05 period $\left[\theta=1.38, \mathrm{R}^{2}=0.2205\right]$
Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Year + Captain + Gear + ns $($ Soak, 10$)+$ Month
AIC=81,580
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Year + Captain + ns $($ Soak, 10$)+$ Gear
for the 2005/06-2022/23 period $\left[\theta=2.34, R^{2}=0.1103\right]$.

EAG CPUE Standardization

w/ Yr:Block

Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Gear + Captain + ns(Soak, 4) + Month + Year: Block
AIC=203,851
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Gear + Captain $+\mathrm{ns}($ Soak, 4$)+$ Year: Block
for the 1995/96-2004/05 period $\left[\theta=1.38, \mathrm{R}^{2}=0.2235\right]$
Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Vessel + Gear $+\mathrm{ns}($ Soak, 10 $)+$ Month + Year: Block
AIC=81,772
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Vessel + ns(Soak, 10) + Gear + Year: Block
for the 2005/06-2022/23 period $\left[\theta=2.34, \mathrm{R}^{2}=0.1201\right]$.

EAG

WAG CPUE Standardization

w/o Yr: Block

Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Year + Captain + ns $($ Soak, 7$)+$ Gear + Area + Month + Vessel
AIC=191,025
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Year + Captain $+\mathrm{ns}($ Soak, 7$)+$ Gear
for the 1995/96-2004/05 period $\left[\theta=0.97, \mathrm{R}^{2}=0.1681\right]$
Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Year + Captain + Gear + Month + ns $($ Soak, 3$)$
AIC=130,731
Final selection by stepCPUE $\ln ($ CPUE $)=$ Year + Gear + ns $($ Soak, 2$)$
for the 2005/06-2022/23 period $\left[\theta=1.11, R^{2}=0.0749\right.$, Soak forced in $]$.

WAG CPUE Standardization

w/ Yr: Block

Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Vessel $+\mathrm{ns}($ Soak, 7$)+$ Gear + Month + Year: Block
AIC $=191,060$
Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Vessel + ns $($ Soak, 7$)+$ Gear + Year: Block
for the 1995/96-2004/05 period [$\theta=0.97, \mathrm{R}^{2}=0.1719$]
Initial selection by stepAIC:
$\ln ($ CPUE $)=$ Gear + Month + Vessel + ns $($ Soak, 3$)+$ Year: Block AIC=131,060

Final selection by stepCPUE:
$\ln ($ CPUE $)=$ Gear + Month + Year: Block $+n s($ Soak, 3$)$
for the 2005/06-2022/23 period $\left[\theta=1.11, R^{2}=0.0897\right.$, Soak forced in].

WAG

5

\section*{| 10 | \circ |
| :--- | :--- |
| \circ | 8 |
| - | N |}

5

WAG

Cooperative Survey (Appendix C)

Cooperative Survey (Appendix C)

- Excluded small mesh pots, extreme quantiles of soak time and depth
- Standardized index of legal males (> 135 mm) to replace observer CPUE index from 2015-2022 in EAG (except 2020)
$\ln \left(\right.$ CPUE $\left._{\mathrm{I}}\right)=$ Year $_{\mathrm{y}_{\mathrm{i}}}+\operatorname{ns}\left(\right.$ Depth $\left._{\mathrm{di}}, 9\right)+\mathrm{ns}\left(\right.$ Soak $\left._{\mathrm{si}}, 3\right)+$ Captain $_{\mathrm{ci}}+\left(1 \left\lvert\, \frac{\text { Block }}{\text { VesselString }}\right.\right)$
Family $=$ Neg. Binomial $(\theta=3.01)$
- No size composition data included

EAG

Model Scenarios (Table T1, pg42)

EAG and WAG

- 22.9c - 2022 accepted model (22_1e2) with modifications for GMACS transition
- 22.1e2 - Model 22.9c in GMACS (w/o Yr:Block)
- 22.1f - Model 22.1 e 2 (w/ Yr:Block)

EAG only

- 22.1g - Model 22.1 e 2 with co-op survey 2015 - 2022
- 22.1h - Model 22.1 f with co-op survey 2015 - 2022

EAG

Figure 16, pg 77

EAG

Figure 19, pg 79

EAG

Figure 20, pg 80

Retained Composition

EAG

$$
\bigcirc 0.00 \bigcirc 0.02 \bigcirc 0.04 \bigcirc 0.06
$$

$$
\cdots<0<0
$$0

22.1e2 Retained Composition Pearson Residuals

Figure 17, pg 78 shows 22.9c std residuals

Total Composition

EAG

EAG

$$
\circ 0.0 \bigcirc 0.1 \bigcirc 0.2 \bigcirc 0.3 \bigcirc<0 \odot>0 \circ 0
$$

22.1e2 Total Composition Pearson Residuals

Figure 18, pg 78 shows 22.9c std residuals

EAG

Post-Rationlization Period

Figure 11, pg 73

WAG

Retained Catch

Groundfish Bycatch

Total Catch

Figure 30, pg 92

WAG

Figure 33, pg 94

Retained Composition

- 22.1e2
--. 22.1 f

WAG
 $$
\begin{array}{lllll} \bullet & \circ & \circ & 0.00 \bigcirc 0.02 \bigcirc & 0.04 \\ 0.05 \end{array}
$$

22.1e2 Retained Composition Pearson Residuals

180	
${\underset{\Xi}{E}}^{160}$	
E	
番	$00000000000 \cdot 0 \cdot 0 \cdot 000 \cdot 0 \cdot 00000 \cdot 0 \cdot \circ \bigcirc \cdot 0 \cdot 000$
$\stackrel{\llcorner }{د}_{140}$	$\bigcirc 000000 \bigcirc 00 \cdot 0000000 \cdot 0 \cdot 00 \cdot$
$\stackrel{0}{0}$ $\stackrel{0}{0}$ $\stackrel{0}{0}$	$\bigcirc \cdot 00 \cdot 000000000000 \cdot 0000000000000 \cdot 00 \cdot 00 \cdot$
120	
100	
	199020002020

Figure 31, pg 93 shows 22.9c std residuals

Total Composition

- 22.1e2

--- 22.1 f

WAG

$$
\bullet<0 \ominus>0 \ominus 0 \quad \bullet 0.00 \bigcirc 0.02 \bigcirc 0.04 \bigcirc 0.06 \bigcirc 0.08
$$

22.1e2 Total Composition Pearson Residuals

180	
	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○。○。
$\stackrel{\bar{\Phi}}{\stackrel{\rightharpoonup}{\otimes}} 140$	-०••○○○○○○○○○○○○○○○○○○○○○•○○○
$\begin{aligned} & \frac{\stackrel{\pi}{0}}{\frac{0}{0}} \\ & \hline 0 \end{aligned}$	
120	- ○○○○○○○○○○○○○○○••○○○○○○○○○○○○○○
	-
	19902000201020

Figure 32, pg 93 shows 22.9c std residuals

WAG

Figure 25, pg 88

EAG

WAG

Figure 21, pg 81

EAG
 Figure 13, pg 75

 Figure 27, pg 90

EAG

WAG

Figure 22a, pg 82

EAG

WAG

Figure 22b, pg 83

EAG

EAG 22.9c

EAG 22.1e2

EAG 22.1 f

WAG

WAG 22.9c

WAG 22.1e2

WAG 22.1 f

Figure 34, pg 95

EAG

Parameter	Model 22.9c	Model $22.1 \mathrm{e} 2$	Model $22.1 f$	Model $22.1 \mathrm{~g}$	Model 22.1h	Limits
$\log _{-} \omega_{1}$ (growth incr. intercept)	2.513	2.513	2.518	2.518	2.518	1.0, 4.5
ω_{2} (growth incr. slope)	-12.951	-12.947	-12.177	-12.132	-12.146	-15.0, 5.0
log_a (molt prob. slope)	-2.542	-2.542	-2.537	-2.540	-2.537	-4.61, -1.39
log_b (molt prob. L50)	4.952	4.952	4.953	4.953	4.953	3.869, 5.05
σ (growth variability std)	3.681	3.681	3.678	3.679	3.679	0.1, 12.0
log_total sel delta θ, 1985-04	4.238	4.237	4.137	4.128	4.132	0.0, 4.4
$\log _{\text {_ }}$ total sel delta θ, 2005-22	3.186	3.186	3.168	3.176	3.171	0.0, 4.4
log_{-}ret. sel delta θ, 1985-22	1.867	1.867	1.863	1.863	1.863	0.0, 4.4
log_tot sel $\theta_{50}, 1985-04$	4.798	4.798	4.786	4.783	4.786	4.0, 5.0
log_tot sel $\theta_{50}, 2005-22$	4.917	4.917	4.914	4.917	4.915	4.0, 5.0
log_ret. sel $\theta_{50}, 1985-22$	4.916	4.916	4.916	4.916	4.916	4.0, 5.0
$\log _{1} \beta_{r}$ (rec.distribution par.)	0.480	0.480	0.394	0.397	0.392	-12.0, 12.0
logq1 (fishery catchability, 1985-98)	-0.469	-0.469	-0.478	-0.479	-0.478	-9.0, 2.25
logq2 (fishery/observer catchability, 1985-04)	-0.624	-0.625	-0.626	-0.620	-0.629	-9.0, 2.25
logq3 (observer catchability, 2005-22)	-0.806	-0.805	-0.804	-0.814	-0.812	-9.0, 2.25
log_mean_rec (mean rec.)	0.883	1.008	1.006	0.990	0.994	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-1.005	-1.005	-1.017	-0.991	-1.003	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.431	-8.431	-8.431	-8.404	-8.412	-15.0, -1.6
$\log S E 1$ (fishery CPUE additional std, 1985-98)	-1.629	-1.622	-1.596	-1.590	-1.595	-8.0, 1.0
$\log S E 2$ (fishery/observer CPUE additional std, 1985-04)	-1.489	-1.489	-2.170	-1.504	-2.169	-8.0, 0.15
$\log S E 3$ (observer CPUE additional std, 2005-22)	-1.427	-1.428	-1.600	-1.299	-1.351	-8.0, 0.15
2022 MMB	9,059	9,055	8,981	7,864	7,765	

Parameter	Model 22.9c	$\begin{aligned} & \hline \text { Model } \\ & 22.1 \mathrm{e} 2 \end{aligned}$	$\begin{aligned} & \text { Model } \\ & 22.1 f \end{aligned}$	Limits
log_ ω_{1} (growth incr. intercept)	2.506	2.506	2.518	1.0, 4.5
ω_{2} (growth incr. slope)	-13.156	-13.156	-11.550	-15.0, 5.0
$\log _{2} \mathrm{a}$ (molt prob. slope)	-2.706	-2.706	-2.693	-4.61, -1.39
log_b (molt prob. L50)	4.951	4.951	4.952	3.869, 5.05
σ (growth variability std)	3.672	3.672	3.667	0.1, 12.0
log_total sel delta θ, 1985-04	3.979	3.978	3.857	0.0, 4.4
log_total sel delta日, 2005-22	3.069	3.069	3.062	0.0, 4.4
log_ret. sel deltae, 1985-22	1.708	1.708	1.705	0.0, 4.4
log_tot sel θ_{50}, 1985-04	4.909	4.909	4.885	4.0, 5.0
log_tot sel $\theta_{50}, 2005-22$	4.904	4.904	4.902	4.0, 5.0
log_ret. sel $\theta_{50}, 1985-22$	4.913	4.913	4.913	4.0, 5.0
$\log _{1} \beta_{\mathrm{r}}$ (rec.distribution par.)	-0.074	-0.074	-0.211	-12.0, 12.0
logq1 (fishery catchability, 1985-98)	0.040	0.039	-0.015	-9.0, 2.25
logq2 (fishery/observer catchability, 1985-04)	0.089	0.087	0.045	-9.0, 2.25
logq3 (observer catchability, 2005-22)	-0.315	-0.316	-0.310	-9.0, 2.25
log_mean_rec (mean rec.)	0.700	0.825	0.819	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-0.695	-0.696	-0.723	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.174	-8.175	-8.172	-15.0, -1.6
$\log S E 1$ (fishery CPUE additional std, 1985-98)	-1.938	-1.955	-1.964	-8.0, 1.0
$\log S E 2$ (fishery/observer CPUE additional std, 1985-04)	-1.496	-1.494	-1.587	-8.0, 0.15
$\log S E 3$ (observer CPUE additional std, 2005-22)	-2.135	-2.124	-2.047	-8.0, 0.15
2022 MMB	4,495	4,545	4,288	

EAG

Base

Likelihood Component	22.9c	$\mathbf{2 2 . 1 e 2}$	$\mathbf{2 2 . 1 f}$	$\mathbf{2 2 . 1 g}$	22.1h
Retlencomp	286.2230	286.2369	265.4302	262.7069	262.3774
Totallencomp	520.2600	520.2876	553.999	555.5594	554.3931
Observer cpue	-26.7588	-26.7606	-32.6846	-23.8624	-28.4356
Fishery cpue	-15.5853	-15.5297	-15.1827	-15.1038	-15.177
RetdcatchB	-421.9470	-421.953	-422.049	-422.125	-422.053
TotalcatchB	-40.9361	-40.9455	-41.384	-41.4766	-41.3155
GdiscdcatchB	30.3249	30.32492	30.3248	30.3248	30.3247
Rec_dev	22.7112	20.7514	20.8089	20.6410	20.6312
Pot F_dev	0.0135				
Gbyc_F_dev	0.0239				
Sum (Pot F_dev+	0.0374	0.0373	0.0371	0.0371	0.0373
Gbyc_F_dev)	2701.2600	2701.2579	2700.409	2700.569	2700.389
Tag	3055.5900	3079.43181	3085.433	3092.9951	3086.8961
Total					

WAG

Base GMACS

Likelihood Component	22.9c	$\mathbf{2 2 . 1 e 2}$	$\mathbf{2 2 . 1 f}$
Retlencomp	363.7120	363.8280	313.3108
Totallencomp	435.9380	436.0861	478.6189
Observer cpue	-38.6873	-38.5262	-37.7272
Fishery cpue	-19.6942	-19.8406	-19.9340
RetdcatchB	-420.4380	-420.436	-420.458
TotalcatchB	14.1469	14.13333	12.9985
GdiscdcatchB	30.3262	30.32618	30.3258
Rec_dev	21.5391	19.5703	20.0221
Pot F_dev	0.0264		
Gbyc_F_dev	0.0428		
Sum (Pot F_dev+	0.0692	0.0692	0.0692
Gbyc_F_dev)	2705.5800	2705.561	2703.436
Tag	3092.5000	3115.8015	3105.693
Total			

EAG

1,000 tons

Model	Tier	MMB ${ }_{35 \%}$	Current MMB	MMB/ $M M B_{35 \%}$	$F_{\text {OFL }}$	Recruitment Years to Define $M M B_{35 \%}$	$F_{35 \%}$	Natural Mortality	OFL	$\begin{gathered} \mathrm{ABC} \\ \left(0.75^{*} \mathrm{OFL}\right) \end{gathered}$
EAG22.9c	3a	6.665	7.487	1.12	0.59	1987-2017	0.59	0.22	2.952	2.214
EAG22.1e2	3a	6.682	7.494	1.12	0.59	1987-2017	0.59	0.22	2.939	2.204
EAG22.1f	3a	6.691	7.489	1.12	0.58	1987-2017	0.58	0.22	2.899	2.174
EAG22.1g	3a	6.612	6.782	1.03	0.58	1987-2017	0.58	0.22	2.520	1.890
EAG22.1h	3a	6.637	6.718	1.01	0.58	1987-2017	0.58	0.22	2.485	1.863

1,000,000 pounds

Model	Tier	$M M B_{35 \%}$	Current MMB	$\begin{gathered} \text { MMB/ } \\ \text { MMB }_{35 \%} \end{gathered}$	$F_{\text {OFL }}$	Recruitment Years to Define $M M B_{35 \%}$	$F_{35 \%}$	Natural Mortality	OFL	$\begin{gathered} \text { ABC } \\ (0.75 * \mathrm{OFL}) \end{gathered}$
EAG22.9c	3a	14.695	16.506	1.12	0.59	1987-2017	0.59	0.22	6.507	4.881
EAG22.1e2	3a	14.731	16.521	1.12	0.59	1987-2017	0.59	0.22	6.479	4.860
EAG22.1f	3 a	14.751	16.511	1.12	0.58	1987-2017	0.58	0.22	6.390	4.793
EAG22.1g	3 a	14.577	14.951	1.03	0.58	1987-2017	0.58	0.22	5.555	4.166
EAG22.1h	3 a	14.633	14.811	1.01	0.58	1987-2017	0.58	0.22	5.477	4.108

WAG

1,000 tons

Model	Tie r	$M M B_{35 \%}$	Current MMB	$\begin{gathered} \mathrm{MMB} / \\ M M B_{35 \%} \end{gathered}$	$F_{\text {OFL }}$	Recruitment Years to Define $M M B ~_{35 \%}$	$F_{35 \%}$	Natural Mortality	OFL	$\begin{gathered} \text { ABC } \\ (0.75 * O F L) \end{gathered}$
WAG22.9c	3 a	4.960	4.532	0.914	0.50	1987-2017	0.55	0.22	1.232	0.924
WAG22.1e2	3 a	4.982	4.575	0.918	0.50	1987-2017	0.55	0.22	1.243	0.933
WAG22.1f	3a	4.980	4.444	0.892	0.47	1987-2017	0.54	0.22	1.131	0.848

1,000,000 pounds

$\left.\begin{array}{ccccccccccc}\hline \text { Model } & \text { Tier } & M M B_{35 \%} & \begin{array}{c}\text { Current } \\ \text { MMB }\end{array} & \begin{array}{c}\text { MMB/ } \\ M M B_{35 \%}\end{array} & \begin{array}{c}F_{\text {OFL }}\end{array} & \begin{array}{c}\text { Recruitment } \\ \text { Years to Define } \\ M M B_{35 \%}\end{array} & F_{35 \%} & \text { Natural } \\ \text { Mortality }\end{array}\right)$

Catch specs for all Aleutian Is.

$22.1 e 2$							
Year	MSST	Biomass (MMB)	TAC	Retained Catch	Total Catch ${ }^{\text {a }}$	OFL	ABC $^{\text {b }}$
$2019 / 20$	5.915	16.386	3.257	3.319	3.729	5.249	3.937
$2020 / 21$	6.014	15.442	2.999	3.000	3.520	4.798	3.599
$2021 / 22$	5.715	13.581	2.690	2.699	3.056	4.817	3.372
$2022 / 23$	$5.832^{\text {d }}$	$13.600^{\text {d }}$	2.291	2.369^{\star}	2.612^{\star}	$3.761^{\text {c }}$	$2.821^{\text {c }}$
$2023 / 24$		$12.069^{\text {d }}$					4.182^{d}

$22.1 f$

Year	MSST	Biomass (MMB)	TAC	Retained Catch	Total Catch ${ }^{\text {a }}$	OFL	$A B C^{\text {b }}$
2019/20	5.915	16.386	3.257	3.319	3.729	5.249	3.937
2020/21	6.014	15.442	2.999	3.000	3.520	4.798	3.599
2021/22	5.715	13.581	2.690	2.699	3.056	4.817	3.372
2022/23	$5.836{ }^{\text {d }}$	$13.269^{\text {d }}$	2.291	2.369*	2.612*	$3.761^{\text {c }}$	$2.821^{\text {c }}$
2023/24		$11.934^{\text {d }}$				$4.029^{\text {d }}$	$3.022^{\text {d }}$

a. Total catch was sum of retained catch and estimated bycatch mortality of discarded bycatch during crab fisheries and groundfish fisheries.
b. 25% buffer was applied to total catch OFL to determine ABC except 2021/22, during which 30% buffer was applied.
c. OFL, and ABC were estimated by the accepted model 21.1 e 2 in May 2022 assessment when the WAG fisheries was not completed.
d. MSST, MMB, OFL, and ABC were estimated in May 2023 assessment with data cutoff on Mar 8 when the EAG and WAG fisheries were not completed.

Catch specs for all Aleutian Is.

22.1 e 2						1,000,000 lb	
Year	MSST	Biomass (MMB)	TAC	Retained Catch	Total Catch ${ }^{\text {a }}$	OFL	$\mathrm{ABC}^{\text {b }}$
2019/20	13.040	36.125	7.18	7.317	8.221	11.572	8.680
2020/21	13.259	34.044	6.61	6.614	7.760	10.578	7.934
2021/22	12.599	29.941	5.93	5.951	6.737	10.620	7.434
2022/23	$12.857^{\text {d }}$	$29.983^{\text {d }}$	5.05	5.223*	5.758*	$8.292^{\text {c }}$	6.219 ${ }^{\text {c }}$
2023/24		$26.608^{\text {d }}$				$9.220{ }^{\text {d }}$	$6.916^{\text {d }}$

$22.1 f$

Year	MSST	Biomass $($ MMB $)$	TAC	Retained Catch	Total Catch $^{\text {a }}$	OFL	ABC $^{\text {b }}$
$2019 / 20$	13.040	36.125	7.18	7.317	8.221	11.572	8.680
$2020 / 21$	13.259	34.044	6.61	6.614	7.760	10.578	7.934
$2021 / 22$	12.599	29.941	5.93	5.951	6.737	10.620	7.434
$2022 / 23$	12.866^{d}	29.253^{d}	5.05	5.223^{\star}	5.758^{\star}	$8.292^{\text {c }}$	6.219^{c}
$2023 / 24$		26.310^{d}				8.882^{d}	6.662^{d}

a. Total catch was sum of retained catch and estimated bycatch mortality of discarded bycatch during crab fisheries and groundfish fisheries.
b. 25% buffer was applied to total catch OFL to determine ABC except $2021 / 22$, during which 30% buffer was applied.
c. OFL, and ABC were estimated by the accepted model 21.1 e 2 in May 2022 assessment when the WAG fisheries was not completed.
d. MSST, MMB, OFL, and ABC were estimated in May 2023 assessment with data cutoff on Mar 8 when the EAG and WAG fisheries were not completed.

ABC Buffer

- 2019/20 - 2020/21 \& 2022/23 used a 25\% buffer for ABC
- 2021/22 used a 30\% buffer for ABC
- Do any model concerns warrant a buffer greater than 25\%?

questions

EAG 21.1e

FROM JANUARY

WAG 21.1e
(ł) aWW

Predicted N Matrix EAG1e2

Observed Total N EAG1e2

