Developing a workplan for the FEP Climate Change Module

Kirstin Holsman kirstin.holsman@noaa.gov Alaska Fisheries Science Center

Climate Task Force Meeting 1 Jan, 2020

ark Holsma

- Intro to Task Force
- Brief background
- Module objective & goals
- Module outcomes & products
- CCTF planning & logistics

Today: <u>Agenda</u>

TODAY'S GOALS:

- 1. Finalize a draft workplan to send to the Council next week
- 2. Derive a list of issues / questions we'd like feedback on specifically
- 3. Clarify our goals, process, and logistics

Google docs

	Drive	Q	Search Drive		• (?	()	***	REDIS	K
+	New	My D	Drive > 00_A_FEP_ClimateMo	dule > CCTF Shared Fol	der 🔹 🕒 😂	Ē	: E	⊞ (i)	31
େ	Priority	Name	\uparrow	Owner	Last modified	File size			<mark>Q</mark> ,
▶ @	My Drive		01 CCTF Supporting Docs	me	Dec 20, 2019 me	—			
•	Shared drives		CCTF Meetings	me	Dec 17, 2019 me	-			
Do	Shared with me	Ħ	01 CCTF Timeline and Important d 🐣	me	Dec 20, 2019 me	-			
\bigcirc	Recent	t	02 Helpful Links 🚔	me	Dec 20, 2019 me	—			
☆	Starred	t	03 Contact info for CCTF members 🚢	me	Dec 20, 2019 me	_			
Ū	Trash	Ħ	04 Glossary of Terms 🚢	me	Jan 8, 2020 Jamal Moss - NO,	AA I —			
	Storage								

103.9 GB used

Google docs

	Drive	Q Search Drive		-	? 🏟 🖁		ARON	K
(+	New	My Drive > ··· > CCTF N	Meetings > 2020_01	_21_CCTF_Meeting1 -		⊞	(j)	31
Ø	Priority	Name 个	Owner	Last modified	File size			Q .
•	My Drive	Meeting materials	me	Dec 17, 2019 me	_			0
•	Shared drives	Meeting Notes	me	1:29 PM me	-			
De	Shared with me	NEW Agenda (Jan 21 : webex)	me me	1:26 PM me	-			
()	Recent	Pre-meeting Homework 🚢	me	Jan 13, 2020 me	-			
\overleftrightarrow	Starred	Working_Draft_Climate change A	Ac 🚢 me	Jan 17, 2020 Diana Stram -	NOAA —			
Ū	Trash							
	Storage							

103.9 GB used

Survey results

Connection to the Bering Sea:

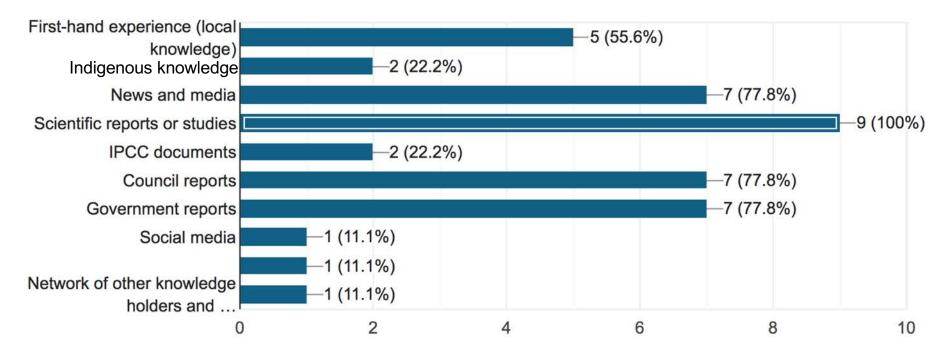
17 years with NPFMC, have coordinated plan teams for BSAI groundfish, BSAI crab, worked on BSAI halibut and salmon bycatch issues and management amendments

21 years of marine mammal research in Alaska

extensive work with communities and other partners on fisheries management, climate change, marine mammals, marine debris, governance, and other issues in the Bering Sea

Fisheries Management Specialist with the Alaska Regional Office.

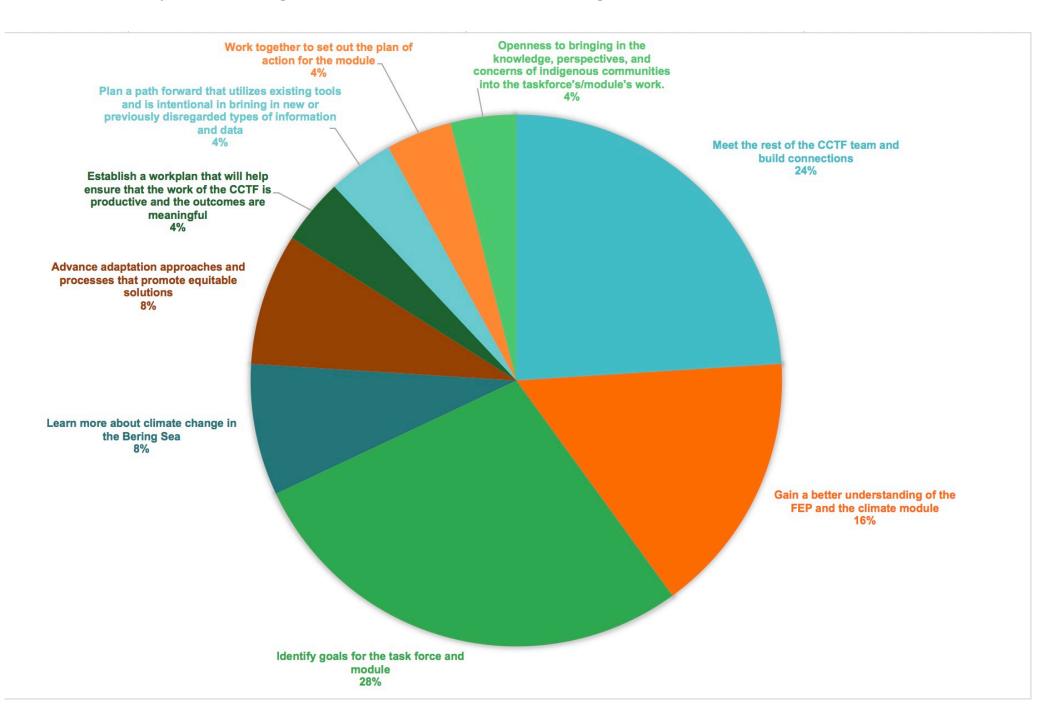
I work as a social scientist with Bering Sea Tribes, Tribal organizations, and communities. I also used to live in Nome.


Run a natural resources department for a tribal government

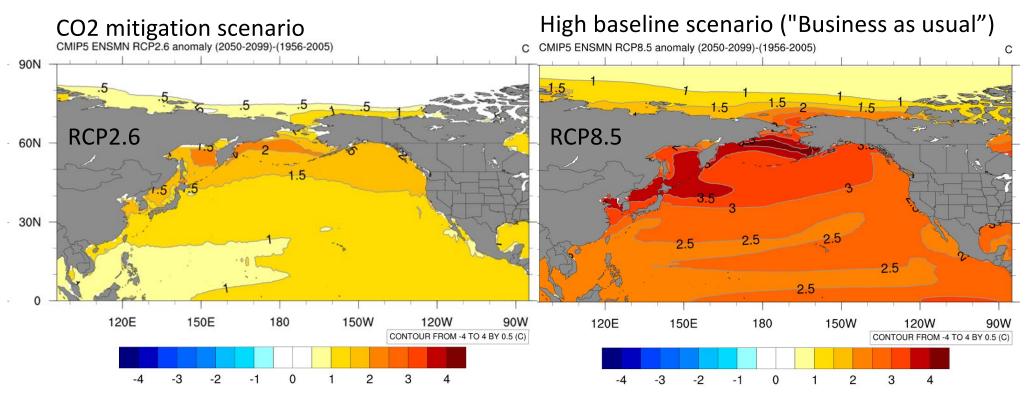
Work with the Fishing Industry and Council on Data & Policy issues

What are some of your primary sources of information on current climate impacts on the Bering Sea?

9 responses

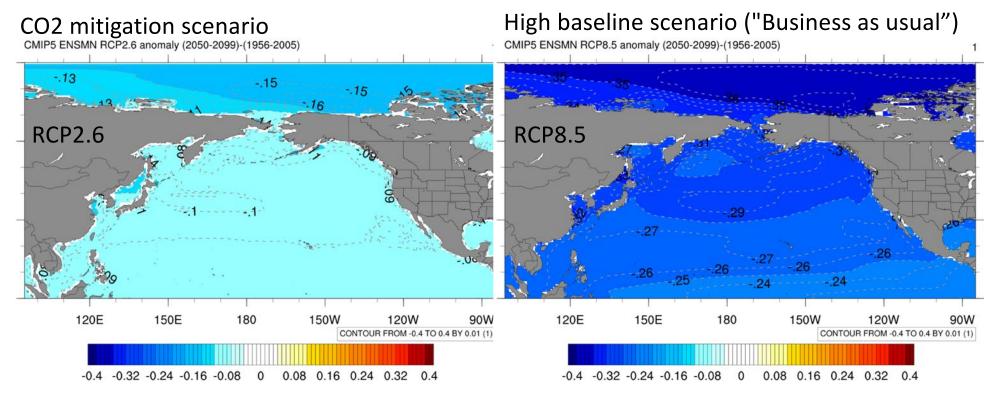


What do you hope the Climate Change Task Force / Climate Change Module can accomplish in the next 3-5 years of the Task Force timeframe? (2020-2025) What do you hope the Climate Change Task Force / Climate Change Module can accomplish in the next 10-20 years?


What are your TOP 3 goals for this first CCTF meeting?

Background

CMIP5 ENSMN Annual SST anomaly (°C) (2050 to 2099) - (1956 to 2005)

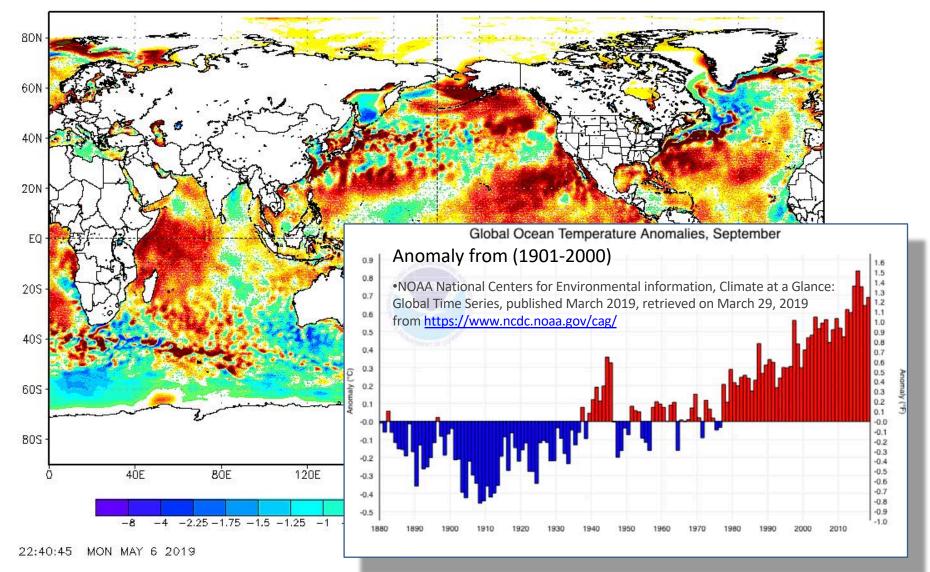


Projection data from CMIP5 (Taylor et al., 2012) avail. at: <u>www.esrl.noaa.gov/psd/ipcc/ocn</u>

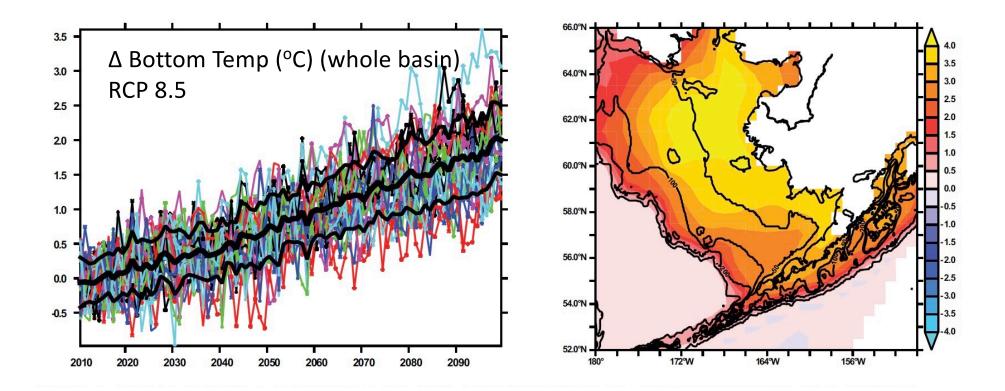
Modified from Fig. 6.2 Holsman et al. 2018 [in] Barange et al. (Eds.) 2018. Impacts of climate change on fisheries and aquaculture. TP 627.

CMIP5 ENSMN Annual Ocean pH anomaly (2050 to 2099) - (1956 to 2005)

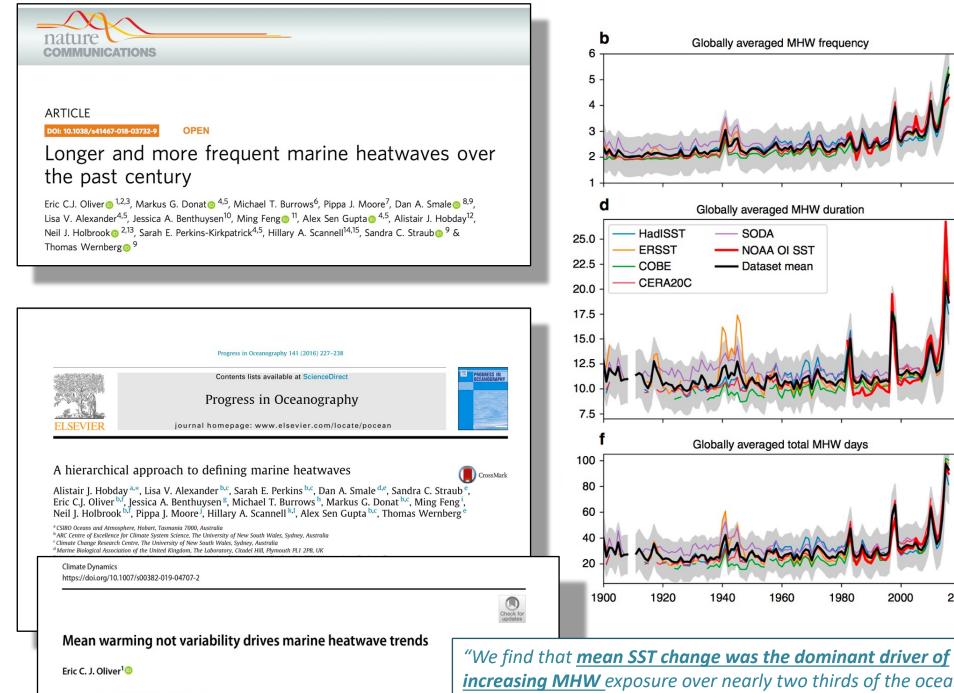
Projection data from CMIP5 (Taylor et al., 2012) avail. at: <u>www.esrl.noaa.gov/psd/ipcc/ocn</u>


Modified from Holsman et al. 2018 [in] Barange et al. (Eds.) 2018. Impacts of climate change on fisheries and aquaculture. TP 627.

Anomaly from 1961-1990 climatology, 1 degree, weekly resolution


NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch Oper H.R.

RTG_SST_HR Anomaly (0.083 deg X 0.083 deg) for 06 May 2019



http://polar.ncep.noaa.gov/sst/rtg_high_res

Increased warming (2090-2099)-(2010-2019)

(2019) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz1, K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043

Received: 1 May 2018 / Accepted: 1 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 "We find that <u>mean SST change was the dominant driver of</u> <u>increasing MHW</u> exposure over nearly two thirds of the ocean, and of changes in MHW intensity over approximately one third of the ocean. "

2020

Women from a traditional sea-harvesting community fishing in Mozambigue

Fall in fish catch threatens human health

Christopher Golden and colleagues calculate that declining numbers of marine fish will spell more malnutrition in many developing nations.

dren aged four and under1.

ow will the 10 billion people expected to be living on Earth by 2050 obtain sufficient and nutritious food? This is one of the greatest challenges humanity faces. Global food systems must supply enough calories and protein for a growing human population and pro-

under five is attributable to undernutrition; Waters'. This new view underlines the need nutritional deficiencies are responsible for 50% of years lived with disability in chilfor nutrition-sensitive fisheries policies. NUTRITIONAL RISK

Fish are crucial sources of micronutri-Presently, 17% of the global population is zinc deficient, with some subpopulations being particularly at risk¹. Nearly one-fifth of pregents, often in highly bioavailable forms. And fish populations are declining. Most

OPEN ACCESS

Citation: Marushka L, Kenny T-A, Batal M, Cheung WWL, Fediuk K, Golden CD, et al. (2019) Potential

RESEARCH ARTICLE

Potential impacts of climate-related decline of seafood harvest on nutritional status of coastal First Nations in British Columbia, Canada

Lesya Marushka¹, Tiff-Annie Kenny¹, Malek Batal², William W. L. Cheung^{3,4}, Karen Fediuk⁵, Christopher D. Golden^{6,7}, Anne K. Salomon⁸, Tonio Sadik⁹, Lauren V. Weatherdon¹⁰, Hing Man Chan^{1*}

1 Biology Department, University of Ottawa, Ottawa, Ontario, Canada, 2 Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, Montreal, Québec, Canada, 3 Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada, 4 Nippon Foundation-UBC Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada, 5 Dietitian and Nutrition Researcher, Victoria, British Columbia, Canada, 6 Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America, 7 Harvard University Center for the Environment, Cambridge, Massachusetts, United States of America, 8 School of Resource & Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada, 9 Assembly of First Nations, Ottawa, Ontario, Canada, 10 UN Environment World Conservation Monitoring Centre, Cambridge, United Kingdom

* laurie.chan@uottawa.ca

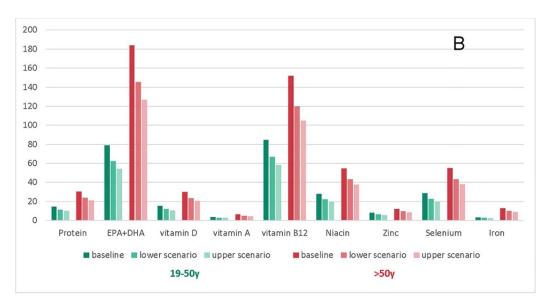
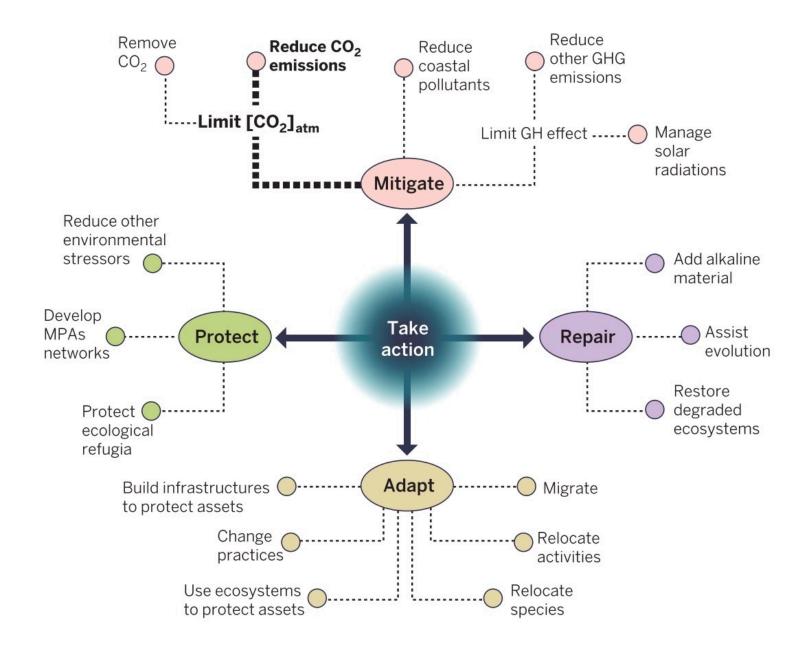
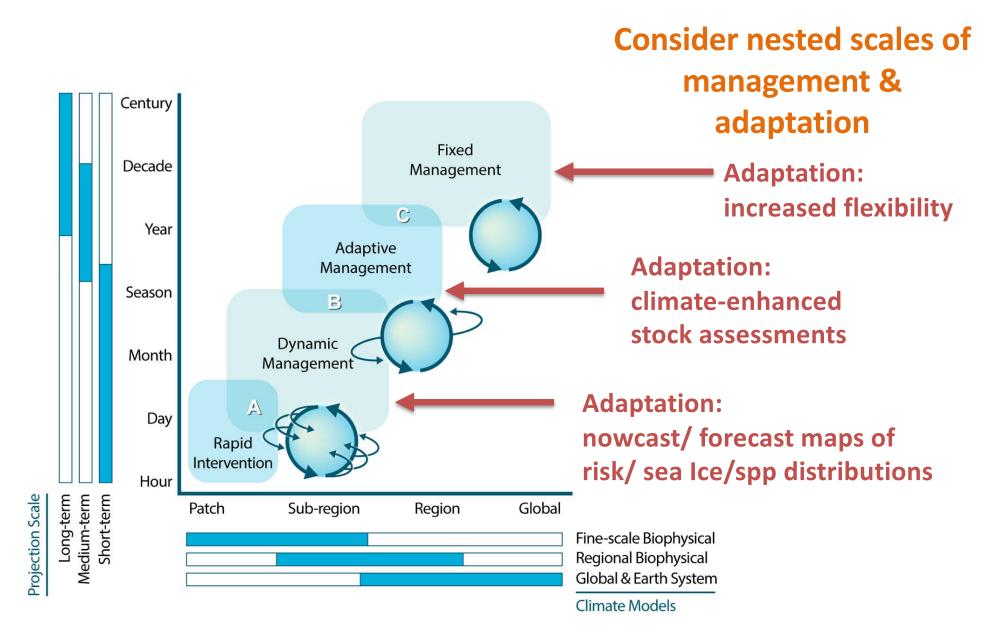
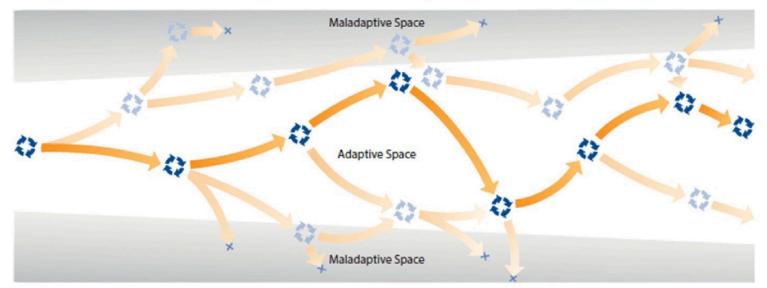




Fig 4. Baseline and projected percentage contributions to the DRI from total seafood in First Nations by (A) gender and (B) by age groups, under 'strong mitigation' (RCP 2.6) and 'business-as-usual' (RCP 8.5) climate change scenarios. DRI-dietary reference intakes using recommended dietary allowance (RDA) and recommended intake (RI) for EPA+DHA.

https://doi.org/10.1371/journal.pone.0211473.g004

Gattuso et al. (2015). Contrasting futures for ocean and society from different anthropogenic CO 2 emissions scenarios. Science, 349(6243), aac4722. https://doi.org/10.1126/science.aac4722

Holsman, K. K., Hazen, E. L., Haynie, A., Gourguet, S., Hollowed, A., Bograd, S. J., ... Aydin, K. (2019). Towards climate resiliency in fisheries management. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsz031


Test new & existing tools

Adaptation

incremental (normative) adaptation to preserve current livelihoods, health, and well being and meet future demands

transformational adaptation, especially to address/prevent continued marginalization and promote diverse well being, values, and views

Build capacity to revaluate & enable transformative actions

Iterative Decision Cycles

Fig. 1 from Wise et al. 2014. Reconceptualising adaptation to climate change as part of pathways of change and response. Global Environmental Change 28: 325–336

HOW? FEP Climate Change Module

Module goal:

"facilitate and support equitable climate change adaptation pathways and long-term resilience for the coupled socialecological system of the Eastern Bering Sea"

> *i)* evaluate management tools to develop incremental (normative) adaptation measures to preserve livelihoods, health and wellbeing across fisheries and dependent coastal communities

ii) enable transformative adaptation needed to ensure the productivity and sustainability of the coupled social-ecological Bering Sea system

"knowledge and culture construct societal limits to adaptation, but these <u>limits are mutable</u>"

- Adger et al. (2009).

- ✓ Risk inherently depends on values
- ✓ Include a "plurality of perspectives" *
- ✓ Consider interacting (non-linear) pressures

*Allison & Bassett. 2015. Climate change in the oceans: Human impacts and responses. Science 350 (6262), 778-782. [doi: 10.1126/science.aac8721]

- ✓ Risk inherently depends on values
- ✓ Include a "plurality of perspectives" *
- ✓ Consider interacting (non-linear) pressures

"Interconnections among risks can span sectors and regions with multiple climatic and non-climatic influences, including societal responses to climate change and other issues (Helbing 2013; Moser and Hart 2015; Oppenheimer 2013)."

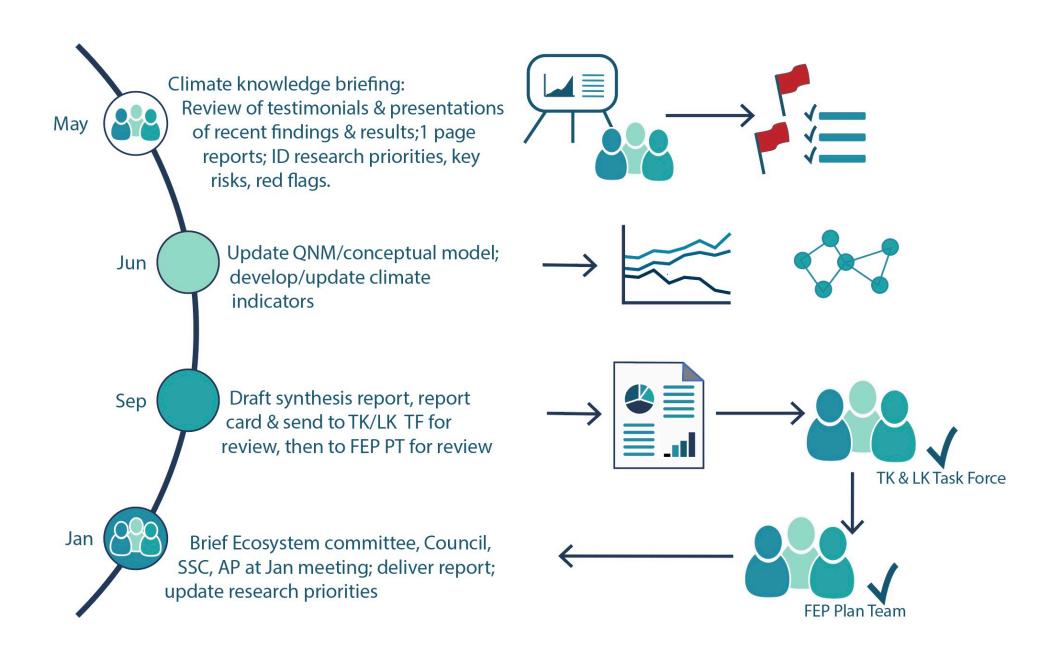
- Mach et al. 2016

"One ongoing challenge is developing and addressing research questions from a Traditional Knowledge lens rather than solely from a western researcher's perspective."

Raymond-Yakoubian, J., & Daniel, R. (2018). Marine Policy, 97:101–108.

How best to coordinate with TK / LK module?

Objectives / tasks:


" To achieve this, the climate change module will be used to..."

- ✓ synthesize current knowledge regarding climate change effects on the EBS system,
- ✓ identify potential climate-resilient management measures that can improve adaptive capacity and avoid maladaptation
- ✓ evaluate the risk, timescale, and probability of success of various climate-resilient management policies under future scenarios of change
- ✓ provide prioritized recommendations for actions research and MSEs that could be taken to advance the goals and minimize the risks identified.

Policy relevant not policy prescriptive

(climate-resilient management would go through the existing Council process)

PAUSE

Workplan: Goals & objectives

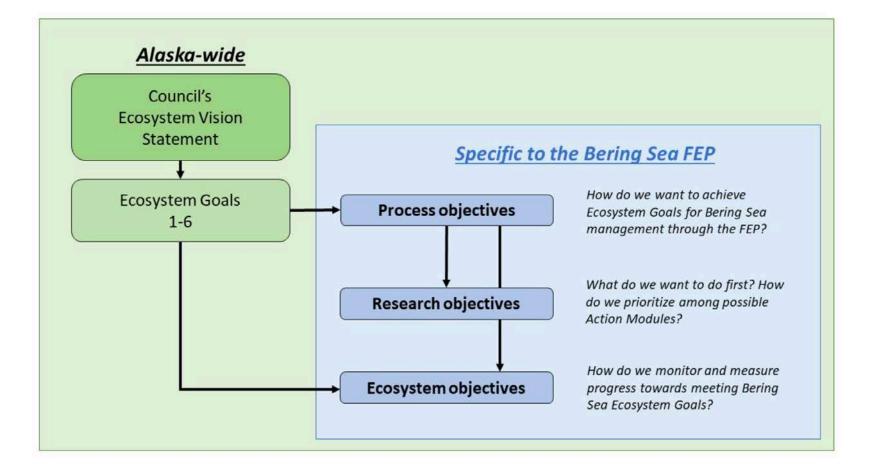
GOAL:

"facilitate and support equitable climate change adaptation pathways and long-term resilience for the coupled socialecological system of the Eastern Bering Sea"

i) evaluate management tools to develop incremental (normative) adaptation measures to preserve livelihoods, health and wellbeing across fisheries and dependent coastal communities

ii) enable transformative adaptation needed to ensure the productivity and sustainability of the coupled social-ecological Bering Sea system

"The primary goal [objective?] of this climate module is to provide information, pathways, and tools that can be used to ensure climate resilience in the region's fishery management. Specifically, the module will leverage ongoing, proposed, and completed projects at AFSC and [ADD other institutions] to address the following objectives:"



Discussion: Outcome & goals

- How best to monitor and measure success towards CC Module goals?
- Should the BSFEP Team monitor? Or should the CCTF monitor?
- Can we develop metrics and outreach to evaluate goals and outcomes?
 - "e.g. asking key stakeholder groups who are engaged at the Council (e.g. 'Do you feel management measures are sufficiently adaptive in addressing climate effects on fisheries?')"
 - doing keyword analysis of Council meetings
 - Working with some of the Council bodies e.g. Ecosystem Committee and CEC
- Can we try to link to the ecosystem goals of the council?

Objectives

Ecosystem Goal	Ecosystem Objectives	Module evaluations	Metrics & indicators
	1. Maintain target biomass levels for target species, consistent with optimum yield, using available tools.	MSE: test climate informed biological reference points; test spatial and temporal regulations to address shifting distributions	long-term B/B0 ; total yield; volatility in B or C; access to subsistence resources; catch >wellbeing analyses
Ecosystem Goal 1: Maintain, rebuild, and restore fish stocks at levels sufficient to protect, maintain, and restore food web	2. Maintain healthy populations and function of non-target and forage species.	Identify species at Risk/exposure to Climate change for non-target species (maybe based around long-term projections, scenarios, and recent extreme events)	Rapid vulnerability and Risk synthesis (IK/TK based and expert opinion); LK observations of change; long- term shifts in monitoring timeseries; ID uncertainty/gaps
structure and function	3. Adjust fishing-related mortality from the system to be commensurate with total productivity and continue to limit optimum yield to 2 million metric tons for the BSAI groundfish fisheries.	MSE: test climate informed multispecies reference points; test spatial and temporal regulations to address shifting distributions	Aggregate yield; long-term B/BO ; total yield; volatility in B or C; access to subsistence resources; catch>wellbeing analyses
Ecosystem Goal 2: Protect, restore, and maintain the	4. Maintain key predator/prey relationships.	MSE & spatial analyses: evaluate changes to species overlap; project food-webs	Risk of collapse; changes in overlap; changes in diet & food web interactions
ecological processes, trophic levels, diversity, and overall productive capacity of the system	5. Conserve structure and function of ecosystem components.	MSE and spatial analyses: project scenario changes in Fishing X Climate change scenarios through coupled social-ecological system	Benthic/pelagic productivity ratios; length of food-chain; access to key subsistence resources; economic and social indicators

LINK TO EXCEL SPREADSHEET

Discussion: Adaptation

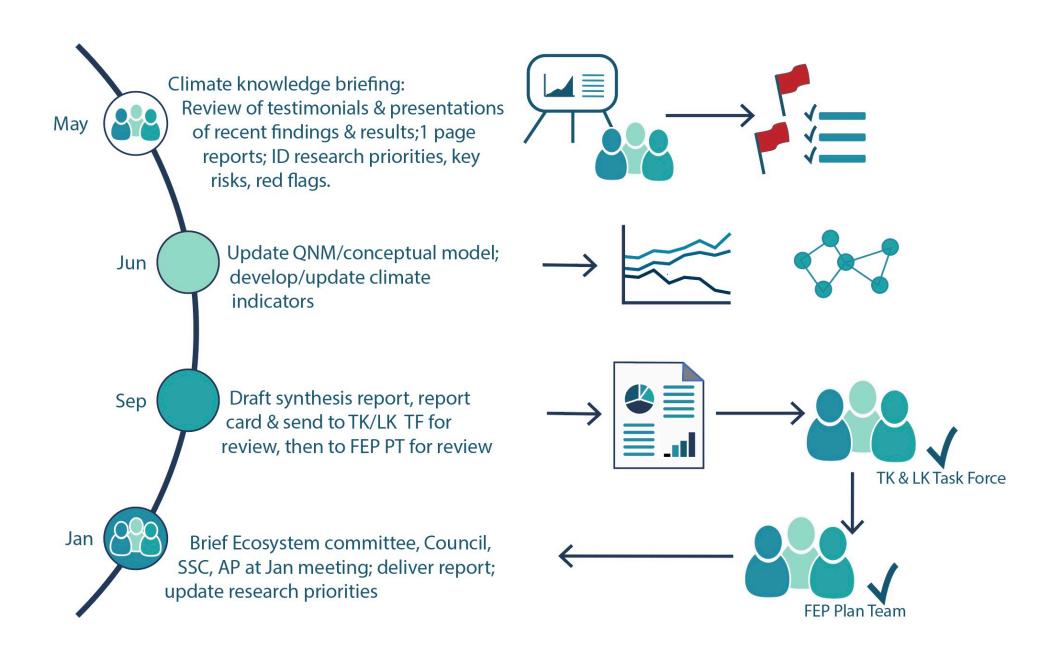
- What do we mean by adaptation/maladaptation ?
- What helps EBS communities and commercial fisheries adapt?
 - New fisheries and FMPs for novel species in the EBS?
 - Flexibility and diversity in subsistence and target fisheries?
 - There was a suggestion to cut "and , develop or expand fisheries for species anticipated to be favored under climate change" , thoughts?
- **Perhaps we need to be specific with regards the potential risks** and outline the ideal process for evaluating risks and tradeoffs?
- The challenge that remains is to
 - **identify management measures** that provide scope for fisheries adaptation to future climate conditions and
 - **to establish a process** that ensures that diverse perspectives are considered when assessing risks, impacts and tradeoffs.

Discussion: Other topics

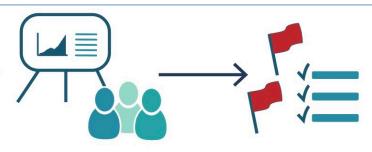
- Geographic boundaries for CC module (FEP boundaries) add a map?
- Rather than winners and losers, frame in terms of maladaptive risk? [BRY, JS, LD]
- Climate resilient tools: maybe make "living" as a web based spreadsheet and or table in our report to the council?

PAUSE

Workplan: Deliverables



- " To achieve this, the climate change module will be used to..."
- ✓ synthesize current knowledge regarding climate change effects on the EBS system,
- ✓ identify potential climate-resilient management measures that can improve adaptive capacity and avoid maladaptation
- evaluate the risk, timescale, and probability of success of various climate-resilient management policies under future scenarios of change
- ✓ provide prioritized recommendations for actions [research? MSEs?] that could be taken to advance the goals and minimize the risks identified.


Policy relevant not policy prescriptive

(climate-resilient management would go through the existing Council process)

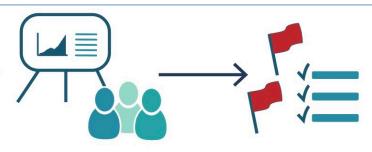
Climate knowledge briefing: Review of testimonials & presentations of recent findings & results;1 page reports; ID research priorities, key risks, red flags.

1 Page reports from each contributor

- Characterize contribution (testimonial, research, observation)
- ID management connection/relevance
- Define scope in time and species:

May

- CORE spp and BROAD (non-focal spp)
- Short, medium, long term


ID red flags and emergent issues:

• Flag these for the report next step

ID Research needs and priorities

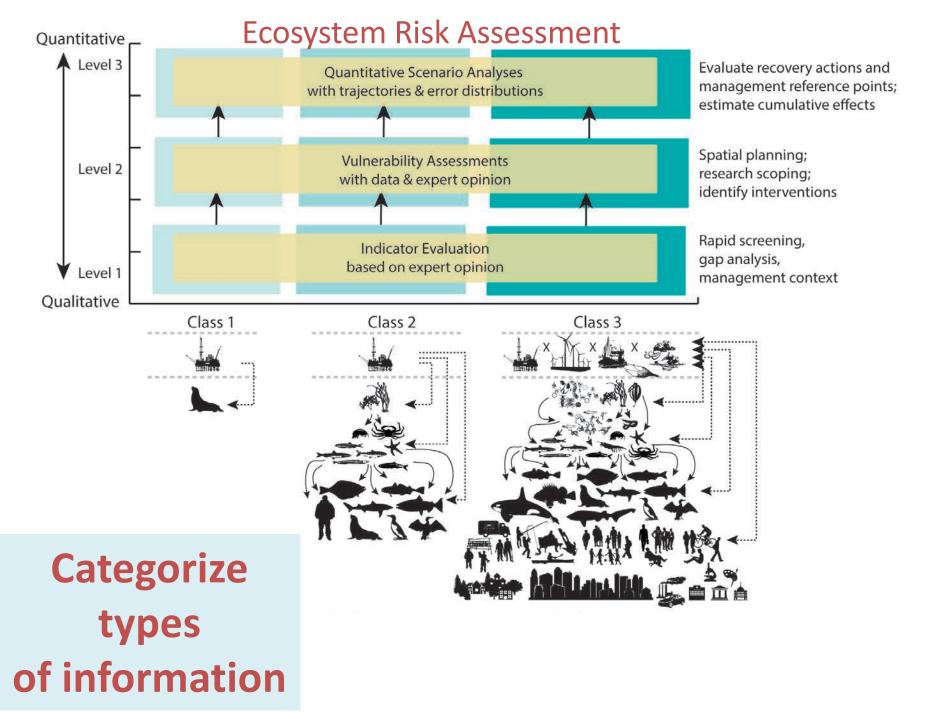
• Identify indirect impacts of climate driven changes

Climate knowledge briefing: Review of testimonials & presentations of recent findings & results;1 page reports; ID research priorities, key risks, red flags.

1 Page reports from each contributor

- Characterize contribution (testimonial, research, observation)
- ID management connection/relevance
- Define scope in time and species:

May

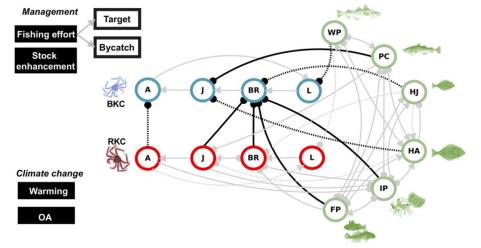

- CORE spp and BROAD (non-focal spp)
- Short, medium, long term

ID red flags and emergent issues:

• Flag these for the report next step

ID Research needs and priorities

• Identify indirect impacts of climate driven changes


Holsman et. al 2017. An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability 3(1):e01256. <u>10.1002/ehs2.1256</u> Jun (

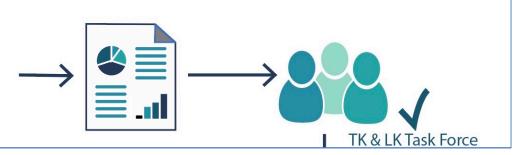
Update QNM/conceptual model; develop/update climate indicators

Indicators (aim for ~10)

- Climate trends
- Productivity trends
- Upper trophic trends
- Human dimension trends

Conceptual model/ QNM:

- Identify direct known and potential connections
- Identify indirect impacts of climate driven changes
- Identify indirect impacts of management actions


Research needs and priorities

• Use model to identify needs

Reum et al. 2019. Rapid assessment of management options for promoting stock rebuilding in data-poor species under climate change. Cons. Bio. https://doi.org/10.1111/cobi.13427

Reum et al. 2019

Draft synthesis report, report card & send to TK/LK TF for review, then to FEP PT for review

Report card

Sep

• Summary of climate related trends/ indicators

Synthesis

- Emergent issues
- Future risks
- Novel/emerging tools

Contributions (based on form)

• See example

Table of Example Management/adaptation actions:

- short, medium, long term
- Tactical vs strategic
- ID who should be included in risk assessment process
- Rapid response vs incremental adjustment

Research needs and priorities

=

Knowledge Pyramid

O

C

SEARCH : STUDY OF ENVIRONMENTAL ARCTIC CHANGE

ABOUT GET INVOLVED ARCTIC FUTURES 2050 ARCTIC ANSWERS SCIENCE TOPICS EVENTS PRODUCTS

Arctic Answers

=

Policy-relevant questions are answered in 1-2 page briefs written by experts and posted in Arctic Answers. Each brief is the top of a "knowledge pyramid" supported by scientific literature organized in underlying tiers of increasing detail.

To read a brief or see the supporting literature, click on the question. PDF's are available by clicking on "Download Brief."

For further information on a topic or to suggest edits or updates, contact the experts listed for each question.

To suggest additional questions to be addressed on Arctic Answers or to volunteer to author a brief, contact Brendan Kelly (bpkelly@alaska.edu). When a proposed question is accepted for inclusion as an Arctic Answer, the author will receive a manuscript number and further instructions. Each brief will be reviewed for scientific accuracy and accessibility to readers with broad backgrounds.

Sea Ice Questions	Expert Contacts	Science Brief
What do we know about the future of Arctic sea-ice loss?	Marika Holland & Walt Meier	Download Brief (PDF - 750 KB)
How is diminishing Arctic sea ice influencing lower latitude weather patterns?	Jennifer Francis & Stephen Vavrus	Download Brief (PDF - 393 KB)
Arctic Meltdown and Unruly Tropical Storms: Are They Connected?	Jennifer Francis	Download Brief (PDF - 218 KB)
How is diminishing Arctic sea ice influencing coastal communities?	Henry Huntington & Matthew Druckenmiller	Download Brief (PDF - 2.9 MB)
How is diminishing sea ice influencing marine ecosystems?	Brendan Kelly	Download Brief (PDF - 1.9 MB)
	Course Unit Line Figure Neuro	

How will the diminishing sea ice affect commercial fishing in George Hunt, Lisa Eisner, Neysa 🛛 Download Brief

SEARCH Science Brief - June 2017

Arctic Answers Science briefs from the Study of Environmental Arctic Change https://www.searcharcticscience.org/arctic-answers

How is diminishing Arctic sea ice influencing coastal communities?

THE ISSUE. Loss of sea ice, thawing permafrost, reduced snow cover, and rising sea level are reducing hunting and fishing opportunities and degrading infrastructure for rural Arctic communities. Most Alaska Native communities are affected by erosion and flooding, with 31 communities imminently threatened and 12 planning to relocate. Local responses to these stresses are hampered by the nation's highest prices for food and fuel and widespread poverty across rural Alaska.

WHY IT MATTERS. Climate change amplifies challenges confronting Arctic communities, where 60-80% of households depend on wild game and fish for food, harvesting several hundred pounds per person annually. Already faced with economic, social, and cultural changes, traditional ways of life in rural Alaska are further threatened by climate change impacts on diminishing food security, deteriorating water and sewage systems, increasing risk of accidents, and greater expenditures to construct and maintain infrastructure. Government agencies and other institutions need to promote policies that reduce stresses on Arctic communities and foster responses consistent with local economies and cultures.

STATE OF KNOWLEDGE. Arctic communities and scientists have worked together to document local observations of climate change; the associated impacts on hunting, fishing, safety, and food security; and the potential impacts of projected changes into the future. More recently, researchers have been assessing the efficacy of local responses. For example, subsistence whalers on St. Lawrence Island in the Bering Sea have initiated a fall harvest to help make up for spring whaling seasons made shorter by changing ice conditions. At Kivalina-a village that is also facing relocation due to erosion-changing spring ice conditions have prevented the harvest of bowhead whales for over 20 years. In other cases, changes can amplify one another. Limited time off from jobs means that whalers from Nuigsut now have much shorter time available for whaling in fall. In Alaska's Arctic region, 78% of Native Iñupiat households combine jobs and subsistence to meet their economic, cultural, and nutritional needs. The

Map of the 11 Alaska traditional whaling communities, with the 2015 and 1981-2010 median September ice extents shown.

benefits of employment are lessened, however, by the reduction in time devoted to harvesting wild foods. Less time to hunt means less chance to wait out fall storms or to adapt to other changes in weather or animal migration patterns. Those migration patterns may be further altered as diminishing sea ice opens opportunities for industrial activities (for example, shipping and offshore petroleum development). The cumulative effects of stresses and changes are broadly recognized but difficult to measure.

June 2017

WHERE THE SCIENCE IS HEADED.

More work is needed to understand how local responses can be effective (such as the St. Lawrence Island fall whaling season) as well as how how they fall short of what is needed (such as Kivalina's inability to hunt in spring). In addition, future research must address ways that policies exacerbate or mitigate such impacts, for example by imposing additional constraints on what communities can do, or by supporting flexibility and local initiative to solve problems. Actions made without adequate knowledge of local conditions, no matter how well intentioned, may undermine local well-being by promoting ineffective responses or fostering dependence on outside intervention rather than on local talent, capacity, and creativity. Ultimately, communities need support to identify local solutions.

Iñupiat hunters establish a whaling camp on coastal sea ice near Utgiagvik (formerly Barrow), Alaska, where thinning ice and warming temperatures in Spring are reducing hunting opportunities and increasing risks to personal safety. (Courtesy: M. Druckenmilier)

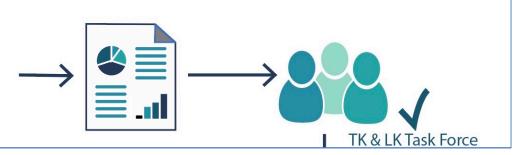
FURTHER READING

Chapin, F.S., III, S.F. Trainor, P. Cochran, H. Huntington, C. Markon, M. McCammon, A.D. McGuire, and M. Serreze, 2014. Ch. 22: Alaska. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 514-536. doi:10.7930/J00Z7150. [Available online at: http://nca2014.globalchange.gov/ report/regions/alaska]

Goldsmith, S., 2008. Understanding Alaska's Remote Rural Economy, UA Research Summary No. 10, Institute of Social and Economic Research, University of Alaska Anchorage. [Available online at: http://www.iser.uaa.alaska.edu/Publications/researchsumm/UA_RS10.pdf]

SEARCH: Advancing knowledge for action in a rapidly changing Arctic https://www.searcharcticscience.org/arctic-answers

Contact for further information:


Henry Huntington, Huntington Consulting hph@alaska.net

Matthew Druckenmiller, National Snow and Ice Data Center druckenmiller@nsidc.org

SEARCH is supported by the National Science Foundation. SEARCH Science Brief AA-002.

Draft synthesis report, report card & send to TK/LK TF for review, then to FEP PT for review

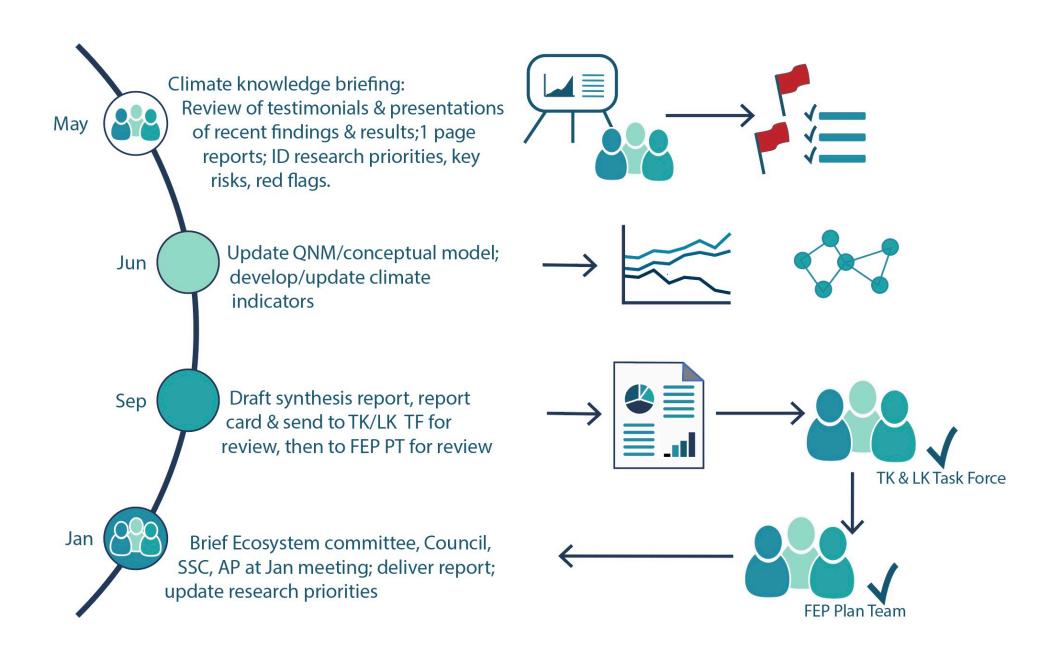
Report card

Sep

• Summary of climate related trends/ indicators

Synthesis

- Emergent issues
- Future risks
- Novel/emerging tools


Contributions (based on form)

• See example

Table of Example Management/adaptation actions:

- short, medium, long term
- Tactical vs strategic
- ID who should be included in risk assessment process
- Rapid response vs incremental adjustment

Research needs and priorities

Discussion: Products & deliverables

- Proposed products and tasks:
 - Is there anything missing here?
 - How do we promote co-production of knowledge through this process?
 - Will it be responsive enough for unexpected change?
 - Will it be useful for addressing long-term gradual change?
- How prescriptive should we be? Should we aim for "Policy relevant"?
 - "specifying" [reviewing? Suggesting? Highlighting?] short-, medium-, and longterm management actions to build climate resilience in regional fisheries and fishing communities
- Short, med, long-term examples?
 - add to and edit this and can we make this living as part of the report?
- Facilitate information to council and ppt:
 - [BRY]"While not holistic analyses or TK documentation sessions, these vignettes, testimonials, and summaries by, for example, TK experts (representing communities, orgs, co-management bodies, etc.) could be very useful supplementary material that accompanies the on-ramped climate change data into the Council process as well as ongoing evaluations of management strategies."

PAUSE

Workplan: Logistics

Discussion: Planning & logistics

- TORs for our group
- Coordination with LK/TK module
 - Meetings/ joint meetings?
- Coordination with other efforts
 - [BRY] integration with some other as-of-yet not finalized efforts which will have long-term Council impacts
 - LK/TK/Subsistence AM TF, the CEC, and the ongoing work of the Ecosystem Committee and the SSPT.
 - ESR/ESP or stand alone report?
- TF communication Slack? Google drive, email? Website?

EXTRA SLIDES

Marine Policy 97 (2018) 101-108

An Indigenous approach to ocean planning and policy in the Bering Strait region of Alaska

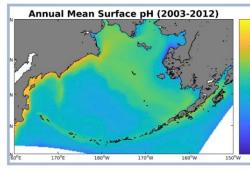
Julie Raymond-Yakoubian^{a,*}, Raychelle Daniel^b

^a Kawerak Incorporated, PO Box 948 Nome, AK 99762, United States ^b The Pew Charitable Trusts, 901 E Street NW, Washington DC 20004, United States

J. Raymond-Yakoubian, R. Daniel

Marine Policy 97 (2018) 101–108

Table 1


Ocean values from the Bering Strait region and example applications to the governance and decision-making component of ocean planning.

Ocean Values	Example	Application to ocean planning
Ocean values	Example	Application to ocean planning
Ecosystem	Knowledge of food web connections	Along with science, provides the knowledge base to better understand impacts
Health and well-being	Time on the water observing and hunting marine mammals	Informing vessel traffic routing measures
Economic	Walrus ivory carving	Provides means and ability to actively participate in walrus management
Cultural	Knowledge of ocean currents	Ability to effectively plan for and respond to maritime disasters

Bering Sea

Modeled annual mean surface pH over the 2003-12 timeframe. Cooler colors indicate corrosive, low pH water while warmer colors indicate relatively buffered, high pH water

In this paper, the authors developed a computational m

March 06, 2019

Pilcher, D.J., D.M. Naiman, J.N. Cross, A.J. Hermann, S.A. Siedlecki, G.A. Gibson, and J.T. Mathis (2019): Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification on aragonite saturation state in the Bering Sea. Front. Mar. Sci., 5, 508, doi: 10.3389/fmars.2018.00508.

Due to naturally cold, low carbonate concentration waters, the Bering Sea is highly vulnerable to ocean acidification (OA), the process in which the absorption of human-released carbon dioxide by the oceans leads to a decrease in ocean water pH and carbonate ion concentration. Emerging evidence suggests that a number of important species in the Bering Sea (such as red king crab and Pacific cod) are vulnerable to OA due to direct (e.g., reduced growth and survival rates) and indirect (e.g., reduced food sources) effects. However, the harsh winter conditions, prevalence of sea ice, and large size of

ICES Journal of Marine Science

International Council for the Exploration of the Sea

ICES Journal of Marine Science (2019), doi:10.1093/icesjms/fsz043

Contribution to the Symposium: 'The effects of climate change on the world's oceans' Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios

Albert J. Hermann^{1,2}*, Georgina A. Gibson³, Wei Cheng^{1,2}, Ivonne Ortiz^{1,4}, Kerim Aydin⁴, Muyin Wang^{1,2}, Anne B. Hollowed⁴, and Kirstin K. Holsman⁴

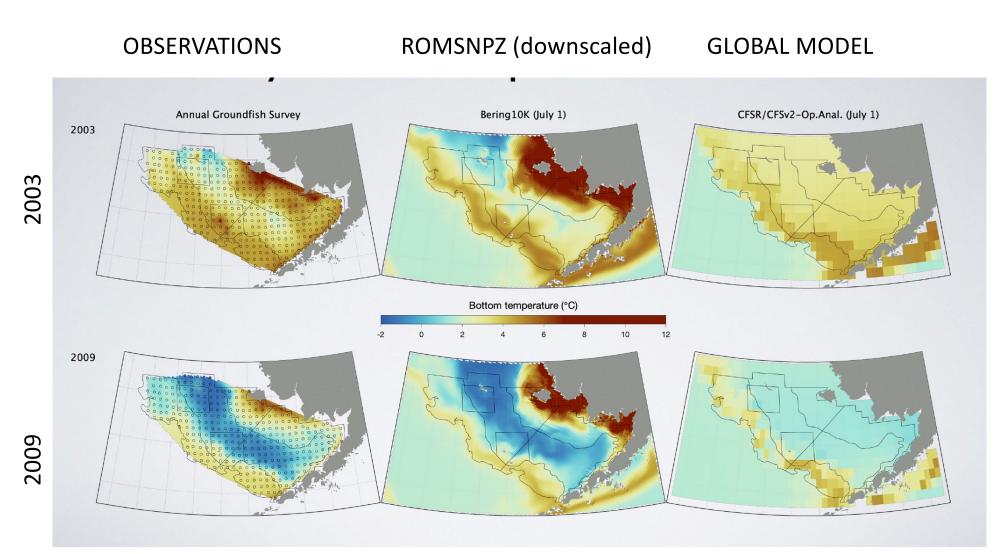
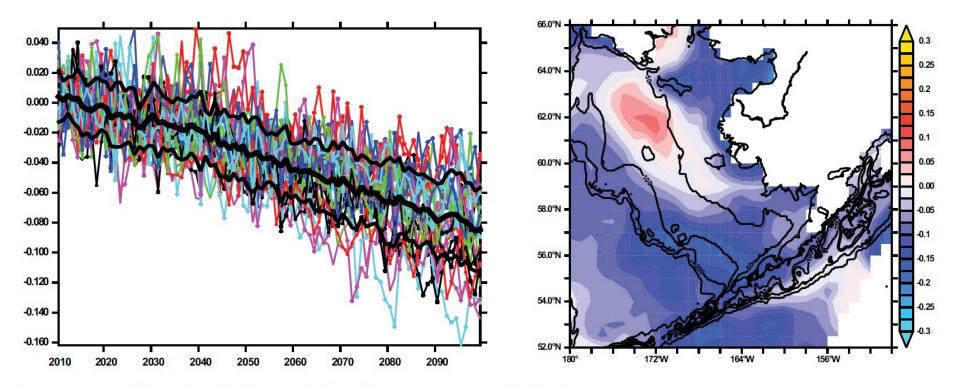
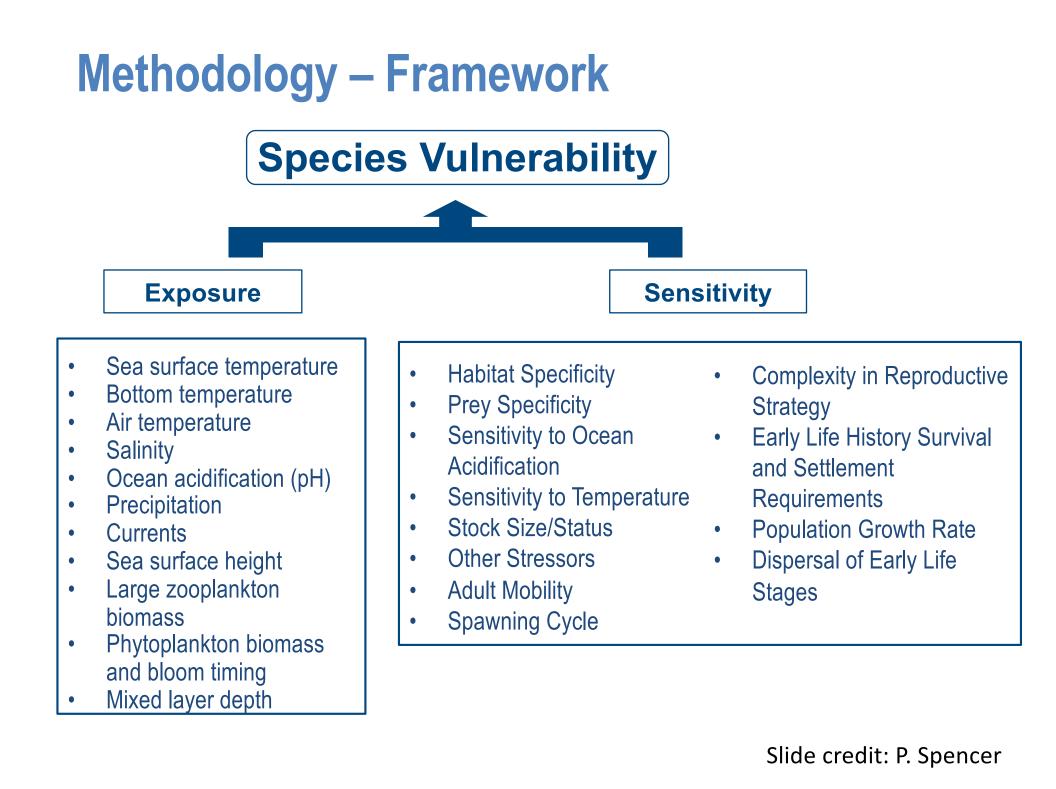



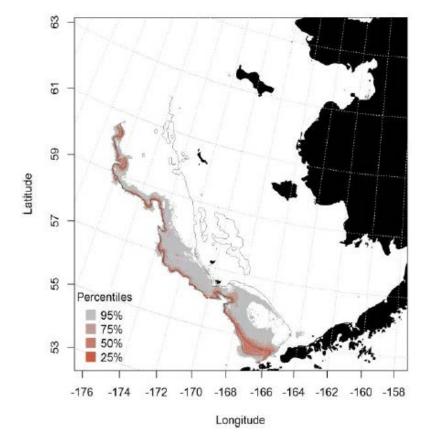
Image: Kelly Kearney

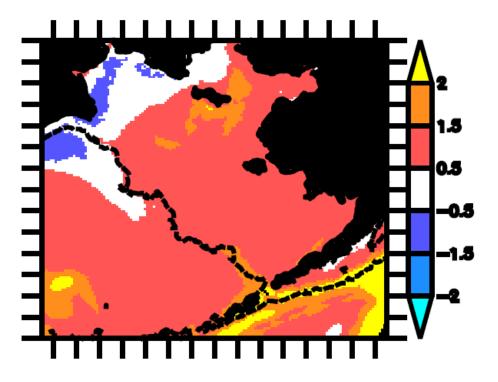
Declines in large zooplankton (2090-2099)-(2010-2019)

Figure 13. Ensemble results as in Figure 12, for log_{10} (large crustacean zooplankton).


(*in press*) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz1, K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043

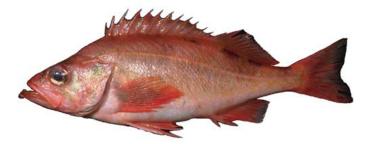
HOW?


b) Climate Vulnerability Assessments



Exposure scoring, general methodology

Compare maps of exposure factors to maps of stock distributions and qualitatively estimate their overlap. Example for Pacific ocean perch shown below


Z-score for annual bottom temperature

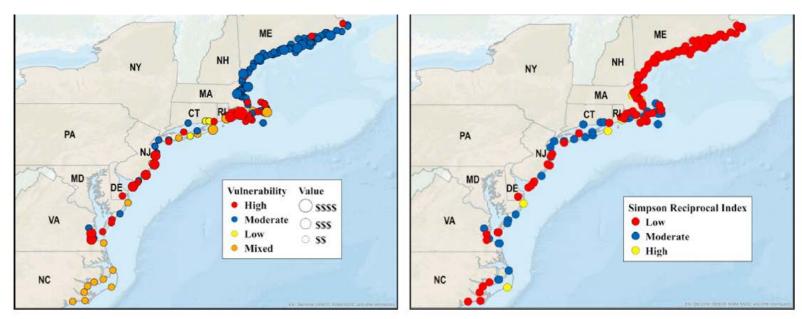
Slide credit: P. Spencer

Example of Species Specific Results (from EBS)

Pacific ocean perch

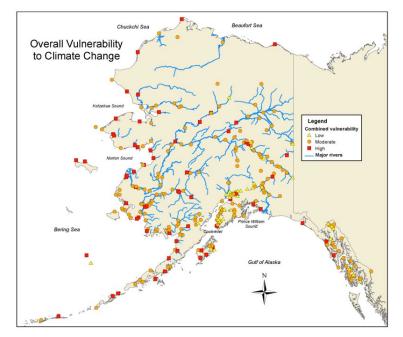
Bootstrap outcomes:

- <1 Very High
- 10 High
- 89 Moderate
- <1 Low


Over	all Vulnerability Rank = Moderate				
	ogical Sensitivity = High				
	ate Exposure = Moderate tivity Data Quality = 75% of scores ≥ 2	Exp	osure Data	Quality = 56% of scores ≥ 2	
	Sebastes alutus	Expert Scores	Data Quality	Expert Scores Plots (Portion by Category)	Low
	Habitat Specificity	1.9	2.5		Moder
	Prey Specificity	1.9	2.2		High Very H
	Adult Mobility	2.4	2.1		
	Dispersal of Early Life Stages	1.6	1.8		
	Early Life History Survival and Settlement Requirements	2.6	1.5		
butes	Complexity In Reproductive Strategy	2.3	1.8		
Sensitivity attrbutes	Spawning Cycle	3.8	2.2		
ensitiv	Sensitivity to Temperature	3.2	2.5		
S	Sensitivity to Ocean Acidification	2.1	2.4		
	Population Growth Rate	3.6	2.9		
	Stock Size/Status	1.1	3.0		
	Other Stressors	1.1	2.8		
	Sensitivity Score	Hi	gh		
	Sea Surface Temperature	2.0	2.0		
	Sea Surface Temperature (variance)	1.9	2.0		
	Bottom Temperature	2.2	2.0		
	Bottom Temperature (variance)	2.8	2.0		
	Sailnity	1.3	2.0		
	Salinity (variance)	2.6	2.0		
	Ocean Additication	4.0	2.0		
	Ocean Acidification (variance)	1.4	2.0		
	Phytoplankton Biomass	1.1	1.2		
	Phytoplankton Biomass (variance)	1.2	1.2		
	Plankton Bloom Timing	1.7	1.0		
dors	Plankton Bloom Timing (variance)	2.3	1.0		
Exposure factors	Large Zooplankton Biomass	1.1	1.0		
Epos	Large Zooplanton Biomass (variance)	1.5	1.0		
_	Mixed Layer Depth	1.9	1.0		
	Mixed Layer Depth (variance)	2.4	1.0		
	Currents	1.4	2.0		
	Currents (variance)	1.7	2.0		
	Air Temperature	NA	NA		
	Air Temperature (variance)	NA	NA		
	Precipitation	NA	NA		
	Precipitation (variance)	NA	NA		
	Sea Surface Height	NA	NA		
	Sea Surface Height (variance)	NA	NA		
	Exposure Score	Mode	erate	1	
	Overall Vulnerability Rank	Mode	erate		

Pacific ocean perch – Sebastes alutus

Slide credit: P. Spencer


Potential next step – linking to socialeconomic variables

For northeast US study, information on the species composition of different fishing ports was combined with species vulnerability to estimate vulnerability of fishing communities (Colburn et al 2016)

6. New England and Mid-Atlantic Fishing communities' climate vulnerability classification based on categories of dependence on vulnerable species (left), and catel 'sity scores (Simpson's Reciprocal Index (right)). Only communities with total landings value of 100 thousand dollars or more were mapped.

OA Risk Assessment

Himes-Cornell and Kaspersky 2014

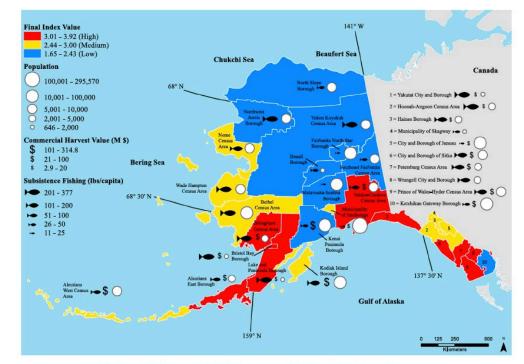
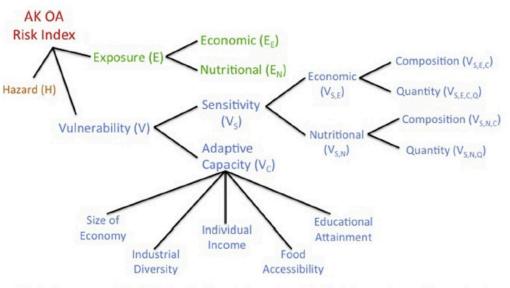
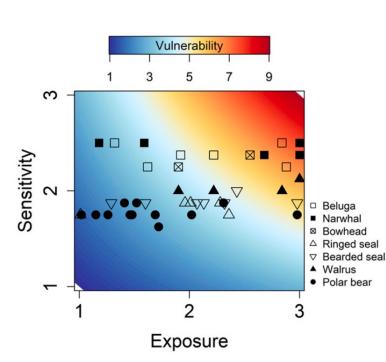


Fig. 11. Individual components of the final ocean acidification risk index for each census area.

J.T. Mathis et al. / Progress in Oceanography xxx (2014) xxx-xxx




Fig. 3. Components of the risk index. Each branch is evenly weighted relative to others at the same level.

Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route

Donna D. W. Hauser^{a,1,2}, Kristin L. Laidre^a, and Harry L. Stern^a

^aPolar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105

Fig. 2. Vulnerability plot expressing sensitivity and exposure scores across Arctic marine mammal subpopulations exposed to the Northwest Passage or Northern Sea Route. Vulnerability is the product of exposure and sensitivity.

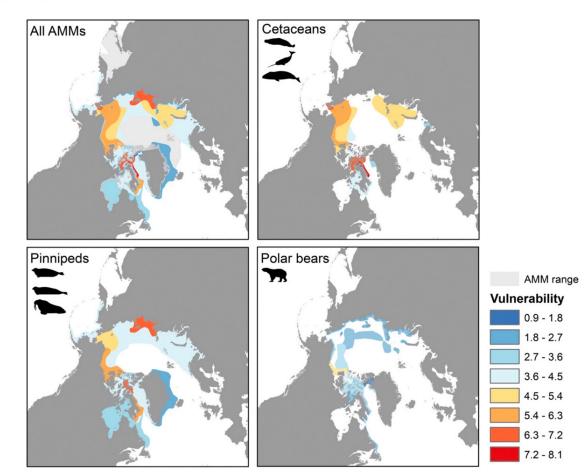


Fig. 4. Maximum vulnerability scores for all AMM species (*Top Left*) and taxonomic groups exposed to the Arctic sea routes. Vulnerability color shading corresponds to the vulnerability plot in Fig. 2. The combined ranges of all other AMM subpopulations that did not overlap the Arctic sea routes are shown in gray in the *Top Left*, including portions of polar bear subpopulations that range onto land during the open-water period.

Contents lists available at ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol

Vessels, risks, and rules: Planning for safe shipping in Bering Strait

Henry P. Huntington ^{a,*}, Raychelle Daniel ^b, Andrew Hartsig ^c, Kevin Harun ^d, Marilyn Heiman ^b, Rosa Meehan ^e, George Noongwook ^f, Leslie Pearson ^g, Melissa Prior-Parks ^b, Martin Robards ^h, George Stetson ⁱ

Table 1

Comparison of environmental and cultural risks (columns) and regulatory measures (rows). The first four risks are environmental ones and also cultural risks for those who depend on the environment for food and well-being. Note that most or all regulatory measures can be implemented by voluntary, domestic, or international action. Which vessels would be covered by each type of action, and how much of the risk would be reduced, depends on the details of the shipping activities in question.

Risk/Regulatory measure	Ship strikes	Noise	Discharges and contamination	Accidental oil spills	Vessel collisions	Disturbance to hunting	Damage to cultural heritage
Shipping lanes	Х	Х		Х	Х	Х	
Areas-to-be-avoided	Х	Х		Х	Х	Х	Х
Speed limits	Х			Х	Х	Х	
Communications	Х				Х	Х	Х
Reporting systems					Х	Х	
Emission controls		Х	Х			Х	
Salvage and oil spill prevention and preparedness			х	Х			
Rescue tug capability			Х	Х			
Voyage and contingency planning	Х			Х	Х	Х	Х
Charting				Х			Х

Contents lists available at ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol

Vessels, risks, and rules: Planning for safe shipping in Bering Strait

Henry P. Huntington ^{a,*}, Raychelle Daniel ^b, Andrew Hartsig ^c, Kevin Harun ^d, Marilyn Heiman ^b, Rosa Meehan ^e, George Noongwook ^f, Leslie Pearson ^g, Melissa Prior-Parks ^b, Martin Robards ^h, George Stetson ⁱ

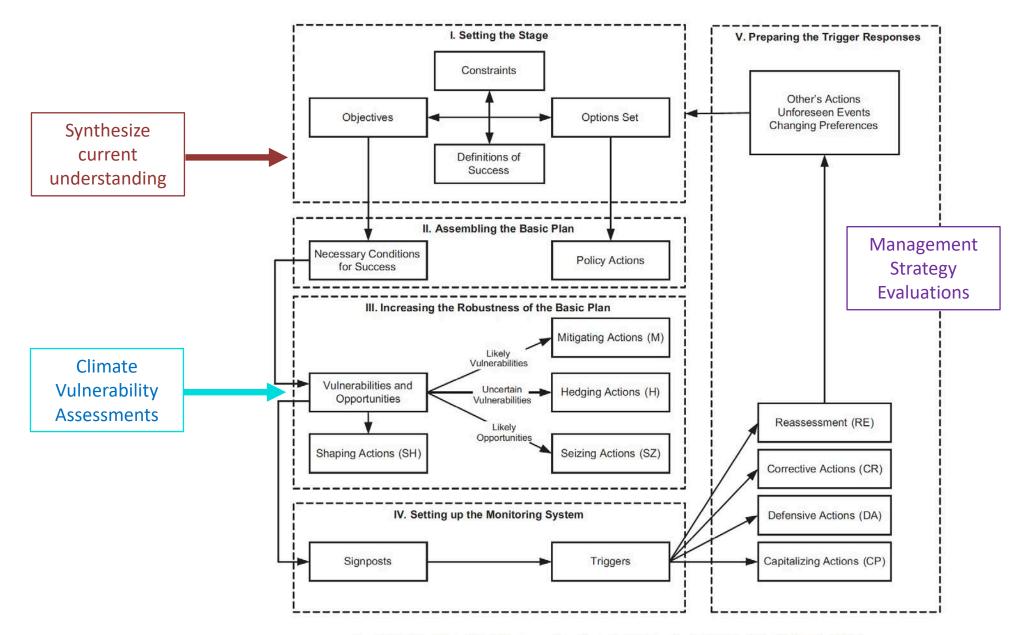
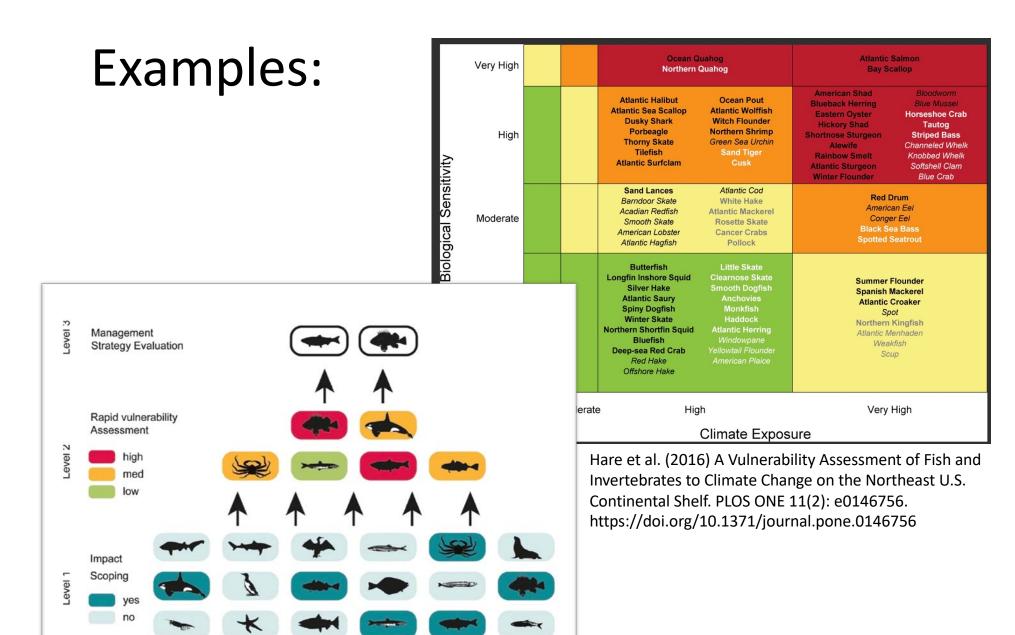
Table 2

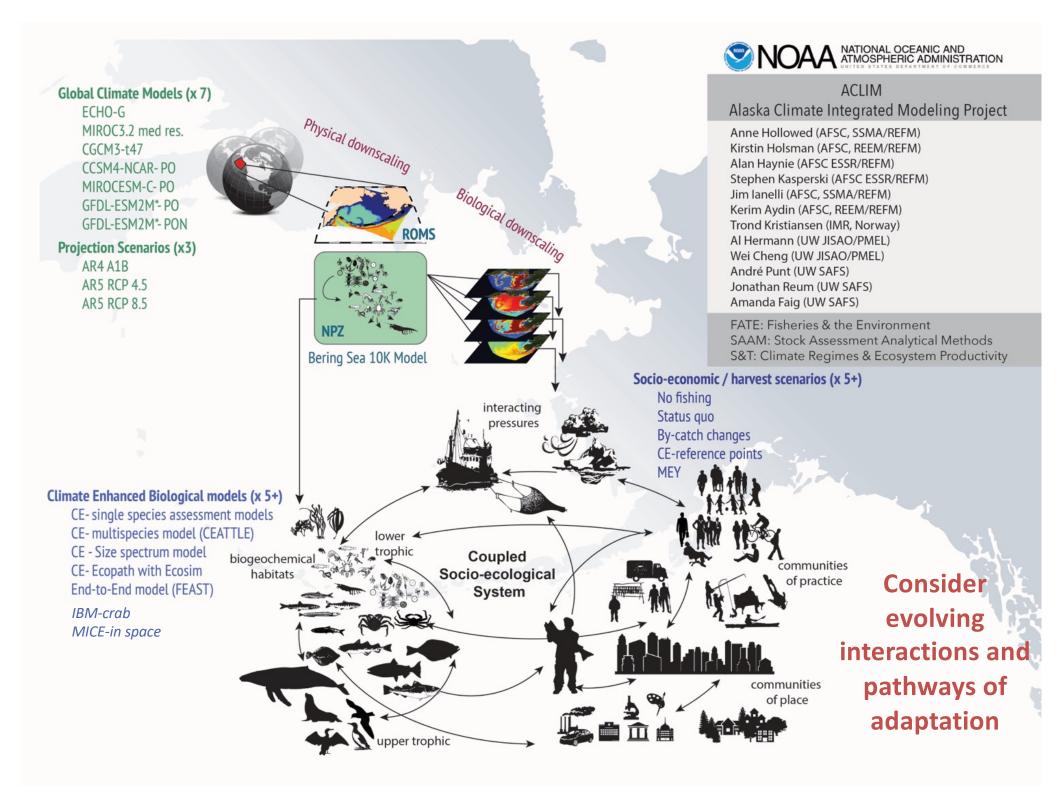
Categories of regulatory implementation. Although mandatory measures are not necessarily dependent on having voluntary measures in place (and domestic measures are not required prior to international measures), in practice the development of regulations typically starts with voluntary and domestic measures and moves on from there.

Category of implementation	To whom the measures apply	Effectiveness at reducing risk
Voluntary	All vessels, but with no enforcement power	Depends on compliance, but there is likely to be pressure to comply Can be enhanced if insurers and others regard such measures as appropriate standards of care Can be enhanced by monitoring and communication
Mandatory (domestic)	Vessels addressed by the regulations that are either (a) registered in the country issuing the regulations, or (b) traveling to or from a port in that country	Depends on the proportion of vessels in the area that are subject to the regulations Other vessels may comply voluntarily or be required to do so by insurers Can be enhanced by monitoring and enforcement
Mandatory (international)	All vessels addressed by the regulations	Compliance can be enhanced by monitoring and enforcement

HOW?

c) Operationalized climate change management strategy evaluations (MSEs)


Fig. 3. The Adaptive Policymaking approach to designing a dynamic adaptive plan (Kwakkel et al., 2010a).

M. Haasnoot et al. / Global Environmental Change 23 (2013) 488 485–498

Holsman et al. 2017

The ACLIM team

Anne Hollowed

Alan Haynie

Kerim Aydin

Albert Hermann

Wei Cheng

Stephen Kasperski

Jim Ianelli

Andre Punt

Andy Whitehouse Jonathan Reum

Amanda Faig

Buck Stockhausen

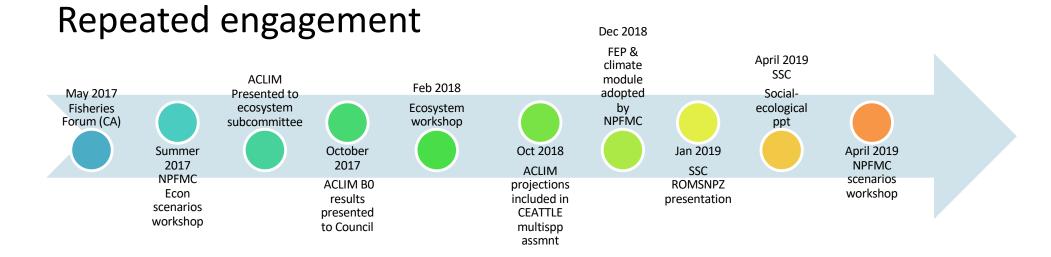
Paul Spencer

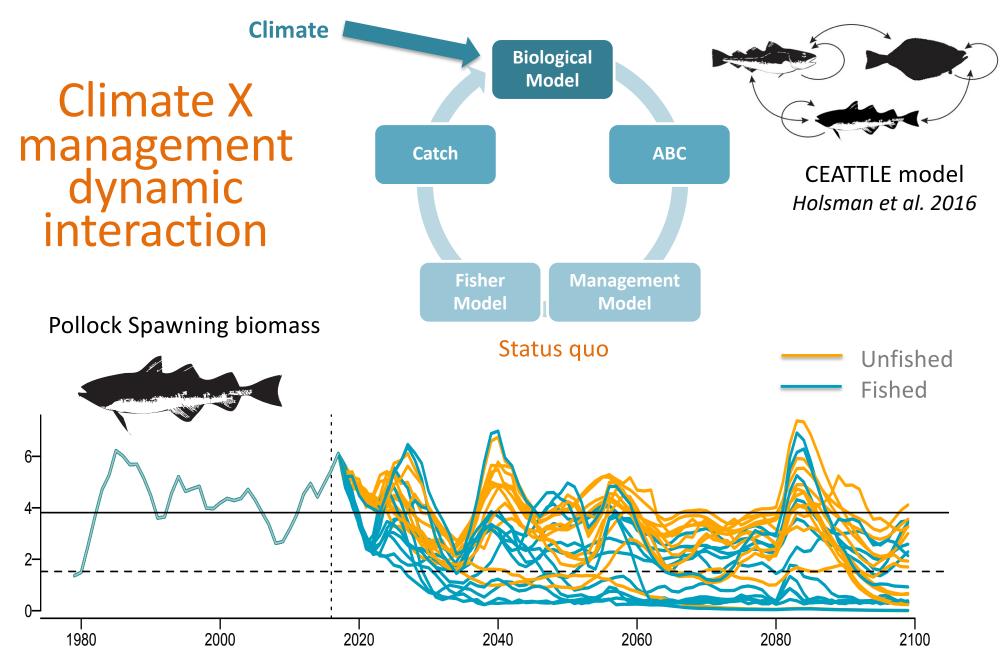
Michael Dalton

Darren Pilcher Tom Wilderbuer

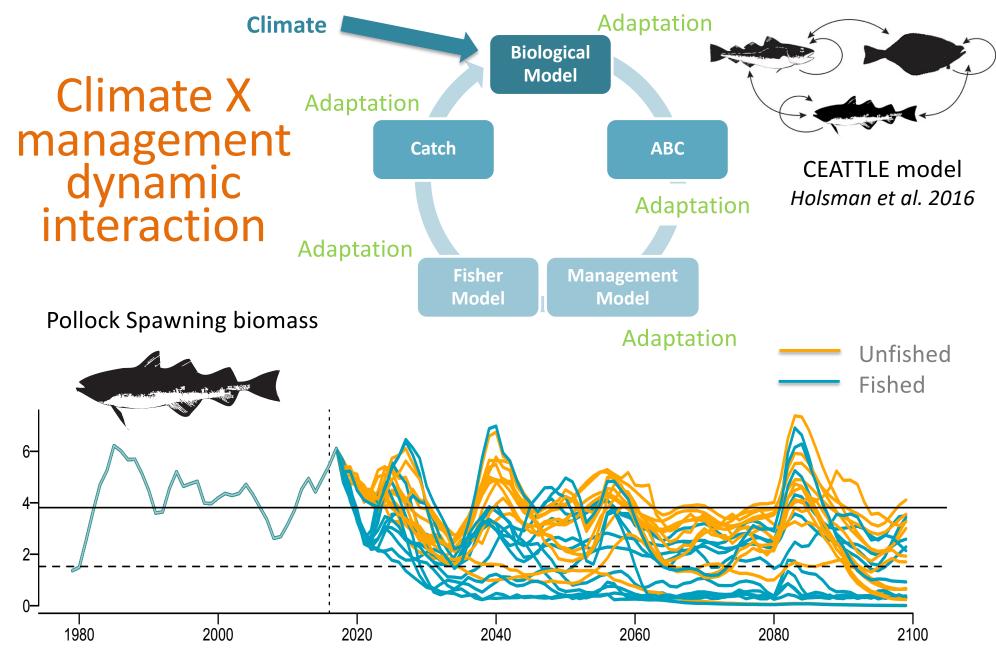
Cody Szuwalski

Jim Thorson

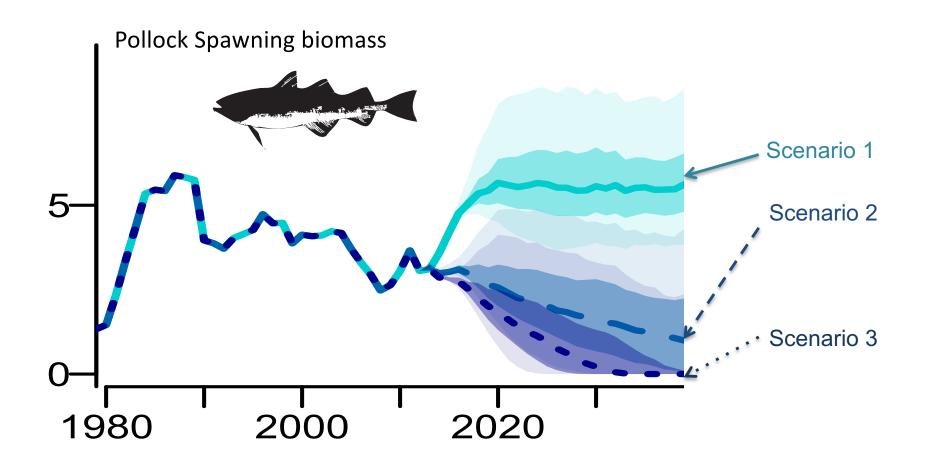

Ingrid Spies


www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project

Challenges to evaluating adaptation options:


- **long time horizons** of adaptation outcomes;
- the shifting baseline and uncertainty around climate hazards;
- assessing <u>attribution</u> of any results;
- addressing the **additional climate risk** and counterfactual scenarios

"an *approach built on mixed methods, participation and learning helps alleviate some of the uncertainties* around interpreting results on adaptation." Craft & Fisher 2018, Fisher 2015



Ianelli, J KK Holsman, AE Punt, K Aydin (2016). Multi-model inference for incorporating trophic and climate uncertainty into stock assessment estimates of fishery biological reference points. Deep Sea Res II. 134: 379-389 DOI: 10.1016/j.dsr2.2015.04.002

HOW?

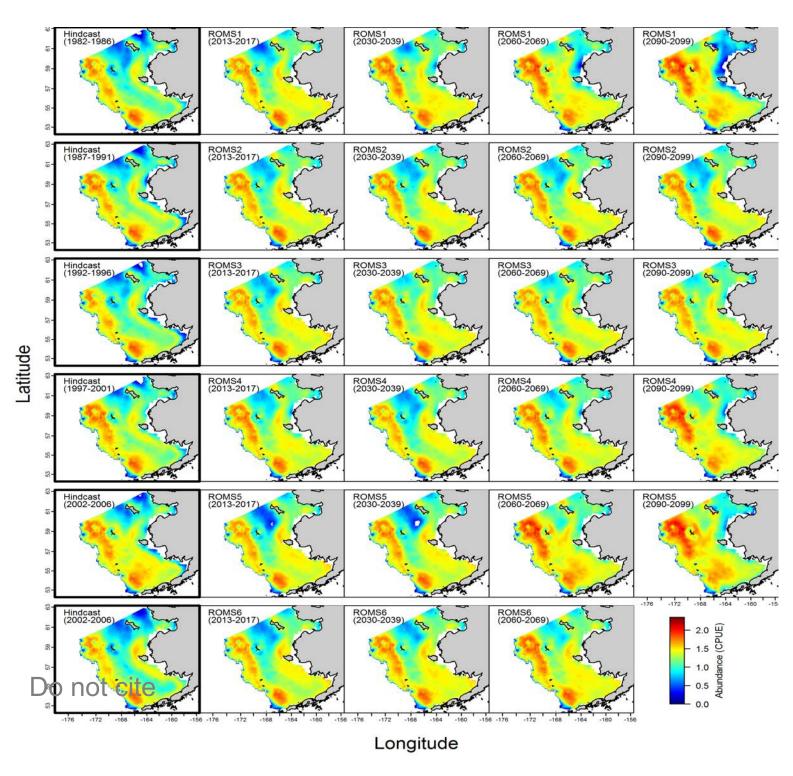
d) Project changes in species distributions and phenology

Future Essential Fish Habitat

(Chris Rooper, Ivonne Ortiz, Ned Laman, Al Hermann, in prep)

Used Slope, SE Bering Sea shelf and Northern Bering Sea data to build EFH models 1982-2017 except when noted

- 1) AK plaice
- 2) Arrowtooth flounder (1993-)
- 3) flathead sole
- 4) Northern rock sole (2001-)
- 5) Pacific cod


- 6) Walleye pollock
- 7) Red king crab (1996-)
- 8) Snow crab
- 9) Tanner crab
- 10)Yellowfin sole

Variables used: depth, slope, maximum tidal current, sediment grain size, mean bottom ocean current, bottom temperature

Slide credit: I. Ortiz

P.Cod

(Chris Rooper, Ivonne Ortiz, Ned Laman, Al Hermann, *in prep*)

Slide credit: I. Ortiz

=

Knowledge Pyramid

O

C

SEARCH : STUDY OF ENVIRONMENTAL ARCTIC CHANGE

ABOUT GET INVOLVED ARCTIC FUTURES 2050 ARCTIC ANSWERS SCIENCE TOPICS EVENTS PRODUCTS

Arctic Answers

=

Policy-relevant questions are answered in 1-2 page briefs written by experts and posted in Arctic Answers. Each brief is the top of a "knowledge pyramid" supported by scientific literature organized in underlying tiers of increasing detail.

To read a brief or see the supporting literature, click on the question. PDF's are available by clicking on "Download Brief."

For further information on a topic or to suggest edits or updates, contact the experts listed for each question.

To suggest additional questions to be addressed on Arctic Answers or to volunteer to author a brief, contact Brendan Kelly (bpkelly@alaska.edu). When a proposed question is accepted for inclusion as an Arctic Answer, the author will receive a manuscript number and further instructions. Each brief will be reviewed for scientific accuracy and accessibility to readers with broad backgrounds.

Sea Ice Questions	Expert Contacts	Science Brief
What do we know about the future of Arctic sea-ice loss?	Marika Holland & Walt Meier	Download Brief (PDF - 750 KB)
How is diminishing Arctic sea ice influencing lower latitude weather patterns?	Jennifer Francis & Stephen Vavrus	Download Brief (PDF - 393 KB)
Arctic Meltdown and Unruly Tropical Storms: Are They Connected?	Jennifer Francis	Download Brief (PDF - 218 KB)
How is diminishing Arctic sea ice influencing coastal communities?	Henry Huntington & Matthew Druckenmiller	Download Brief (PDF - 2.9 MB)
How is diminishing sea ice influencing marine ecosystems?	Brendan Kelly	Download Brief (PDF - 1.9 MB)
	Course Unit Line Figure Neuro	

How will the diminishing sea ice affect commercial fishing in George Hunt, Lisa Eisner, Neysa 🛛 Download Brief

SEARCH Science Brief - June 2017

Arctic Answers Science briefs from the Study of Environmental Arctic Change https://www.searcharcticscience.org/arctic-answers

How is diminishing Arctic sea ice influencing coastal communities?

THE ISSUE. Loss of sea ice, thawing permafrost, reduced snow cover, and rising sea level are reducing hunting and fishing opportunities and degrading infrastructure for rural Arctic communities. Most Alaska Native communities are affected by erosion and flooding, with 31 communities imminently threatened and 12 planning to relocate. Local responses to these stresses are hampered by the nation's highest prices for food and fuel and widespread poverty across rural Alaska.

WHY IT MATTERS. Climate change amplifies challenges confronting Arctic communities, where 60-80% of households depend on wild game and fish for food, harvesting several hundred pounds per person annually. Already faced with economic, social, and cultural changes, traditional ways of life in rural Alaska are further threatened by climate change impacts on diminishing food security, deteriorating water and sewage systems, increasing risk of accidents, and greater expenditures to construct and maintain infrastructure. Government agencies and other institutions need to promote policies that reduce stresses on Arctic communities and foster responses consistent with local economies and cultures.

STATE OF KNOWLEDGE. Arctic communities and scientists have worked together to document local observations of climate change; the associated impacts on hunting, fishing, safety, and food security; and the potential impacts of projected changes into the future. More recently, researchers have been assessing the efficacy of local responses. For example, subsistence whalers on St. Lawrence Island in the Bering Sea have initiated a fall harvest to help make up for spring whaling seasons made shorter by changing ice conditions. At Kivalina-a village that is also facing relocation due to erosion-changing spring ice conditions have prevented the harvest of bowhead whales for over 20 years. In other cases, changes can amplify one another. Limited time off from jobs means that whalers from Nuigsut now have much shorter time available for whaling in fall. In Alaska's Arctic region, 78% of Native Iñupiat households combine jobs and subsistence to meet their economic, cultural, and nutritional needs. The

Map of the 11 Alaska traditional whaling communities, with the 2015 and 1981-2010 median September ice extents shown.

benefits of employment are lessened, however, by the reduction in time devoted to harvesting wild foods. Less time to hunt means less chance to wait out fall storms or to adapt to other changes in weather or animal migration patterns. Those migration patterns may be further altered as diminishing sea ice opens opportunities for industrial activities (for example, shipping and offshore petroleum development). The cumulative effects of stresses and changes are broadly recognized but difficult to measure.

June 2017

WHERE THE SCIENCE IS HEADED.

More work is needed to understand how local responses can be effective (such as the St. Lawrence Island fall whaling season) as well as how how they fall short of what is needed (such as Kivalina's inability to hunt in spring). In addition, future research must address ways that policies exacerbate or mitigate such impacts, for example by imposing additional constraints on what communities can do, or by supporting flexibility and local initiative to solve problems. Actions made without adequate knowledge of local conditions, no matter how well intentioned, may undermine local well-being by promoting ineffective responses or fostering dependence on outside intervention rather than on local talent, capacity, and creativity. Ultimately, communities need support to identify local solutions.

Iñupiat hunters establish a whaling camp on coastal sea ice near Utgiagvik (formerly Barrow), Alaska, where thinning ice and warming temperatures in Spring are reducing hunting opportunities and increasing risks to personal safety. (Courtesy: M. Druckenmilier)

FURTHER READING

Chapin, F.S., III, S.F. Trainor, P. Cochran, H. Huntington, C. Markon, M. McCammon, A.D. McGuire, and M. Serreze, 2014. Ch. 22: Alaska. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 514-536. doi:10.7930/J00Z7150. [Available online at: http://nca2014.globalchange.gov/ report/regions/alaska]

Goldsmith, S., 2008. Understanding Alaska's Remote Rural Economy, UA Research Summary No. 10, Institute of Social and Economic Research, University of Alaska Anchorage. [Available online at: http://www.iser.uaa.alaska.edu/Publications/researchsumm/UA_RS10.pdf]

SEARCH: Advancing knowledge for action in a rapidly changing Arctic https://www.searcharcticscience.org/arctic-answers

Contact for further information:

Henry Huntington, Huntington Consulting hph@alaska.net

Matthew Druckenmiller, National Snow and Ice Data Center druckenmiller@nsidc.org

SEARCH is supported by the National Science Foundation. SEARCH Science Brief AA-002.

ARCTIC FUTURES 2050

HOME SCENARIOS WORKSHOP ARCTIC FUTURES 2050 CONFERENCE BACK TO SEARCH

Arctic Futures 2050 Conference 4–6 September 2019 Washington, D.C.

A novel conference of Arctic scientists, Indigenous Peoples, and policy makers jointly exploring the knowledge needed to inform decisions concerning the Arctic in coming decades.

Conference Menu About Registration Program Travel Awards Posters Logistics Background

Announcements

General Travel Award Announced – The conference Organizing Committee announces a travel award program for potential attendees regardless of background, nationality, or career stage. Applications are due 20 May 2019. For more information, go here.

Travel Awards Announced – Early-Career & Indigenous Knowledge Holder Travel Awards - We are pleased to

announce travel award opportunities for early-career researchers and Indigenous knowledge holders! Applications are due 20 May 2019. More information is available through the "Travel Awards" link above or go here.

Important Dates

- 15 March: Call for Poster Abstracts
- 1 April: Registration Opens
- 1 April: Travel Award Program Announced
- 20 May: Poster Abstracts Due
- 20 May: Travel Award Applications Due
- 17 June: Poster Decisions and Travel Award Winners Announced

10 July: Early-bird Registration Rates End

• The Conference Organizing committee has extended the original May 1st deadline for Poster abstracts and Travel Award applications.

What do you hope the Climate Change Task Force / Climate Change Module can accomplish in the next 3-5 years of the Task Force timeframe? (2020-2025)

What do you hope the Climate Change Task Force / Climate Change Module can accomplish in the next 10-20 vears?

Implementation of a **climate-resilient management** measure(s).

Building on what I noted above, I would hope it could have provided useful information, activities, and tools for ensuring sustainability in the face of climate change for fisheries, habitats, and communities which are involved in and impacted by fisheries activities.

Develop adaptive management measures to help predict impacts of global climate change to the Bering Sea.

Predict how climate change and management choices interact and respond

Guide policy.

Broadly, the hope is that we continue to advance ecosystem-based fisheries management in such a way that it becomes increasingly resilient and adaptive to changing conditions. The Module and Task Force can be important, ongoing vehicles to help advance that goal and to ensure that the Council has the information and tools to make the best possible decisions.

Shifted paradigm of how different types of information and data are viewed by science and managers, more inclusive and open partnerships with more folks on the ground, strengthened partnerships with agency and communities

Bringing together already developed tools and models with LTK and increased involvement and participation/ contributions of indigenous stakeholders to inform policy in innovative ways

Synthesize observations, identify information gaps, and improve our predictive capabilities to better inform climate related management measures/decisions

Finalize a working Action Module which brings together western science, **IK and TK, and LK** - and related concerns, perspectives, information, and values - in a way which provides valuable guidance and tools for the **Council** to best take into account climate change in Alaska federal fishery management.

Identifying and framing issues and concerns which pose immediate and long term threats to fisheries and ecosystem in the Bering Sea.

Ideally make some forward looking management recommendations for addressing climate change impacts on fisheries management

Inform the Council on elements required to make informed policy decisions when considering climate change impacts.

Identify tools and pathways for the Council and NMFS to account for and integrate climate change modeling and information (western science and indigenous and local knowledge) into fishery management decisions in a holistic, meaningful, and inclusive way.