

GOA Pacific cod assessment 2016

Steve Barbeaux, Teresa A'mar, and Wayne Pallson

NOAA
 FISHERIES
 SERVICE

NPFMC Plan Team, Nov. 16, 2016

NOAA

Brief assessment history

- Stock synthesis (SS) introduced in 1994
- Many models have been developed since with ever increasing complexity
- All models assumed $\mathrm{M}=0.37$ or (post-2007) 0.38 based on $\mathrm{M}=$ $1.65 / \mathrm{A}_{50}$ (Jensen 1996), $\mathrm{A}_{50}=4.35$ (Stark 2007).
- Q has been in contention
- $\quad Q=1.0$ (1994-2008 and 2012-2015)
- $Q=0.916$ for $60-81 \mathrm{~cm}$ (2009-2011)
- Diverse array of selectivity selections over time
- Seasonal fishery selectivity
- Age-based vs length-based
- Time varying
- Dome-shaped vs. Asymptotic
- Parametric and nonparametric

Female spawning biomass estimates since 2003

- High variability in model results
- 2014 and 2015 outside historical bounds

Model 15.3 population assumptions

- $M=0.38, Q=1.0$
- Seasonal selectivities for fisheries
- Steeply "dome-shaped" selectivity in survey
- Growth $\mathrm{L}_{\infty}=98 \mathrm{~cm}, \mathrm{~K}=0.17$
- Large portion of the spawning stock biomass is cryptic ($43 \% \geq$ age 8)

Further Model 15.3 results

- 1990-2015 Model 15.3 was on average 330% higher than survey biomass estimate.

- Ascertain reasonable bounds on estimates
- Expand from the base model
- Make all new assumptions explicit
- Evaluate impact of each new model component
- Use suite of models for management
- Choose single "best" for setting harvest specs
- Use others to bound uncertainty in results

Starting Population Assumption

Gulf of Alaska Pacific cod

- GOA cod is distinct frc those further south (C।
- Evidence for separatic (Spies 2012).
- Al cod are distinct fron
- GOA cod and Unimak closely related (Cunnir
- Supported by taggins Shi et al. 2004).

B FISH TAGGED in AREA 3

C fish tagged in area 1

D FISH TAGGED IN AREA 2

Data by type and year, circle area is relative to precision within data type

Fishery catch data

- Aggregated by gear (trawl, longline, and pot) and year
- Catch 1977-2016
- Highest catch in 2011 at 84,385 t

Historical catch distribution 1990-2014

Catch distribution 2015 and 2016

Fishery length composition data

- Fishery data aggregated by sex, gear (trawl, longline, and pot), and year
- One season in proposed models
- Data binned from 0.5 cm to 116.5 cm at 1 cm
- Length composition observer and ADF\&G data weighted by seasonal catch by gear
- Multinomial sample size as number of hauls or 200, whichever was least

Trawl fishery 1977-2016

Pot fishery 1990-2016

NOAA

NMFS Summer bottom trawl

 survey data
Pacific cod (Gadus macrocephalus)

- Ins 20
- 10 Ja
- Pr
- 20
 un

200
$+\infty$

400

800

500
 700

- 20 als

NOAA

FISHERIES

SERVICE

NMFS Summer bottom traw I survey length composition data

nOAR
NMFS Summer bottom trawl survey age composition data

- 1990-2016 Relative Population Numbers (RPN)
- 1990-2016 length composition data
- Stuttered \downarrow 1990-2009
- Steep \uparrow 2009-2011
- Small \downarrow 2012-2013
- Steady \uparrow 2013-2018
- $2016 \downarrow 5 \%$ from 2015

NMFS Iongline survey length composition data

Base model: Stock Synthesis 3.24U

- Maturity
- Function of age following Stark (2007) with \mathbf{A}_{50} at 4.3499 and slope of 1.9632
- Natural Mortality
- Jensen (1996) method $\mathbf{M}=\mathbf{0 . 3 8}$ based on A_{50} from Stark (2007)
- von Bertalanffy growth curve
- Three parameter all uniform priors
- $\mathrm{L}_{0.5}$ initialized at 6.1252 cm
- $\mathrm{L}_{\text {inf }}$ initialized at 116.541 cm
- K initialized at 0.1352
- Weight at length fit log linear regression outside of model ${ }_{8}$
- $A=5.63096 e-006$

- $B=3.1306$

Base model

- Standard Beverton-Holt stock recruitment curve
- Uniform prior on $\operatorname{Ln}\left(\mathrm{R}_{0}\right)$ bounded between 10 and 20
- Steepness (H) fixed at 1.00
- Sigma R fixed at 0.44 (fit in previous model runs)
- Recruitment deviations fit as simple deviations
- Bounded between -5 and 5
- Main recruitment deviations 1978-2013 fit in phase 1
- Early recruitment deviations 1962-1977 fit in phase 2
- Forecast recruitment deviations 2014-2016 fit in phase 7

- Stock Synthesis Hybrid method for fishing mortality estimation
- Initial Fs for trawl and longline fishery fit with uniform prior
- Initial F for pot fishery fixed at 0 - no fishery until 1986
- NMFS bottom trawl survey catchability fixed at $\mathrm{Q}=1.00$
- NMFS longline survey catchability allowed to float.

NOAA

Base model - Selectivity

- All length composition fit with a six parameter double normal curve
- All parameters fit with uniform priors
- \quad Trawl and longline fishery (3 parameters free each)
- Forced asymptotic with two parameters controlling downward arm fixed
- Parameter 5 set at -999 , causing initial selectivity to be near 0
- \quad Pot fishery (5 parameters free)
- Dome-shaped allowed
- Parameter 5 set at -999 , causing initial selectivity to be near 0
- Bottom trawl survey (4 parameters free)
- Forced asymptotic with two parameters controlling downward arm fixed

- Initially ages were restricted to 12 ages with a 12+ group
- No aging error or bias
- Conditional length at age available in data, but not fit.

Models presented in September, 2016

November base model differences

 from September- Ages were restricted to 20 ages with a $20+$ group
- SSC addition
- Small differences in fitting growth parameters
- Conditional age-at-length data from survey fit within model
- More stable model fit for growth
- R_{1} offset fit with uniform prior in phase 3
- Best practices, adjusting R_{1} from R_{0} in fished population

Changes to base from September 2016 :

Addition of age-at-length, \mathbf{R}_{1} offset, and plus group at age 20+

Model fits (Likelihoods)

Likelihood components

- Within series models 16.xx. 25 best overall
- Some individual components fit less well
- Likelihoods not comparable between series because of tuning and data differences

Survey Index RMSE

- Best fit (highest effective N) to length composition data in un-tuned models
- Model config. M16.xx. 25 best fit overall within series
- Little difference in fits to longline survey
- Tuned models show better fit (lower RMSE) to NMFS Bottom trawl Survey

Female SSB Retrospective Results

- Positive FSSB retrospective bias for all models in Mohn's ρ
- Poor retrospective patterns on Models 16.09.20, 16.09.23, 16.10.11, 16.10.20, 16.10.25, and 16.11.20
- In general models with sub-27 cm better retrospective
- Model config. 16.xx. 23 best retrospective within series

Age-0 Recruitment Retrospective Results

Age-0 recruitment comparisons

Spawning stock biomass
comparisons

Spawning stock biomass and recruitment comparisons

Biomass age distributions

NOAA

Fishing mortality and fishing mortality at age

Author's choice: Model 16.08.25

- Best fit model overall (AIC)
- Model well behaved,
- Jitters always converged at minimums
- Reasonable retrospectives
- Good characterization of population distribution at age (small cryptic component)
- Population trend mimics anecdotal history (gadid outburst in the early 1980s)
- Reference points and biomass estimates near the middle of models explored

NOAA
FISHERIES
SERVICE

Justification for natural mortality at 0.47

- Estimá howev

1

- Aging maturit

Possible reasons for $\mathrm{Q}>1.0$

- Q is a combination of gear efficiency and species availability at the highest selected length classes
- Differential distribution in trawlable vs. untrawlable habitat for these length classes could result in Q > 1.0

Untrawlable

Model 16.08 .25 catchability and selectivity

- Mean catchability \times survey selectivity across length classes $\geq 27 \mathrm{~cm}=$ 0.94

1400000

[^0]

Model 16.08.25 growth

Von Bertalanffy fits to all EBS trawl survey age data

- Faster growth than Model 15.3
- Larger at older ages

Time-varying selectivity for FshTrawl

Time-varying selectivity for Srv

Time-varying selectivity for FshLL

Time-varying selectivity for FshPot

Ending year selectivity for LLSrv

NOAA

Model 16.08.25 fits: Length composition

length comps, whole catch, aggregated across time by fleet

NOAA

Model 16.08.25 fit: Bottom trawl survey length composition

Model 16.08.25 fits: Mean Iength and age

Model 16.08.25 results: Spawning biomass

- Near middle of historical estimates
- Lower spawning biomass overall in more recent estimates
- Current status lower than recent assessments ($\sim \mathrm{B}_{40 \%}$ for 2016)

Model 16.08.25 results:

 Recruitment- 1977 year class highest on record
- Poor recruitment 1990-2004
- Good 2005-2008 year classes
- 2009-2010 poor recruitment
- 2012 year class $2^{\text {nd }}$ highest on record
- 2014-2015 poor recruitment

Model 16.08.25 results: Numbers at length and age

Beginning of year expected numbers at length in (max ~ 991.4 million)

Beginning of year expected numbers at age in (max ~ 1.6 billion)

Model 16.08.25 results: Fishing mortality

- Low recruitment period was coincident with higher catches
- Model suggest fishing mortality in 2007-2012 was high and unsustainable

Model 16.08.25 results: Phase plane

- Status differs substantially from last year's Model 15.3

NOAA

FISHERIES
SERVICE

Retrospective: SSB and recruitment

Mohn's $\rho \quad=0.233$
Woods Hole $\rho=0.175$
RMSE $=0.327$

Model 16.08.25 results: Projections and recommendations

As estimated or speciffed last year for:	As estimated or speciffed this year for:		
2016	2017	2017	2018
0.38	0.38	0.47	0.47
$3 a$	$3 a$	$3 a$	$3 a$
518,800	472,800	426,384	428,885
165,600	141,800	98,479	90,572
325,200	325,200	196,776	196,776
130,000	130,000	78,711	78,711
113,800	113,800	68,872	68,872
0.495	0.495	0.652	0.652
0.407	0.407	0.530	0.530
0.407	0.407	0.530	0.530
116,700	116,700	105,378	94,188
98,600	85,200	88,342	79,272
98,600	85,200	88,342	79,272

Female spawning biomass (t)				
Projected	165,600	141,800	98,479	90,572
B	325,200	325,200	196,776	196,776
B	130,000	130,000	78,711	78,711
B	113,800	113,800	68,872	68,872
Fofl	0.495	0.495	0.652	0.652
$\mathrm{max}^{\text {ABC }}$	0.407	0.407	0.530	0.530
Fabc	0.407	0.407	0.530	0.530
OFL (t)	116,700	116,700	105,378	94,188
maxabc (t)	98,600	85,200	88,342	79,272
ABC (t)	98,600	85,200	88,342	79,272

Model 16.08.25 results:
 Projections and status

Not overfished, overfishing, or approaching an overfished condition

As estimated or specified last vear for:		As estimated or specified this year for:	
2016	2017	2017	2018
0.38	0.38	0.47	0.47
3 a	3a	3a	3a
518,800	472,800	426,384	428,885
165,600	141,800	98,479	90,572
325,200	325,200	196,776	196,776
130,000	130,000	78,711	78,711
113,800	113,800	68,872	68,872
As determ	ined last year for:	As deter	ined this year for:
2014	2015	2015	2016
no	n/a	no	n/a
n/a	no	n/a	no
n/a	no	n/a	no

Near future work

1. Re-do Stark (2007) to refine maturity and natural mortality estimates with new age estimates.
2. Improve weight at length estimation.
3. Evaluate trawl survey catchability and selectivity and relationship with environmental covariates within model.
4. Evaluate cod density differences in trawlable and untrawlable habitat, particularly for $50-80 \mathrm{~cm}$ fish, using fishery dependent data.
5. Develop alternative survey strategies for untrawlable habitat.
6. Clarify stock boundaries through tagging and genetics.

Other future work

1. Investigate ecology of the Pacific cod stock, including spatial dynamics, trophic and other interspecific relationships, and the relationship between climate and recruitment.
2. Assess behavior of the Pacific cod fishery, including spatial dynamics.
3. Investigate ecology of species taken as bycatch in the Pacific cod fisheries, including estimation of biomass, carrying capacity, and resilience.
4. Develop multispecies models which take into account the ecology of species that interact with Pacific cod, for estimation of biomass, carrying capacity, and resilience.

[^0]:

