D3 Presentation JUNE 2020

ADVANCING ESSENTIAL FISH HABITAT DESCRIPTIONS AND MAPS FOR THE 2022 5-YEAR REVIEW

NED LAMAN¹, JODI PIRTLE², JIM THORSON³ 06/02/2020

¹ Groundfish Assessment Program (GAP), Alaska Fisheries Science Center (AFSC), Seattle, WA
 ² Habitat Conservation Division (HCD), NMFS Alaska Region, Juneau, AK
 ³ Habitat and Ecological Processes Research (HEPR) Program, AFSC, Seattle, WA

CONTRIBUTORS / AFFILIATIONS

Cheryl Barnes^{1,2,3}, Christina Conrath⁴, Louise Copeman^{5,6}, Alison Deary⁷, Matt Eagleton⁸, Georgina Gibson⁹, Gretchen Harrington¹, Jeremy Harris¹⁰, Tom Hurst⁵, Ben Laurel⁵, Jennifer Marsh^{1,11}, Franz Mueter¹¹, Chris Rooper¹², S. Kalei Shotwell¹³, William Stockhausen¹⁴

¹ Habitat Conservation Division (HCD), NMFS Alaska Region, Juneau, AK
² Habitat and Ecological Processes Research (HEPR) Program, AFSC, Seattle, WA
³ University of Washington, Seattle, WA
⁴ Groundfish Assessment Program (GAP), Alaska Fisheries Science Center (AFSC), Kodiak, AK
⁵ Fisheries Behavioral Ecology Program, AFSC, Newport, OR
⁶ Oregon State University (OSU), Newport, OR
⁷ Recruitment Processes Program, AFSC, Seattle, WA
⁸ HCD, NMFS Alaska Region, Anchorage, AK
⁹ University of Alaska Fairbanks, Fairbanks, AK
¹⁰ GAP, AFSC, Seattle, WA
¹¹ University of Alaska Fairbanks, Juneau, AK
¹² Department of Fisheries and Oceans, Nanaimo, BC, Canada
¹³ Resource Ecology and Fisheries Management (REFM), AFSC, Juneau, AK
¹⁴ REFM, AFSC, Seattle, WA

OUTLINE

Research

Advancing EFH for North Pacific Species in Alaska (*Laman et al.*) First Arctic Model-based EFH (*Marsh et al.*) Juvenile Walleye Pollock Thermal Habitat (*Laurel et al.*) Individual-based Models to Advance EFH (*Shotwell et al.*)

Discussion Topics

How to Construct EFH from SDM Skill Testing and Model Selection Mapping EFH Level 3 Information Individual-based Models and EFH

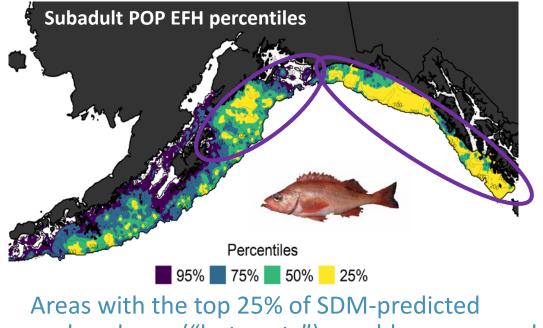
ADVANCING EFH FOR NORTH PACIFIC SPECIES IN ALASKA (*LAMAN et al.*)

Since the 2017 EFH Review:

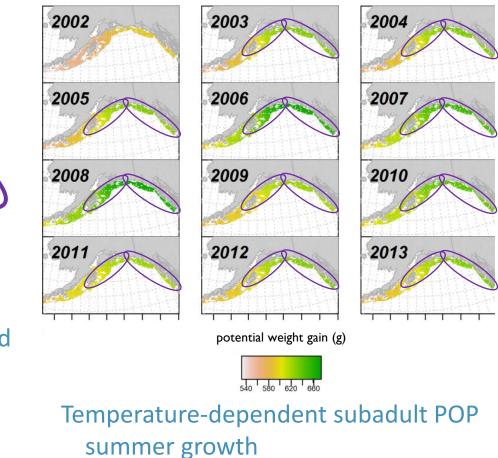
- 5 bottom trawl survey years added
- Improved GOA bathymetry
- Introduced nearshore data and early juvenile life stage None to Level 2
- Updated maturity schedules and redefined life stages
- Modeling refinements None and Level 1 to Level 2
- Skill testing and model selection
- Habitat-linked growth potential Level 3

D3 Presentation JUNE 2020

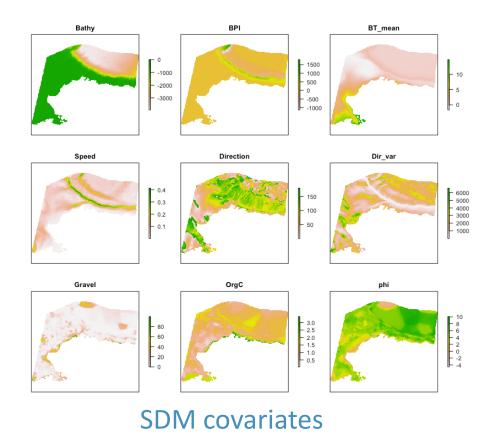
UPDATING EFH MAPS (LAMAN et al.)

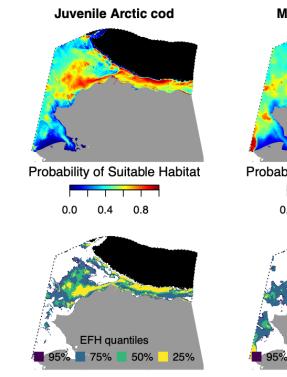

Changes in the areal extent of EFH were species-specific and largely attributable to life stage redefinitions or to modeling refinements

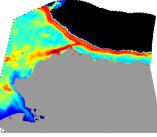
Groundfishes:	EFH Area:	Change attributed to:
EBS adult sablefish	$\downarrow\downarrow$	Life stages redefined, Poisson model
GOA subadult Pacific cod	$\downarrow\downarrow$	Poisson model, updated covariates
GOA adult Pacific cod	Ļ	Poisson model
GOA subadult POP	††††	Contrasting models – skill testing



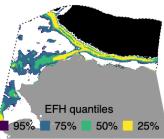
LEVEL 3 EFH: CO-MAPPING TO LINK SDM PREDICTIONS WITH VITAL RATES FOR EFH MAPS (*LAMAN et al.*)




abundance ("hot spots") roughly correspond to areas of perennially higher growth potential

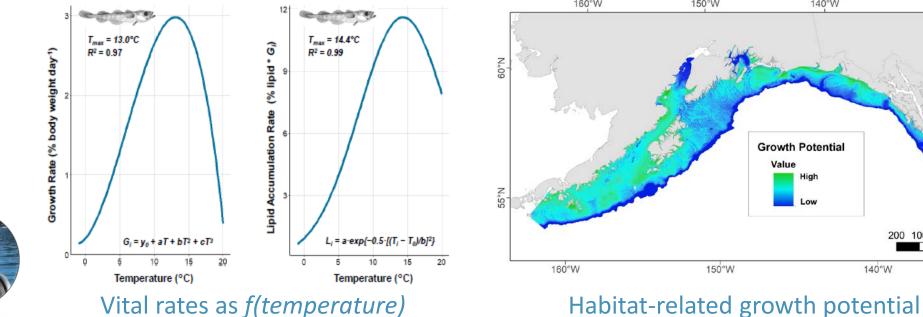

FIRST U.S. ARCTIC MODEL-BASED EFH (MARSH et al.)

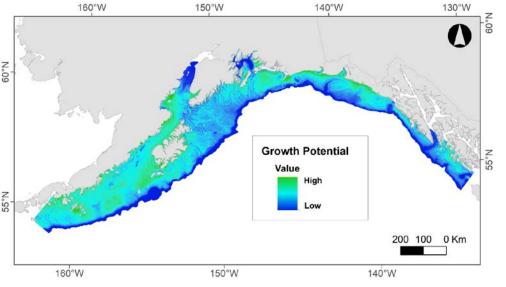
Arctic SDM-based EFH descriptions and maps for Arctic cod, saffron cod, and snow crab



Mature Arctic cod

Probability of Suitable Habitat

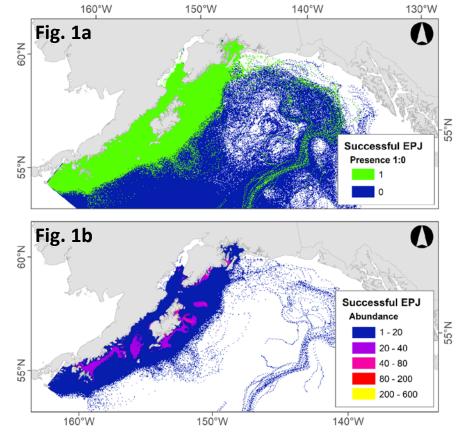

SDM maps and SDM-based EFH maps



LEVEL 3 EFH: THERMAL HABITAT FOR JUVENILE WALLEYE POLLOCK (LAUREL et al.)

- Early juvenile stage pollock (40-120 mm)
- Laboratory studies identified temperature-dependent growth and lipid accumulation (condition) rates for summer and winter
- Map is the *product* of summer growth rate and an SDM

INDIVIDUAL-BASED MODELS (IBM) TO ADVANCE EFH (SHOTWELL et al.)


EFH Level 1: Initial IBM run will create the presence/absence map – life stage trajectory of survivors **(Fig. 1)**.

EFH Level 2: Model trajectories are postprocessed with spatially-explicit spawning biomass information to create the relative abundance map.

EFH Level 3: Trajectories are further post-processed with vital rates to create maps of habitat-related survival and growth potential.

IBMs for Alaska Sablefish and GOA Pacific cod

Pacific cod successful epipelagic juveniles

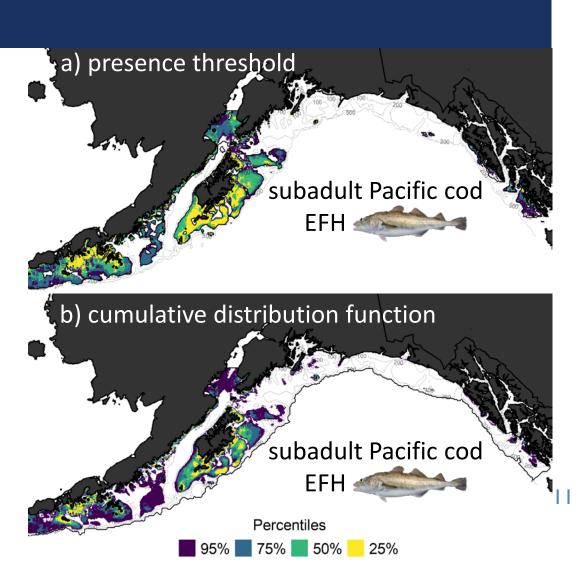
DISCUSSION TOPICS

- 1) How to Construct EFH from SDM
- 2) Skill Testing and Model Selection
- 3) Mapping EFH Level 3 information
- 4) Individual-based models and EFH

D3 Presentation JUNE 2020

10

1) HOW TO CONSTRUCT EFH FROM SDM

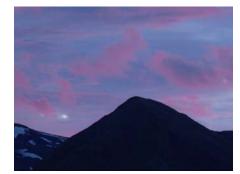

Currently:

 Minimum threshold for presence values ≤ minimum abundance or probability considered absent
 (2017 Review and Laman et al. 2020)

Recommended:

• Cumulative distribution function (2022 5-year EFH Review)

2) SKILL TESTING AND MODEL SELECTION


2017 Review (*a priori* assignment)

- Maxent
- hGAM
- GAM

2020 Laman *et al*. (skill testing)

- Maxent
- hGAM
- GAM
- paGAM

2022 Review (skill testing)

- Maxent
- hGAM
- GAM
- paGAM
- Negative binomial
- quasi-Poisson
- Ensemble

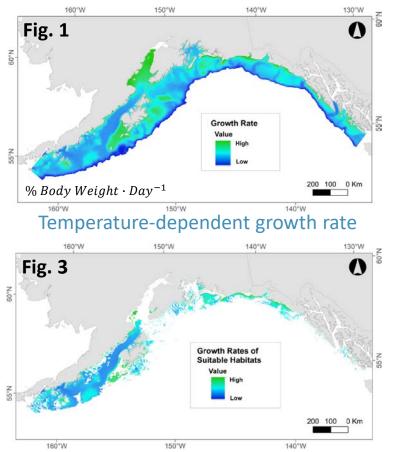
2 (cont'd) EVALUATING MODEL PERFORMANCE ("SKILL TESTING")

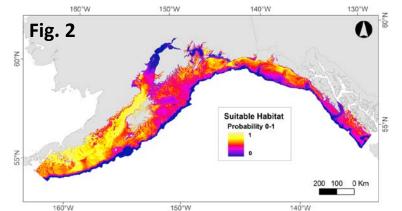
Root-mean-square-error

$$\Sigma E = \sqrt{\frac{\sum_{i=1}^{20} \sum_{j=1}^{n_i} (y_{ij} - x_{ij})^2}{\sum_{i=1}^{20} n_i}}$$

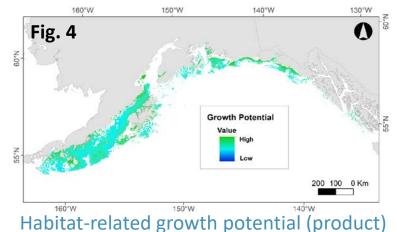
RMSE =

y_{ij} is the predicted numerical abundance,
x_{ij} is the observed numerical abundance at trawl station j in cross validation fold i, and
n_i is the number of trawl stations sampled in the *i*th fold

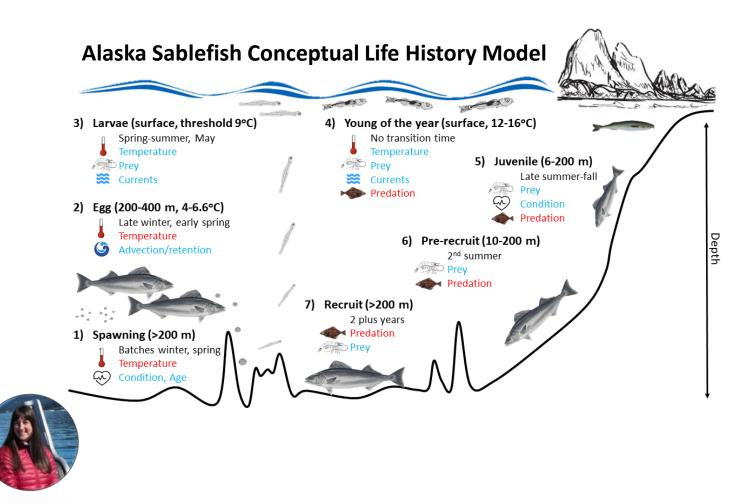




3) INTEGRATING VITAL RATES AND SDM TO MAP EFH LEVEL 3


Early Juvenile Walleye Pollock (40-120 mm)

Growth rates of suitable habitat (co-mapping)



Early juvenile pollock habitat suitability

4) INDIVIDUAL-BASED MODELS (IBM) TO DESCRIBE AND MAP EFH

How do we use survey data and IBMs to inform EFH?

- 2017 Review survey data in pelagic early life stage SDMs (EFH Level 1)
- 2022 Review survey data and process studies inform IBMs (EFH Level 1, 2, and 3)
- Future Directions

THANKYOU

NED LAMAN

NED.LAMAN@NOAA.GOV 206-526-4832

JODI PIRTLE JODI.PIRTLE@NOAA.GOV

907-586-7006