Norton Sound Red King Crab SAFE2017

Sept 21 2016

Toshihide "Hamachan" Hamazaki, Jie Zheng Alaska Department of Fish & Game Division of Commercial Fisheries NSRKC Stock Assessment Model Modeling process Available Data & model fit

7 months

NSRKC Stock Assessment Model Modeling process Available Data & model fit

Available Data

		Length																									
	Abundance	comp	1976 1977	1978 1979	1980 1981	1982 1983	1984 1985	1986 1987	1988 19	989 1990 1	1991 1992	2 1993 19	994 1995	1996 1997	1998 1999	9 2000 20	01 2002	2003 20	04 2005	2006 2007	2008	2009	2010	2011 20)12 2013	2014 20	15 2016
Survey																											
Trawl	Abundance	Х																									
Winter Pot		Х																									
Fishery																											
	CPUE,																										
Summer	Catch	Х																									
Discards		Х																									
Winter	Catch																										
Tagging		Х																									
Data Not Use	d																										
Summer Pot	Abundance	Х																									
Prefishery		х																									
Spring Taggin	ng	Х																									
Fall Tagging		X																									
Winter Comn	nericial	X																									

Assumptions

- M = 0.18 for length class 1-5, and 0.648 for class 6
- Same selectivity and catchability for New and Old Shells
- Discards mortality = 0.2
- Fishery harvests occur instantly:
 - Winter fishery: Feb 01: Nov May
 - Summer fisher: July 01: Jun Sept
- Winter catch selectivity = winter pot survey selectivity

Changes Fishery & Data

- Winter fishery 2016
 - Commercial: 29,792 (79,980 lb.) The highest ever.
 - Subsistence: 5,340 (13,350 lb.). About average.
- Summer commercial fishery 2015
 - 6/27-7/21: 138,997 (420,159 lb.)
- Total retained harvest: 168,789 (0.50 mill. lb.) < ABC (0.57 mill. lb.)
- All harvest data finalized.
- Standardized CPUE update (Appendix A2)
- Recalculation of com crab harvest during the trawl survey.
- ADMB code cleaning up underway
 - Discards estimate equation was bit wrong (changed < 10%).
- Changes in fishery regulation: None

Changes Fishery & Data

- ADMB code cleaning up underway
 - Discards estimate equation was bit wrong (changed < 10%).
 - Model description Appendix A

Discards = Legal Catch $\frac{NS_f(p.sub-legal)}{NS_f(p.legal)}$ DM

ADMB code Discards =Legal Catch $\frac{NS_{f}(p.sub-legal)}{N(p.legal)}$ DM

Not implemented in this progress report (just found out) Will be implemented for Jan 2017SAFE

NSRKC Major Modeling Issues

- Under the size invariant M, the model overestimate abundance of large sized (> 123mm) crab.
 - Current Assumption: Higher M for large sized (> 123mm) crab
 - Pro: Model fits data better
 - Con: Biologically implausible
 - Alternative Assumptions
 - Large sized crab move out of fishing-survey area
 - Extended surveys did not find large crabs
 - Dome-shaped survey-commercial fishery selectivity was not supported by the model (see previous SAFE)
 - Crab does not grow large (non-linear growth)
 - Alternative model 1
 - Molting probability is not time invariant
 - Alternative model 2
 - M of only Largest (> 134mm) is high
 - Alternative model 3

NSRKC Stock Assessment Model OFL Issue

How do we calculate B and OFL?

OFL past

- 2015 OFL formula: Use projected Feb 01 biomass
 OFL = (1-exp(-F))B_w
- 2016 OFL formula: Use projected summer biomass with zero winter fishery

 $OFL = (1 - exp(-F))B_s \quad B_s = (B_w)exp(-0.42M)$

• 2017 CPT-SSC proposed OFL formula: Assume X% of OFL from winter fishery (X: 8%, or average winter harvest %)

Responses to CPT and SSC

- 2017 CPT-SSC proposed OFL formula: Assume X% of OFL from winter fishery (X: 8%, or average winter harvest %).
 - then summer OFL is (1-X)% of OFL

 $(1-X)OFL = (1-exp(-F))B_s \quad B_s = (B_w - X \cdot OFL)exp(-0.42M)$

Solve this: $OFL = \frac{B_w(1 - exp(-F))exp(-0.42M)}{1 - X + X(1 - exp(-F))exp(-0.42M)}$

Applying to 2016 OFL, B_w = 4.654, M = F = 0.18 OFL = 0.711 (2016 SAFE) OFL = 0.763 (X = 0.08, 8%) OFL = 0.822 (X = 0.16, 16%: prop winter harvest in 2016)

Responses to SSC

• Does the timing indicate that crab may go "missing" in association with the molting period?

- Satellite tag deployed in March 2016, Bob?

- The SSC noted relatively high proportions of 134+ mm CL crab in the summer com catches 1980-1982. Investigate source data.
 - Data are probably lost. Even Doug (retired) didn't know that ADFG Kodiak was in charge for NSRKC back in 1970-80s...
- The SSC was very interested in the conflicting observations about molt timing in Apr/May versus Aug/Sept.
 - There was no direct observation for molt timing in Apr/May
 - All observation-data suggest molt timing in Aug/Sept

Responses to CPT and SSC

- Evaluate whether using a growth function (slow down growth).
 - Alt. Model 1
- Consider non-parametric molting probability curve with a random walk penalty.
 - Only random walk considered: Alt Model 2.
- Evaluate higher M only to 134+ mm.
 - Alt. Model 3
- Separate summer fisheries in 2 periods
 - Alt. Model 4

- Alternative Models:
- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

- Model 1: Non linear growth, M = equal for all lengths
 - Little evidence of "slow" growth

• Model 2: Random walk molting prob

- Model 3: High M only for 134+ mm length group
- Model fit was worse.

Model 0

Model 3

- Model 4: Separate fishery selectivity
- No statistical difference between the two selectivity

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

Model	Number of	Total	TSA	St.	TLP	WLP	CLP	OBS	REC	TAG	Dev.
	Parameters			CPUE							molt
0	65	315.0	9.0	-22.1	104.5	42.5	59.5	36.0	11.6	74.7	
1	69	349.9	15.1	-21.8	112.4	45.3	91.4	34.3	14.5	61.8	
2	104	265.2	9.3	-21.8	71.4	40.9	48.6	27.6	12.3	71.7	5.2
3	65	352.3	9.5	-22.3	117.1	45.3	79.6	36.3	12.5	74.3	
4	66	328.4	9.0	-22.3	104.6	42.5	59.5	35.5	11.7	88.1	

Negative log-likelihood

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

- Model 0 seems to be sufficient for 2017 Assessment.
- CPT-SSC finalize OFL formula.

- Model 4: Separate fishery selectivity: Tagging data issue
 - All tagged crabs are recaptured by fisheries.
 - Observed length frequencies of recaptured crab are function of
 - Molting probability
 - Growth transition increments
 - Fishery size selective recapture probability
 - Tag recovery data must be separated by each fishery selectivity periods.
 - The more fishery selectivity separation, the less recovery data for each fishery period.