Norton Sound Red King Crab SAFE2017

Sept 212016

Toshihide "Hamachan" Hamazaki, Jie Zheng
Alaska Department of Fish \& Game
Division of Commercial Fisheries

NSRKC Stock Assessment Model
Modeling process
Available Data \& model fit

NSRKC Stock Assessment Model
 Modeling process
 Available Data \& model fit

Available Data

Assumptions

- $\mathrm{M}=0.18$ for length class 1-5, and 0.648 for class 6
- Same selectivity and catchability for New and Old Shells
- Discards mortality = 0.2
- Fishery harvests occur instantly:
- Winter fishery: Feb 01: Nov - May
- Summer fisher: July 01: Jun - Sept
- Winter catch selectivity $=$ winter pot survey selectivity

Changes Fishery \& Data

- Winter fishery 2016
- Commercial: 29,792 (79,980 lb.) The highest ever.
- Subsistence: 5,340 ($13,350 \mathrm{lb}$.). About average.
- Summer commercial fishery 2015
- 6/27-7/21: 138,997 (420,159 lb.)
- Total retained harvest: 168,789 (0.50 mill. lb.) < ABC (0.57 mill. lb.)
- All harvest data finalized.
- Standardized CPUE update (Appendix A2)
- Recalculation of com crab harvest during the trawl survey.
- ADMB code cleaning up underway
- Discards estimate equation was bit wrong (changed < 10\%).
- Changes in fishery regulation: None

Changes Fishery \& Data

- ADMB code cleaning up underway
- Discards estimate equation was bit wrong (changed < 10\%).
- Model description Appendix A

Discards $=$ Legal Catch $\frac{N S_{f}(p . s u b-l e g a l)}{N S_{f}(p . l e g a l)} D M$
ADMB code
Discards =Legal Catch $\frac{\mathrm{NS}_{\mathrm{f}}(\text { p.sub-legal })}{\mathrm{N} \text { (p.legal) }} \mathrm{DM}$
Not implemented in this progress report (just found out) Will be implemented for Jan 2017SAFE

NSRKC Major Modeling Issues

- Under the size invariant M, the model overestimate abundance of large sized (>123mm) crab.
- Current Assumption: Higher M for large sized (> 123mm) crab
- Pro: Model fits data better
- Con: Biologically implausible
- Alternative Assumptions
- Large sized crab move out of fishing-survey area
- Extended surveys did not find large crabs
- Dome-shaped survey-commercial fishery selectivity was not supported by the model (see previous SAFE)
- Crab does not grow large (non-linear growth)
- Alternative model 1
- Molting probability is not time invariant
- Alternative model 2
- M of only Largest (> 134mm) is high
- Alternative model 3

NSRKC Stock Assessment Model OFL Issue

How do we calculate B and OFL?

OFL past

- 2015 OFL formula: Use projected Feb 01 biomass OFL $=(1-\exp (-F)) B_{w}$
- 2016 OFL formula: Use projected summer biomass with zero winter fishery

$$
O F L=(1-\exp (-F)) B_{s} \quad B_{s}=\left(B_{w}\right) \exp (-0.42 M)
$$

- 2017 CPT-SSC proposed OFL formula: Assume X\% of OFL from winter fishery (X: 8\%, or average winter harvest \%)

Responses to CPT and SSC

- 2017 CPT-SSC proposed OFL formula: Assume X\% of OFL from winter fishery ($\mathrm{X}: 8 \%$, or average winter harvest \%).
- then summer OFL is ($1-\mathrm{X}$)\% of OFL
$(1-\mathrm{X}) \mathrm{OFL}=(1-\exp (-\mathrm{F})) \mathrm{B}_{\mathrm{s}} \quad \mathrm{B}_{\mathrm{s}}=\left(\mathrm{B}_{\mathrm{w}}-\mathrm{X} \cdot \mathrm{OFL}\right) \exp (-0.42 \mathrm{M})$
Solve this:
$O F L=\frac{B_{w}(1-\exp (-F)) \exp (-0.42 M)}{1-X+X(1-\exp (-F)) \exp (-0.42 M)}$
Applying to 2016 OFL, $B_{w}=4.654, \mathrm{M}=\mathrm{F}=0.18$
OFL $=0.711$ (2016 SAFE)
OFL $=0.763(X=0.08,8 \%)$
OFL $=0.822(X=0.16,16 \%$: prop winter harvest in 2016)

Responses to SSC

- Does the timing indicate that crab may go "missing" in association with the molting period?
- Satellite tag deployed in March 2016, Bob?
- The SSC noted relatively high proportions of $134+\mathrm{mm}$ CL crab in the summer com catches 1980-1982. Investigate source data.
- Data are probably lost. Even Doug (retired) didn't know that ADFG Kodiak was in charge for NSRKC back in 1970-80s...
- The SSC was very interested in the conflicting observations about molt timing in Apr/May versus Aug/Sept.
- There was no direct observation for molt timing in Apr/May
- All observation-data suggest molt timing in Aug/Sept

Responses to CPT and SSC

- Evaluate whether using a growth function (slow down growth).
- Alt. Model 1
- Consider non-parametric molting probability curve with a random walk penalty.
- Only random walk considered: Alt Model 2.
- Evaluate higher M only to 134+ mm.
- Alt. Model 3
- Separate summer fisheries in 2 periods
- Alt. Model 4

Modeling discussion for Jan 2017 SAFE

- Alternative Models:
- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, $M=$ equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

Modeling discussion for Jan 2017 SAFE

- Model 1: Non linear growth, $\mathrm{M}=$ equal for all lengths
- Little evidence of "slow" growth

Modeling discussion for Jan 2017 SAFE

- Model 2: Random walk molting prob

Modeling discussion for Jan 2017 SAFE

- Model 3: High M only for 134+ mm length group
- Model fit was worse.

Modeling discussion for Jan 2017 SAFE

- Model 4: Separate fishery selectivity
- No statistical difference between the two selectivity

Modeling discussion for Jan 2017 SAFE

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, $M=$ equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

Negative log-likelihood

Model	Number of Parameters	Total	TSA	St. CPUE	TLP	WLP	CLP	OBS	REC	TAG	Dev. molt
0	65	315.0	9.0	-22.1	104.5	42.5	59.5	36.0	11.6	74.7	
1	69	349.9	15.1	-21.8	112.4	45.3	91.4	34.3	14.5	61.8	
2	104	265.2	9.3	-21.8	71.4	40.9	48.6	27.6	12.3	71.7	5.2
3	65	352.3	9.5	-22.3	117.1	45.3	79.6	36.3	12.5	74.3	
4	66	328.4	9.0	-22.3	104.6	42.5	59.5	35.5	11.7	88.1	

Modeling discussion for Jan 2017 SAFE

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, $\mathrm{M}=$ equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

MMB time series:

Modeling discussion for Jan 2017 SAFE

- Model 0 seems to be sufficient for 2017 Assessment.
- CPT-SSC finalize OFL formula.

Modeling discussion for Jan 2017 SAFE

- Model 4: Separate fishery selectivity: Tagging data issue
- All tagged crabs are recaptured by fisheries.
- Observed length frequencies of recaptured crab are function of
- Molting probability
- Growth transition increments
- Fishery size selective recapture probability
- Tag recovery data must be separated by each fishery selectivity periods.
- The more fishery selectivity separation, the less recovery data for each fishery period.

