Aleutian Islands Golden King Crab 2023 Final Assessment

CPT May 2023

Siddeek, MS, B Daly, T Jackson

CPT #2: "The time-period for setting the years that define average recruitment should be justified, for example using a plot of years versus the variances of the recruitment deviations. This type of analysis should be included in all future assessments."

The time for setting the years that define average recruitment was brought up by the SSC in February 2022 and we responded to this question by showing that there were very little differences in the MMB trends and reference point estimates between two hypothetical periods.

The variance analysis is a good suggestion. However, because of limited time available we postpone this analysis to the next assessment cycle. Can explore in Jan 2024.

CPT #3: "The fits to the three CPUE series should be reported on separate plots."

Done. See Figures 19, 20, and 33.

CPT #4: "The combined model (i.e., fitting the data for the EAG and WAG as a single-area model) led to an OFL that is similar to the sum of those for the assessments of the EAG and WAG separately for the model 21.1e2 specifications. However, no fit diagnostics were provided for the combined model so the 2023 assessment should include an appendix with the fit diagnostics."

Because of limited time available we did not take up this analysis in this assessment cycle. Will explore in Jan 2024.

CPT #5: "The rationale for considering model 21.1f should be included in the assessment document, along with plots that show the extent to which the trend in CPUE varies among locations."

We have provided the rationale for including the Year: Area interaction CPUE model in Appendix B. Because of limited time between January and May, we did not explore the extent to which the trend in CPUE varies among location. This can be done in the next assessment cycle.

CPT #8: "Recommendation for 2024 assessment:

Models 21.1e2CPUE5Wt and 21.1fCPUE5Wt fit the CPUE data for the EAG much better than the base model (as expected) but without an obvious visual change in the fit to the size-composition data. Models that are forced to achieve better fits to the CPUE indices should be explored; in particular it is necessary to conduct analyses to identify the data sources that preclude the model fitting the CPUE index data well."

Will revisit in Jan 2024.

Figure 6. Historical commercial harvest (from fish tickets; metric tons), total allowable catch (TAC), and catch-per-unit effort (CPUE, number of crab per pot lift) of golden king crab in EAG, 1985/86–2022/23 (note: 1985 refers to the 1985/86 fishing year).

Figure 7. Historical commercial harvest (from fish tickets; metric tons)), total allowable catch (TAC), and catch-per-unit effort (CPUE, number of crab per pot lift) of golden king crab in WAG, 1985/86–2022/23 (note: 1985 refers to the 1985/86 fishing year).

Figure 8. Catch distribution by statistical area in 2022/23.

CPUE Standardization (Appendix B)

Negative Binominal GLM

Null Model

 $ln(CPUE_i) = Year_{y_i}$

Full Model

 $ln(CPUE_I) = Year_{y_i} + ns(Soak_{si}, df) + Month_{m_i} + Vessel_{vi} + Captain_{ci} + Block_{ai} + Gear_{gi} + ns(Depth_{di}, df),$

Negative Binominal GLM w/ interaction

Null Model

 $ln(CPUE_i) = Year_{y_i}:Block_{ai}$

Full Model

 $ln(CPUE_I) = Year_{y_i}: Block_{ai} + ns(Soak_{si}, df) + Month_{m_i} + Vessel_{vi} + Captain_{ci} + Gear_{gi} + ns(Depth_{di}, df)$

Figure B.1. The 1995/96–2022/23 observer pot samples enmeshed in 10 blocks for the Aleutian Islands golden king crab.

1x1 cells fished within blocks (Table B.2)

Block	N _{ever}
<u> </u>	375
2	1,364
3	1,765
4	915
5	452
6	1,026
7	812
8	2,172
9	1,042
10	334

CPUE Index w/ Year:Block

•
$$CPUE_{ij} = e^{YB_{ij} + \sigma_{ij}^2/2}$$

•
$$B_i = \sum B_{ij} = \sum N_{ever_j} CPUE_{ij}$$

• If there is no fishing in a block within year i, a log-linear model is fit to estimate $\widehat{B_{i,j}}$

$$ln(\hat{B}_{i,j}) = Year_i + Block_j$$

$$\bullet \ I_i = \frac{B_i}{\sqrt{\prod_{i=1}^n B_i}}$$

EAG CPUE Standardization

w/o Yr:Block

```
Initial selection by stepAIC:
```

ln(CPUE) = Year + Gear + Captain + ns(Soak, 4) + Month AIC=203,808

Final selection by stepCPUE:

$$ln(CPUE) = Year + Captain + ns(Soak, 4) + Month$$

for the 1995/96–2004/05 period [θ =1.38, R² = 0.2205]

Initial selection by stepAIC:

Final selection by stepCPUE:

$$ln(CPUE) = Year + Captain + ns(Soak, 10) + Gear$$
 (B.5)
for the 2005/06–2022/23 period [$\theta = 2.34$, R² = 0.1103].

EAG CPUE Standardization

w/ Yr:Block

Initial selection by stepAIC:

$$ln(CPUE) = Gear + Captain + ns(Soak, 4) + Month + Year: Block$$

AIC=203,851

Final selection by stepCPUE:

$$ln(CPUE) = Gear + Captain + ns(Soak, 4) + Year: Block$$
 (B.10)
for the 1995/96–2004/05 period [θ =1.38, R² = 0.2235]

Initial selection by stepAIC:

Final selection by stepCPUE:

$$ln(CPUE) = Vessel + ns(Soak, 10) + Gear + Year: Block$$
 (B.11) for the 2005/06–2022/23 period [$\theta = 2.34$, $R^2 = 0.1201$].

WAG CPUE Standardization

w/o Yr: Block

Initial selection by stepAIC:

$$ln(CPUE) = Year + Captain + ns(Soak, 7) + Gear + Area + Month + Vessel$$

AIC=191,025

Final selection by stepCPUE:

$$ln(CPUE) = Year + Captain + ns(Soak, 7) + Gear$$
 (B.6)
for the 1995/96–2004/05 period [θ =0.97, $R^2 = 0.1681$]

Initial selection by stepAIC:

Final selection by stepCPUE

$$ln(CPUE) = Year + Gear + ns(Soak, 2)$$
 (B.7)
for the 2005/06–2022/23 period [$\theta = 1.11$, R² = 0.0749, Soak forced in].

WAG CPUE Standardization

w/ Yr: Block

Initial selection by stepAIC:

$$ln(CPUE) = Vessel + ns(Soak, 7) + Gear + Month + Year: Block$$

AIC=191,060

Final selection by stepCPUE:

$$ln(CPUE) = Vessel + ns(Soak, 7) + Gear + Year: Block$$
 (B.12)
for the 1995/96–2004/05 period [θ =0.97, R² = 0.1719]

Initial selection by stepAIC:

Final selection by stepCPUE:

$$ln(CPUE) = Gear + Month + Year: Block + ns(Soak, 3)$$
 (B.13) for the 2005/06–2022/23 period [$\theta = 1.11$, $R^2 = 0.0897$, Soak forced in].

Cooperative Survey (Appendix C)

Cooperative Survey (Appendix C)

- Excluded small mesh pots, extreme quantiles of soak time and depth
- Standardized index of legal males (> 135 mm) to replace observer CPUE index from 2015-2022 in EAG (except 2020)

$$ln(CPUE_I) = Year_{y_i} + ns(Depth_{di}, 9) + ns(Soak_{si}, 3) + Captain_{ci} + (1|\frac{Block}{VesselString})$$

Family = Neg. Binomial ($\theta = 3.01$)

No size composition data included

Model Scenarios (Table T1, pg42)

EAG and WAG

- 22.9c 2022 accepted model (22_1e2) with modifications for GMACS transition
- **22.1e2** Model 22.9c in GMACS (w/o Yr:Block)
- **22.1f** Model 22.1e2 (w/ Yr:Block)

EAG only

- **22.1g** Model 22.1e2 with co-op survey 2015 2022
- **22.1h** Model 22.1f with co-op survey 2015 2022

Figure 16, pg 77

Figure 19, pg 79

Figure 20, pg 80

22.1e2

22.1f

22.1g

22.1h

Figure 17, pg 78 shows 22.9c std residuals

Total Composition

EAG • 0.0 • 0.1 • 0.2 • 0.3 22.1e2 Total Composition Pearson Residuals Carapce Length (mm)

Figure 18, pg 78 shows 22.9c std residuals

Figure 11, pg 73

WAG

Figure 30, pg 92

WAG

Figure 33, pg 94

Retained Composition

Figure 31, pg 93 shows 22.9c std residuals

100 125 150 175100 125 150 175100 125 150 175100 125 150 175

CL (mm)

0.2

0.1

0.0

22.1e2

Figure 32, pg 93 shows 22.9c std residuals

Figure 25, pg 88

Figure 21, pg 81

Figure 22a, pg 82

EAG WAG

Figure 22b, pg 83

Figure 34, pg 95

EAG

Parameter	Model 22.9c	Model 22.1e2	Model 22.1f	Model 22.1g	Model 22.1h	Limits
log_ω ₁ (growth incr. intercept)	2.513	2.513	2.518	2.518	2.518	1.0, 4.5
ω_2 (growth incr. slope)	-12.951	-12.947	-12.177	-12.132	-12.146	-15.0, 5.0
log_a (molt prob. slope)	-2.542	-2.542	-2.537	-2.540	-2.537	-4.61, -1.39
log_b (molt prob. L50)	4.952	4.952	4.953	4.953	4.953	3.869, 5.05
σ (growth variability std)	3.681	3.681	3.678	3.679	3.679	0.1, 12.0
log_total sel deltaθ, 1985–04	4.238	4.237	4.137	4.128	4.132	0.0, 4.4
log_ total sel deltaθ, 2005–22	3.186	3.186	3.168	3.176	3.171	0.0, 4.4
$log_$ ret. sel delta θ , 1985–22	1.867	1.867	1.863	1.863	1.863	0.0, 4.4
log_tot sel θ_{50} , 1985–04	4.798	4.798	4.786	4.783	4.786	4.0, 5.0
log_tot sel θ_{50} , 2005–22	4.917	4.917	4.914	4.917	4.915	4.0, 5.0
$\log_{\text{ret.}} \text{ sel } \theta_{50}$, 1985–22	4.916	4.916	4.916	4.916	4.916	4.0, 5.0
\log_{β_r} (rec.distribution par.)	0.480	0.480	0.394	0.397	0.392	-12.0, 12.0
logq1 (fishery catchability, 1985–98)	-0.469	-0.469	-0.478	-0.479	-0.478	-9.0, 2.25
logq2 (fishery/observer catchability, 1985–04)	-0.624	-0.625	-0.626	-0.620	-0.629	-9.0, 2.25
logq3 (observer catchability, 2005–22)	-0.806	-0.805	-0.804	-0.814	-0.812	-9.0, 2.25
log_mean_rec (mean rec.)	0.883	1.008	1.006	0.990	0.994	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-1.005	-1.005	-1.017	-0.991	-1.003	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.431	-8.431	-8.431	-8.404	-8.412	-15.0, -1.6
$\log SE1$ (fishery CPUE additional std, 1985–98)	-1.629	-1.622	-1.596	-1.590	-1.595	-8.0, 1.0
$\log SE2$ (fishery/observer CPUE additional std, 1985–04)	-1.489	-1.489	-2.170	-1.504	-2.169	-8.0, 0.15
log SE3 (observer CPUE additional std, 2005–22)	-1.427	-1.428	-1.600	-1.299	-1.351	-8.0, 0.15
2022 MMB	9,059	9,055	8,981	7,864	7,765	

Parameter	Model 22.9c	Model 22.1e2	Model 22.1f	Limits
log_ω ₁ (growth incr. intercept)	2.506	2.506	2.518	1.0, 4.5
ω_2 (growth incr. slope)	-13.156	-13.156	-11.550	-15.0, 5.0
log_a (molt prob. slope)	-2.706	-2.706	-2.693	-4.61, -1.39
log_b (molt prob. L50)	4.951	4.951	4.952	3.869, 5.05
σ (growth variability std)	3.672	3.672	3.667	0.1, 12.0
log_total sel deltaθ, 1985–04	3.979	3.978	3.857	0.0, 4.4
log_ total sel deltaθ, 2005–22	3.069	3.069	3.062	0.0, 4.4
$log_$ ret. sel delta θ , 1985–22	1.708	1.708	1.705	0.0, 4.4
$\log_{tot} $ sel θ_{50} , 1985–04	4.909	4.909	4.885	4.0, 5.0
$\log_{tot} $ sel θ_{50} , 2005–22	4.904	4.904	4.902	4.0, 5.0
$\log_{\text{ret.}} \text{ sel } \theta_{50}, 1985-22$	4.913	4.913	4.913	4.0, 5.0
log_β _r (rec.distribution par.)	-0.074	-0.074	-0.211	-12.0, 12.0
logq1 (fishery catchability, 1985–98)	0.040	0.039	-0.015	-9.0, 2.25
logq2 (fishery/observer catchability, 1985–04)	0.089	0.087	0.045	-9.0, 2.25
,				-9.0, 2.25
logq3 (observer catchability, 2005–22)	-0.315	-0.316	-0.310	•
log_mean_rec (mean rec.)	0.700	0.825	0.819	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-0.695	-0.696	-0.723	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.174	-8.175	-8.172	-15.0, -1.6
log SE1 (fishery CPUE additional std, 1985–98)	-1.938	-1.955	-1.964	-8.0, 1.0
$\log SE2$ (fishery/observer CPUE additional std, 1985–04)	-1.496	-1.494	-1.587	-8.0, 0.15
$\log SE3$ (observer CPUE additional std, 2005–22)	-2.135	-2.124	-2.047	-8.0, 0.15
2022 MMB	4,495	4,545	4,288	

EAG

	Base		GM	ACS	
Likelihood Component	22.9c	22.1e2	22.1f	22.1g	22.1h
Retlencomp	286.2230	286.2369	265.4302	262.7069	262.3774
Totallencomp	520.2600	520.2876	553.999	555.5594	554.3931
Observer cpue	-26.7588	-26.7606	-32.6846	-23.8624	-28.4356
Fishery cpue	-15.5853	-15.5297	-15.1827	-15.1038	-15.177
RetdcatchB	-421.9470	-421.953	-422.049	-422.125	-422.053
TotalcatchB	-40.9361	-40.9455	-41.384	-41.4766	-41.3155
GdiscdcatchB	30.3249	30.32492	30.3248	30.3248	30.3247
Rec_dev	22.7112	20.7514	20.8089	20.6410	20.6312
Pot F_dev	0.0135				
Gbyc_F_dev	0.0239				
Sum (Pot F_dev+ Gbyc_F_dev)	0.0374	0.0373	0.0371	0.0371	0.0373
Tag	2701.2600	2701.2579	2700.409	2700.569	2700.389
Total	3055.5900	3079.43181	3085.433	3092.9951	3086.8961

	Base	GMA	ACS
Likelihood Component	22.9c	22.1e2	22.1f
Retlencomp	363.7120	363.8280	313.3108
Totallencomp	435.9380	436.0861	478.6189
Observer cpue	-38.6873	-38.5262	-37.7272
Fishery cpue	-19.6942	-19.8406	-19.9340
RetdcatchB	-420.4380	-420.436	-420.458
TotalcatchB	14.1469	14.13333	12.9985
GdiscdcatchB	30.3262	30.32618	30.3258
Rec_dev	21.5391	19.5703	20.0221
Pot F_dev	0.0264		
Gbyc_F_dev	0.0428		
Sum (Pot F_dev+			
Gbyc_F_dev)	0.0692	0.0692	0.0692
Tag	2705.5800	2705.561	2703.436
Total	3092.5000	3115.8015	3105.693

EAG

1,000 tons

	Model	Tier	MMB _{35%}	Current	MMB/	F_{OFL}	Recruitment Years to Define	F _{35%}	Natural		ABC
				MMB	MMB _{35%}		MMB _{35%}		Mortality	OFL	(0.75*OFL)
	EAG22.9c	3a	6.665	7.487	1.12	0.59	1987–2017	0.59	0.22	2.952	2.214
E	AG22.1e2	3a	6.682	7.494	1.12	0.59	1987–2017	0.59	0.22	2.939	2.204
	EAG22.1f	3a	6.691	7.489	1.12	0.58	1987–2017	0.58	0.22	2.899	2.174
I	EAG22.1g	3a	6.612	6.782	1.03	0.58	1987–2017	0.58	0.22	2.520	1.890
	EAG22.1h	3a	6.637	6.718	1.01	0.58	1987–2017	0.58	0.22	2.485	1.863

1,000,000 pounds

			Current	MMB/		Recruitment		Natural		
Model	Tier	$MMB_{35\%}$	MMB		F_{OFL}	Years to Define	$F_{35\%}$	Mortality		ABC
			IVIIVID	<i>MMB</i> _{35%}		MMB _{35%}		Mortality	OFL	(0.75*OFL)
EAG22.9c	3a	14.695	16.506	1.12	0.59	1987–2017	0.59	0.22	6.507	4.881
EAG22.1e2	3a	14.731	16.521	1.12	0.59	1987–2017	0.59	0.22	6.479	4.860
EAG22.1f	3a	14.751	16.511	1.12	0.58	1987–2017	0.58	0.22	6.390	4.793
EAG22.1g	3a	14.577	14.951	1.03	0.58	1987–2017	0.58	0.22	5.555	4.166
EAG22.1h	3a	14.633	14.811	1.01	0.58	1987–2017	0.58	0.22	5.477	4.108

1,000 tons

Model	Tie r	<i>MMB</i> _{35%}	Current MMB	MMB/ MMB _{35%}	F _{OFL}	Recruitment Years to Define MMB _{35%}	F _{35%}	Natural Mortality	OFL	ABC (0.75*OFL)
WAG22.9c	3a	4.960	4.532	0.914	0.50	1987–2017	0.55	0.22	1.232	0.924
WAG22.1e2	3a	4.982	4.575	0.918	0.50	1987–2017	0.55	0.22	1.243	0.933
WAG22.1f	3a	4.980	4.444	0.892	0.47	1987–2017	0.54	0.22	1.131	0.848

1,000,000 pounds

Model	Tier	<i>MMB</i> _{35%}	Current MMB	MMB/	F_{OFL}	Recruitment Years to Define	F _{35%}	Natural Mortality		ABC
			טוועוט	1VIIVID35%		$\textit{MMB}_{35\%}$		Mortality	OFL	(0.75*OFL)
WAG22.9c	3a	10.934	9.991	0.914	0.50	1987–2017	0.55	0.22	2.716	2.037
WAG22.1e2	3a	10.983	10.086	0.918	0.50	1987–2017	0.55	0.22	2.741	2.056
WAG22.1f	3a	10.980	9.798	0.892	0.47	1987–2017	0.54	0.22	2.493	1.870

Catch specs for all Aleutian Is.

22.1e2 1,000 tons

Year		Biomass	TAC	Retained	Total Catcha	OFL	ABCb
	MSST	(MMB)	IAC	Catch		OI L	ABC ³
2019/20	5.915	16.386	3.257	3.319	3.729	5.249	3.937
2020/21	6.014	15.442	2.999	3.000	3.520	4.798	3.599
2021/22	5.715	13.581	2.690	2.699	3.056	4.817	3.372
2022/23	5.832 ^d	13.600 ^d	2.291	2.369*	2.612*	3.761°	2.821 ^c
2023/24		12.069 ^d				4.182 ^d	3.137 ^d

22.1f

Year	MSST	Biomass (MMB)	TAC	Retained Catch	Total Catcha	OFL	ABCb
2019/20	5.915	16.386	3.257	3.319	3.729	5.249	3.937
2020/21	6.014	15.442	2.999	3.000	3.520	4.798	3.599
2021/22	5.715	13.581	2.690	2.699	3.056	4.817	3.372
2022/23	5.836 ^d	13.269 ^d	2.291	2.369*	2.612*	3.761 ^c	2.821c
2023/24		11.934 ^d				4.029 ^d	3.022 ^d

- a. Total catch was sum of retained catch and estimated bycatch mortality of discarded bycatch during crab fisheries and groundfish fisheries.
- b. 25% buffer was applied to total catch OFL to determine ABC except 2021/22, during which 30% buffer was applied.
- c. OFL, and ABC were estimated by the accepted model 21.1e2 in May 2022 assessment when the WAG fisheries was not completed.
- d. MSST, MMB, OFL, and ABC were estimated in May 2023 assessment with data cutoff on Mar 8 when the EAG and WAG fisheries were not completed.

Catch specs for all Aleutian Is.

22.1e2 1,000,000 lb

Year		Biomass	TAC	Retained	Total Catcha	OFL	ABCb
	MSST	(MMB)	IAC	Catch	Total Catch	OIL	ABC
2019/20	13.040	36.125	7.18	7.317	8.221	11.572	8.680
2020/21	13.259	34.044	6.61	6.614	7.760	10.578	7.934
2021/22	12.599	29.941	5.93	5.951	6.737	10.620	7.434
2022/23	12.857 ^d	29.983d	5.05	5.223*	5.758*	8.292c	6.219°
2023/24		26.608d				9.220 ^d	6.916 ^d

22.1f

Year	MSST	Biomass (MMB)	TAC	Retained Catch	Total Catcha	OFL	ABCb
2019/20	13.040	36.125	7.18	7.317	8.221	11.572	8.680
2020/21	13.259	34.044	6.61	6.614	7.760	10.578	7.934
2021/22	12.599	29.941	5.93	5.951	6.737	10.620	7.434
2022/23	12.866 ^d	29.253 ^d	5.05	5.223*	5.758*	8.292 ^c	6.219 ^c
2023/24		26.310 ^d				8.882 ^d	6.662 ^d

- a. Total catch was sum of retained catch and estimated bycatch mortality of discarded bycatch during crab fisheries and groundfish fisheries.
- b. 25% buffer was applied to total catch OFL to determine ABC except 2021/22, during which 30% buffer was applied.
- c. OFL, and ABC were estimated by the accepted model 21.1e2 in May 2022 assessment when the WAG fisheries was not completed.
- d. MSST, MMB, OFL, and ABC were estimated in May 2023 assessment with data cutoff on Mar 8 when the EAG and WAG fisheries were not completed.

ABC Buffer

 2019/20 – 2020/21 & 2022/23 used a 25% buffer for ABC

2021/22 used a 30% buffer for ABC

 Do any model concerns warrant a buffer greater than 25%?

questions

Predicted N Matrix EAG1e2

Rec = 2,258 Rec = 3,118 MMB = 7.490MMB = 8.660Rec = 3,017 Rec = 2,696MMB = 7,113 MMB = 9,245 Rec = 3,062 Rec = 1,862 MMB = 7,036MMB = 9,644 z_{1000} Rec = 3,373 Rec = 2,203 MMB = 7,370MMB = 9,462 Rec = 4,049 Rec = 2,418 MMB = 7.958MMB = 9.055CL (mm)

Observed Total N EAG1e2

