An (

Steven Barbeaux, Bridget Ferriss, Ben Laurel, Mike Litzow, Susanne McDermott, Julie Nielsen, Wayne Palsson, Ingrid Spies, and Mäyin Wang

November 2021

- Strong evidence for selective differentiation, including one that aligned to the zona pellucida glycoprotein 3 (ZP3)
- ZP3 a reproductive protein known to undergo rapid selection shown to neofunctionalize as an antifreeze protein in Antarctic icefishes (Spies et al. 2021).

Latest Pacific cod genetics

- 3,599 SNP loci and spawning samples throughout the range of Pacific cod off Alaska, as well as a summer sample from the Northern Bering Sea in August 2017 show significant differentiation among all spawning groups.
- The three spawning groups examined in the GOA, Hecate Strait, Kodiak Island, and Prince William Sound, were all genetically distinct and could be assigned to their population of origin with $80-90 \%$ accuracy.

- More than half (10/17) of the tags recovered in the June-September in Bering Sea
- One tag recovered in the Chukchi Sea
- Indicates substantial connectivity between he WGOA and other regions

Western GOA PSAT tagging

- 25 satellite-tagged and 957 conventionally-tagged Pacific cod released in Western GOA.
- Satellite tags were programmed to pop-up and transmit data after 90, 180, or 365 days.
- Locations of tags recovered in March, April, and May in the vicinity of release area.
- Fish recovered June through September had moved west toward the Aleutian Islands and north into the EBS, Northern Bering Sea, Russia, and the Chukchi Sea.

CFSR Temperatures in June for Pacific cod at mean
depth for length

Environmental Indices used in models

- CFSR Temperatures for 0-20cm Pacific cod
- Cooler in 2020 and 2021
- Heatwave indices
- Short and low intensity heatwave in Jan-Feb 2021
- Cooler for remainder of year

Commercial fisheries dàtä

- Catch remains low, but increasing in 2021
- Number of participating vessels increased in both regions in 2021

Western GOA

Longline fishery condition Western GOA

 Commercial fisheries data

Central GOA

- Western and Central GOA fisheries appear to be recovering
- For most gears fishing rate comparable or exceeding 2018-2019
- Condition (length-weight) were better than average

Pelagic trawl fisheries

- 1-10+ age bins
- $1-117+\mathrm{cm}$ length bins
- Key estimated parameters:
- M lognormal prior, mean -0.81, CV 0.41
- Survey catchability uninformative prior
- M anomaly for the 2014-2016 period
- Stock recruitment relationship: Beverton-Holt
- $\sigma R=0.44$, steepness $=1.0$
- Growth
- Three-parameter von Bertalanffy growth (informative priors based on 2007-2018 survey size at age data
- Selectivity: length-based double normal
- Different periods for bottom trawl survey
- Longline and trawl
- pre-1990 annually varying
- blocks for post-1990
- Longline survey catchability
- scaled to CFSR temperatures for 0-10 cm Pacific cod mean depth

Last year's model (Model 19.1)

- Rerun of 2019 model with up-to-date data included
- Model 19.1
- Same as last year's base model
- Model 21.1
- Same as 19.1 except:
- Natural mortality block for 2015-2017

M-block	Temperature		Beach	
2015-2017	Growth	M	Recruits	seine index

Base

21.1
21.2

- Model 21.2
- Same as Model 19.1 except:
- Age-0 beach seine index,
- Annual heatwave linked Natural mortality,
- Spawning heatwave linked recruitment,
- June CFSR temp linked growth.

2021 model configurations

- Based on September, 2021 model explorations (Appendix 2.7)
- Note: Reweighting of models was not conducted as explorations using the Dirichlet multinomial indicated current were weights appropriate

Natural mortality by model

- Model 21.2: annual heatwave linked natural mortality with asymptote

$$
\begin{array}{ll}
M_{y}=\widehat{M}+\eta l_{y} & \text { • } \begin{array}{l}
\text { Logistic function fit } \\
\text { iteratively }
\end{array} \\
l_{y}=\lambda /\left(1+e^{-\varsigma\left(I_{A y}-\psi\right)}\right) & \begin{array}{l}
\bullet=0.65 \\
\\
\\
\\
\\
\\
\\
\\
\end{array}=0.05 \\
& \Psi=400
\end{array}
$$

Natural Mortality

Natural Mortality Function

- 19.1-2014-2016 block
- 21.1-2015-2017 block
- 21.2 - Annual heatwave index link

Model 19.1

Model 19.1

Model 21.1

Model 21.2

Model 21.1

Model 21.2

Posterior catchability and natural mortality

- Similar bottom trawl survey abundance index catchability $\left(\mathrm{Q}_{\mathrm{Bt}}\right)$
- Posterior distributions are wide
- Lowest estimate from Model 21.2
- Lowest base natural mortality in Model 21.2

Models 21.2

$$
\begin{aligned}
& L_{a y}=L_{2 y}-\left(L_{2 a}-L_{1 a}\right) e^{-a k\left(e^{-\varphi f_{j y}}\right)} \\
& L_{1 a}=\bar{L}_{1}\left(\gamma \frac{e^{\left(0.2494+0.3216\left(\bar{t}+f_{j y}\right)-0.0069\left(\bar{t}+f_{j y}\right)^{2}-0.0004\left(\bar{t}+f_{j y}\right)^{3}\right)}}{e^{\left(0.2494+0.3216(t)-0.0069(t)^{2}-0.0004(\bar{t})^{3}\right)}}\right) \\
& L_{2 y}=\bar{L}_{2} e^{v f_{j y}}
\end{aligned}
$$

Model 21.2 vs Model 19.1

Change in Pacific cod length by change in sea surface temperature from 1982-2012 mean

Change in Pacific cod length by change in sea surface temperature from 1982-2012 mean

- Model 19.1 and Model 21.1 standard von Bertalanffy growth
- Model 21.2 temperature dependent von Bertalanffy growth
- $\mathrm{L}_{1 \mathrm{a}}$ based on Laurel et al. (2015) larval growth rate by temperature

Models 19.1 and 21.1

$R_{y}=\left(R_{0} e^{\vartheta}\right) e^{-0.5 b_{y} \sigma_{R}^{2}+\tilde{R}_{y}}$
Model 21.2
$\mathrm{R}_{\mathrm{y}}=e^{\vartheta+\ln \left(\mathrm{R}_{0} e^{\omega I_{S}^{\frac{1}{3}}}\right)} e^{-0.5 \mathrm{~b}_{\mathrm{y}} \sigma_{\mathrm{R}}^{2}+\widetilde{\mathrm{R}}_{\mathrm{y}}}$

Age-0 recruitment by spawning heatwave index (${ }^{\circ} \mathrm{C}$ days)

Recruitnent - Model 19.1 recruits ----Model 21.2 fit - Beach Seine Index

- Model 19.1 and Model 21.1 standard Beverton-Holt with steepness $\mathrm{h}=1$ and $\mathrm{o}_{\mathrm{R}}=0.44$
- Model 21.2 - Spawning heatwave index linked Beverton-Holt with steepness $\mathrm{h}=1$ and $\mathrm{\sigma}_{\mathrm{R}}=0.44$

Indices

Conditional Length at age

Length Composition

Recruitment

- Model 21.2 has best overall fit
- Worst fit to trawl and longline survey indices
- Best fit to Survey length composition
- Best fit to length at age data
- Best fit to Recruitment

Longline survey
Model 19.1

- Model 19.1 better fit to bottom trawl survey
- Model 21.1 better fit to longline survey
- Model 21.2 included beach seine and fits both worse

September beach seine index fit

Model 21.2 beach seine index fit

- Added constant fit to survey standard deviation as per SSC request
- 138% increase in index standard deviation
- Little influence in the model

	Spawning stock biomass		Age-0 Recruitment			
	Mohn's	Woodshole		Mohn’s	Woodshole	
Model	ρ	ρ	RMSE	ρ	ρ	RMSE
$\mathbf{1 9 . 1}$	$\mathbf{0 . 0 0 0 2}$	$\mathbf{0 . 0 8 3 7}$	$\mathbf{0 . 1 1 5 9}$	0.1084	0.1195	0.1737
$\mathbf{2 1 . 1}$	0.0440	0.1280	0.1476	0.0564	0.1339	$\mathbf{0 . 1 5 0 3}$
$\mathbf{2 1 . 2}$	0.0557	0.0841	0.1230	$\mathbf{0 . 0 4 4 8}$	$\mathbf{0 . 1 0 3 4}$	0.1716

Model 19.1

Retrospectives and jitter

- Model 19.1 has best Mohn's ρ for SSB
- Model 21.2 has best Mohn's ρ for Age-0 recruitment
- All models within acceptable bounds with low bias
- Jitter 50 runs at 0.05

Model	\#	Not Conv.	At MLE	Below MLE	\% converged at MLE
$\mathbf{1 9 . 1}$	50	1	32	0	65%
21.1	50	3	37	0	79%
21.2	50	12	23	0	61%

	MILE			Leave-one-out		
Label	Value	${ }_{\sigma}$	CV	Mean bias	Mean bias/MLE Value	Model
ABC_{2022}	32811	6335	0.193	2860.32	0.0872	19.1
ABC_{2022}	26759	5513	0.206	1873.84	0.0700	21.1
ABC_{2022}	23099	4345	0.188	1378.89	0.0597	21.2
F_{402}	0.696	0.054	0.077	0.0054	0.0078	19.1
$\mathrm{F}_{40 \mathrm{O}}$	0.687	0.056	0.086	0.0067	0.0098	21.1
$\mathrm{F}_{40 \mathrm{O}}$	0.734	0.051	0.082	0.0066	0.0090	21.2
$M_{\text {bas }}$	0.499	0.019	0.038	0.0024	0.0049	19.1
$\mathrm{M}_{\text {bas }}$	0.499	0.022	0.044	0.0032	0.0066	21.1
$\mathrm{M}_{\text {bas }}$	0.369	0.020	0.054	0.0033	0.0090	21.2
$\mathrm{Q}_{\text {Bt }}$	0.101	0.081	NA	-0.0045	-0.0041	19.1
$\mathrm{Q}_{\text {Bt }}$	0.091	0.088	NA	-0.0060	-0.0052	21.1
$\mathrm{Q}_{\text {Bt }}$	0.063	0.080	NA	-0.0055	-0.0052	21.2
$\mathrm{SSB}_{\text {Unfisis }}$	165508	12407	0.075	1755.86	0.0106	19.1
$\mathrm{SSB}_{\text {Imfisil }}$	159948	12114	0.076	1645.18	0.0103	21.1
$\mathrm{SSB}_{\text {Unfisi }}$	162426	12205	0.075	1178.41	0.0073	21.2
SSB_{2122}	48061	4476	0.093	1934.96	0.0403	19.1
SSB_{2122}	42763	4175	0.098	1354.25	0.0317	21.1
SSB_{21022}	39873	3651	0.092	1109.95	0.0278	21.2

- Low bias across all three models
- 2016 data are highly influential
- 2021 data are highly influential on Biomass estimates

Leave-one-out analyses (LOO)

- Remove single year's data from models iteratively
- Investigate impacts on key model parameters and results

	MILE			Leave-one-out		
Label	Value	${ }_{\sigma}$	CV	Mean bias	Mean bias/MLE Value	Model
ABC_{2022}	32811	6335	0.193	2860.32	0.0872	19.1
ABC_{2022}	26759	5513	0.206	1873.84	0.0700	21.1
ABC_{2022}	23099	4345	0.188	1378.89	0.0597	21.2
F_{402}	0.696	0.054	0.077	0.0054	0.0078	19.1
$\mathrm{F}_{40 \mathrm{O}}$	0.687	0.056	0.086	0.0067	0.0098	21.1
$\mathrm{F}_{40 \mathrm{O}}$	0.734	0.051	0.082	0.0066	0.0090	21.2
$M_{\text {bas }}$	0.499	0.019	0.038	0.0024	0.0049	19.1
$\mathrm{M}_{\text {bas }}$	0.499	0.022	0.044	0.0032	0.0066	21.1
$\mathrm{M}_{\text {bas }}$	0.369	0.020	0.054	0.0033	0.0090	21.2
$\mathrm{Q}_{\text {Bt }}$	0.101	0.081	NA	-0.0045	-0.0041	19.1
$\mathrm{Q}_{\text {Bt }}$	0.091	0.088	NA	-0.0060	-0.0052	21.1
$\mathrm{Q}_{\text {Bt }}$	0.063	0.080	NA	-0.0055	-0.0052	21.2
$\mathrm{SSB}_{\text {Unfisis }}$	165508	12407	0.075	1755.86	0.0106	19.1
$\mathrm{SSB}_{\text {Imfisil }}$	159948	12114	0.076	1645.18	0.0103	21.1
$\mathrm{SSB}_{\text {Unfisi }}$	162426	12205	0.075	1178.41	0.0073	21.2
SSB_{2122}	48061	4476	0.093	1934.96	0.0403	19.1
SSB_{2122}	42763	4175	0.098	1354.25	0.0317	21.1
SSB_{21022}	39873	3651	0.092	1109.95	0.0278	21.2

- Low bias across all three models
- 2016 data are highly influential
- 2021 data are highly influential on Biomass estimates

Leave-one-out analyses (LOO)

- Remove single year's data from models iteratively
- Investigate impacts on key model parameters and results

	MILE			Leave-one-out		
Label	Value	${ }_{\sigma}$	CV	Mean bias	Mean bias/MLE Value	Model
ABC_{2022}	32811	6335	0.193	2860.32	0.0872	19.1
ABC_{2022}	26759	5513	0.206	1873.84	0.0700	21.1
ABC_{2022}	23099	4345	0.188	1378.89	0.0597	21.2
F_{402}	0.696	0.054	0.077	0.0054	0.0078	19.1
$\mathrm{F}_{40 \mathrm{O}}$	0.687	0.056	0.086	0.0067	0.0098	21.1
$\mathrm{F}_{40 \mathrm{O}}$	0.734	0.051	0.082	0.0066	0.0090	21.2
$M_{\text {bas }}$	0.499	0.019	0.038	0.0024	0.0049	19.1
$\mathrm{M}_{\text {bas }}$	0.499	0.022	0.044	0.0032	0.0066	21.1
$\mathrm{M}_{\text {bas }}$	0.369	0.020	0.054	0.0033	0.0090	21.2
$\mathrm{Q}_{\text {Bt }}$	0.101	0.081	NA	-0.0045	-0.0041	19.1
$\mathrm{Q}_{\text {Bt }}$	0.091	0.088	NA	-0.0060	-0.0052	21.1
$\mathrm{Q}_{\text {Bt }}$	0.063	0.080	NA	-0.0055	-0.0052	21.2
$\mathrm{SSB}_{\text {Unfisis }}$	165508	12407	0.075	1755.86	0.0106	19.1
$\mathrm{SSB}_{\text {Imfisil }}$	159948	12114	0.076	1645.18	0.0103	21.1
$\mathrm{SSB}_{\text {Unfisi }}$	162426	12205	0.075	1178.41	0.0073	21.2
SSB_{2122}	48061	4476	0.093	1934.96	0.0403	19.1
SSB_{2122}	42763	4175	0.098	1354.25	0.0317	21.1
SSB_{21022}	39873	3651	0.092	1109.95	0.0278	21.2

- Low bias across all three models
- 2016 data are highly influential
- 2021 data are LESS influential on biomass \&ABC estimates

Leave-one-out analyses (LOO)

- Remove single year's data from models iteratively
- Investigate impacts on key model parameters and results

		MCMC link posterior percentile				Link MLE		
$\begin{gathered} \text { Paramet } \\ \text { er } \\ \hline \end{gathered}$	Link	2.50\%	50\%	97.50\%	p	Value	σ	Gradient
M	η	1.0974	1.3865	1.7005	<0.002	1.4098	0.14725	-3.91E-06
L_{1}	Y	1.3676	1.7659	2.1559	<0.002	1.8003	0.20917	$5.98 \mathrm{E}-07$
L_{2}	v	0.0023	0.0434	0.0854	0.02	0.0476	0.02208	$2.68 \mathrm{E}-06$
K	¢	-0.0893	-0.0235	0.0423	0.25	-0.0299	0.03510	1.32E-06
R_{0}	ω	-0.0141	-0.0076	-0.0015	0.002	-0.0072	0.00351	-2.66E-06
$\mathrm{Q}_{\text {BT }}$	τ	0.5235	1.1259	2.2078	< 0.002	1.3188	0.56170	$9.55 \mathrm{E}-0.8$

Model 21.2 Environmental links

- Link parameters fit with uninformative priors
- Inverse Hessian and MCMC results agree
- ϕ link to K not significantly different from 0

Prior CV	Prior $\boldsymbol{\sigma}$	Param	Link	Value	$\% \boldsymbol{\Delta}$	LL $\boldsymbol{\Delta}$
$\mathbf{0 . 1}$	$\mathbf{0 . 0 0 2 9 9 0}$	\mathbf{K}	$\boldsymbol{\phi}$	$\mathbf{- 0 . 0 0 0 2 2}$	$\mathbf{9 9 . 3 \%}$	$\mathbf{0 . 3 6 4}$
$\mathbf{0 . 2 5}$	$\mathbf{0 . 0 0 7 4 7 4}$	\mathbf{K}	$\boldsymbol{\phi}$	$\mathbf{- 0 . 0 0 1 3 1}$	$\mathbf{9 5 . 6 \%}$	$\mathbf{0 . 3 5 0}$
$\mathbf{0 . 5}$	$\mathbf{0 . 0 1 4 9 4 9}$	\mathbf{K}	$\boldsymbol{\phi}$	$\mathbf{- 0 . 0 0 4 6 4}$	$\mathbf{8 4 . 5 \%}$	$\mathbf{0 . 3 0 9}$
$\mathbf{1}$	$\mathbf{0 . 0 2 9 8 9 8}$	\mathbf{K}	$\boldsymbol{\phi}$	$\mathbf{- 0 . 0 1 2 6 4}$	$\mathbf{5 7 . 7 \%}$	$\mathbf{0 . 2 1 1}$
$\mathbf{0 . 1}$	0.004763	$\mathrm{~L}_{2}$	V	0.002230	95.3%	2.301
$\mathbf{0 . 2 5}$	0.011909	$\mathrm{~L}_{2}$	v	0.011098	76.7%	1.843
$\mathbf{0 . 5}$	0.023817	$\mathrm{~L}_{2}$	V	0.025918	45.6%	1.084
$\mathbf{1}$	0.047635	$\mathrm{~L}_{2}$	V	0.039279	17.5%	0.412
$\mathbf{0 . 1}$	0.180026	$\mathrm{~L}_{1}$	Y	0.755919	58.0%	21.564
$\mathbf{0 . 2 5}$	0.450065	$\mathrm{~L}_{1}$	Y	1.499503	16.7%	6.434
$\mathbf{0 . 5}$	0.900130	$\mathrm{~L}_{1}$	Y	1.709467	5.0%	1.899
$\mathbf{1}$	1.800260	$\mathrm{~L}_{1}$	Y	1.776392	1.3%	0.493
$\mathbf{0 . 1}$	0.140976	M	n	0.656814	53.4%	23.445
$\mathbf{0 . 2 5}$	0.352440	M	n	1.197071	15.1%	6.799
$\mathbf{0 . 5}$	0.704880	M	n	1.350543	4.2%	1.916
$\mathbf{1}$	1.409760	M	n	1.394530	1.1%	0.495
$\mathbf{0 . 1}$	0.000716	R_{0}	ω	-0.00030	95.9%	2.046
$\mathbf{0 . 2 5}$	0.001791	R_{0}	ω	-0.00151	78.8%	1.679
$\mathbf{0 . 5}$	0.003581	R_{0}	ω	-0.00369	48.5%	1.026
$\mathbf{1}$	0.007163	R_{0}	Ω	-0.00578	19.3%	0.404

Model 21.2 Environmental links

- Normal prior with mean of 0.0 fit iteratively with decreasing CV on prior for each link parameter
- Suggested by SSC

Removal of ϕ link on K makes little to no difference in model results

- Model 21.2 retains ϕ link on K parameter

BT survey vs. Total biomass

Female spawning biomass

- All three models within the realm of models considered previously
- Relative catchability (survey biomass/total biomass) is 1.0 for all three models considered.

- Model 21.2 had the best overall fit to all of the data where direct comparisons are possible
- All models performed well in retrospective
- All models had little overall bias in LOO analysis
- Model 21.2 ending year data was less influential
- Environmental links in Model 21.2 are well fit and should improve projections

Summary model selection

Trawl Fishery

Pot Fishery

Bottom Trawl Survey Longline Survey

- Good overall fit to the length composition data
- Bottom trawl survey may underfit some small size classes
 Model 21.2 Length composition fits
- Good overall fit to length composition data
- Bottom trawl survey may underfit some small size classes
- 2021 projected mean sizes are smaller than observed in all fisheries and surveys

Model 21.2 Length composition fits

- 2021 projected mean sizes are smaller than observed in all fisheries and surveys

Model 21.2 Catchability and natural mortality

- Q is well fit in Model 21.2
- Q and M are inversely correlated.

For projections the environmentally linked Model 21.2 requires assumptions about future conditions

June CFSR Central GOA Anomaly

Projection A: 1977-2021 mean conditions

Annual Heatwave Index

Projection B: 2010-2021 mean conditions

Model 21.2 Projection decision

- 1977-2021 matches timeframe for setting reference points
- 2010-2021 may better reflect future conditions under IPCC scenarios with increasing temperature trends for Central GOA

No. Year
Natural mortality by model

2022 spawning biomass at $\mathrm{B}_{24.5 \%}$

Model 21.2 Results spawning biomass

- Both projection have increased M and growth
- Increase in growth is small between projections

Model 21.2 Results recruitment

- Both projection have decreased recruitment
- Difference is small

 Model 21.2 Results

- MCMC 1 million draws, burn in of 10,000, thinned at 2,000
- Projection A: 2% probability of $<\mathrm{B}_{20 \%}$ in 2023
- Projection B: 22% probability of $<\mathrm{B}_{20 \%}$ in 2023

Projection A

Model 21.2 status projections

- Both projections are highly uncertain after 2025
- Projection A: Not overfished or approaching an overfished condition
- Projection B: Overfished and approaching an overfished condition
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Assessment- } \\ \text { related } \\ \text { considerations }\end{array} & \begin{array}{l}\text { Population } \\ \text { dynamics } \\ \text { considerations }\end{array} & \begin{array}{l}\text { Environmental/ } \\ \text { ecosystem } \\ \text { considerations }\end{array} & \text { Fishery } \\ \text { Performance }\end{array} \quad \begin{array}{l}\text { Overall score } \\ \text { (highest of the } \\ \text { individual } \\ \text { scores) }\end{array}\right]$
- Assessment related - Still some uncertainty on pre-1985 population, but improved over last year's model
- Population dynamics - Still low spawning biomass, but appears to be improving, signs of good recruitment in 2020 and average in 2021.
- Environmental/ecosystem - Cooling in 2021 to average or below and overall better conditions.
- Fishery performance - Mixed results as normal, EM adds some uncertainty in how to measure performance.

Risk table

- Level 1: Normal for all components

Projection A (Mean 1977-2021 conditions projected)

Projection B (Mean 2010-2021 conditions projected)

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

Model21.2
Quantity
Tier
Projected total (age 0+) biomass (t)
Female spawning biomass (t)
Projected

$\operatorname{maxF}_{\mathrm{ABC}}$
$\mathrm{F}_{\mathrm{ABC}}$
$\operatorname{OFL}(\mathrm{t})$

Overfishing
Overfished
Approaching overfished

- Assumed 2021 catch at the ABC, 23,627t. For 2023 projections the 2022 catch was assumed to be at the projected ABC.

AFSC bottom trawl survey RE model for allocation

Area
Central GOA
Eastern GOA
Western GOA

		Western	Central	Eastern	Total
Random effects area apportionment	30.3%	60.2%	9.5%	100%	
Projection A	2022 ABC	7,285	14,474	2,284	24,043
	2023 ABC	6,933	13,775	2,174	22,882
Projection B	2022 ABC	6,999	13,905	2,194	23,099
	2023 ABC	5,505	10,938	1,726	18,170

Model 21.2 area allocation

- Random effects model used for allocation
- Increase in Western GOA over previous survey

Model 19.1

Quantity
Tier
Female spawning biomass (t)
Projected
$\square \mathrm{B}_{100 \%}$

$\mathbf{B}_{40 \%}$
$\mathbf{B}_{35 \%}$
$\mathrm{~F}_{0}$

$\operatorname{maxF}_{\mathrm{ABC}}$
$\mathrm{F}_{\mathrm{ABC}}$
OFL (t)
$\operatorname{maxABC}(\mathrm{t})$
$\mathrm{ABC}(\mathrm{t})$

Status

Overfishing
Overfished
Approaching overfished

Model 21.1
$2022 \quad 2023 \quad 2022$

$3 b$	$3 b$	$3 b$	$3 b$
178,961	199,841	166,852	194,580
48,061	44,530	42,763	42,872
165,508	165,508	159,948	159,948
66,203	66,203	63,979	63,979
57,928	57,928	55,982	55,98
0.62	0.57	0.56	0.56
0.50	0.46	0.45	0.45
0.50	0.46	0.45	0.45
$\mathbf{3 9 , 5 5 4}$	$\mathbf{3 4 , 6 7 3}$	$\mathbf{3 2 , 3 6 6}$	$\mathbf{3 2 , 8 6 9}$
32,811	28,708	26,759	27,195
$\mathbf{3 2 , 8 1 1}$	$\mathbf{2 8 , 7 0 8}$	$\mathbf{2 6 , 7 5 9}$	$\mathbf{2 7 , 1 9 5}$
2020	2021	2020	2021
No	n/a	No	n
n/a	No	n/a	no
n/a	No	n/a	No

- Assumed 2021 catch at the ABC, 23,627t. For 2023 projections the 2022 catch was assumed to be at the respective projected ABCs.

- Pre-history from genetic studies

Coulson, M.W., Marshall, H.D., Pepin, P. and Carr, S.M., 2006. Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. Genome, 49(9), pp.1115-1130

