ribilof Islands Red King Crab

 PT comments May 2016Continue the work on survey biomass and length frequency weighting issues to in the model fits to abundance data;

- Addressed in \#2 below.

Implement the Francis tuning method to estimate length composition effective so sizes;

- The Francis effective N calculation was added to the model. In addition, othe multipliers on the survey length frequencies were evaluated.

Provide results for a random effects model and three-year weighted average for t September meeting

- The random effects model was fit to the survey biomass data and MM B, OFL ABC estimated. The estimates using the three-year weighted average are alsc included.

jummary of M ajor Changes:

M anagement: None.
Input data: Survey (2016) and bycatch (2015) data were incorporated into the assessment.
Assessment methodology: Model output for male only fit is presented with the same model configuration as 2015.
Assessment results: M ale biomass estimates from the 3-year running average and a random effects model fit to survey male biomass $>=120 \mathrm{~mm}$ are used to estimate $\mathrm{M} \mathrm{M} \mathrm{B} \mathrm{at} \mathrm{mating} ,\mathrm{OFL} \mathrm{and} \mathrm{ABC}$.

Crab Plan Team September 2015 comments not addressed Incorporate a mean-unbiased log normal likelihood for survey numbers

- Next time.

Discuss the poisson vs. negative binomial for survey estimates of abundance and CVs

- Currently all of the data in the model are those that are passed from Bob Foy and the Kodiak lab, but given the over-dispersion in the data, a negative binomial (or something similar) might be more appropriate, particularly for estimates of variance. The CVs sent by Bob are used in the assessment, but bootstrapped variances are much larger.

Consider ADFG pot survey data and retained catch size frequency data

- These data area not yet incorporated, but may be useful in exploring the mechanics of time-varying catchability.

Pribilof red king crab (biomass in tons)

M SST

Biomass
(MMB at TAC Retained mating)

$/ 11$	2,255	$2,754^{\mathrm{A}}$	0	0	4.2
$/ 12$	2,571	$2,775^{\mathrm{B}^{*}}$	0	0	5.4
$/ 13$	2,609	$4,025^{\text {®* }^{*}}$	0	0	13.1
$/ 14$	2,582	$4,6799^{\mathrm{D}^{* *}}$	0	0	2.25
$/ 15$	2,871	$8,894^{\mathrm{D}^{* *}}$	0	0	1.76
$/ 16$	2,756	$9,062^{* *}$	0	0	0.32^{1}

3 year running average of male biomass ($>=120 \mathrm{~mm}$) at survey time was calculated using the weighted averag ith weights being the inverse of the variance,

$$
\begin{equation*}
B W R A_{?}=\frac{\sum ? ? ? \frac{M M B_{?}}{w_{?}}}{\sum_{? ? ?}^{? ? ?} \frac{1}{w_{?}}} \tag{4}
\end{equation*}
$$

$M M B_{\text {? }}$
$W_{\text {? }}$

Estimated male biomass (>=120mm) from the survey data The weight associated with the estimate of $M M B$ in year t
$w_{?}$ is calculated as the variance of the log(biomass) using the CV estimates of M M B from the survey provided by the Kodiak lab:

$$
w_{?}=\ln \left(\left(C V_{?}^{? ? ?}\right)^{?}+1\right)
$$

Zandom effects model Likelihood

$$
\sum_{? ? ?}^{? ? ?}\left\{0.5\left(\log \left(2 \pi \sigma_{?}^{?}\right)+\left(\frac{\left(\widehat{B}_{?}-B_{?}\right)^{?}}{\sigma_{?}^{?}}\right)\right)\right\}+\sum_{? ? ?}^{? ? ?}\left\{0.5\left(\log \left(2 \pi \sigma_{?}^{?}\right)+\left(\frac{\left(\widehat{(B}_{?}-\widehat{B}_{? ?}\right)^{?}}{\sigma_{?}^{?}}\right)\right)\right\}
$$

log of observed biomass in year i
model estimated log biomass in year i
e variance of observed log biomass in year i
variance of the deviations in log survey biomass between years (i.e. process error variance). $\sigma_{?}^{?}$ was estima nere α is a parameter estimated in the random effects model.
number of years of survey biomass values

Survey biomass in 2016 declined to $4,150 \mathrm{t}$ from 15,173 t in 2015

re 14. Three-year running average and random effects model fit to male biomass $>120 \mathrm{~mm}$ at surv

ure 15. MMB at mating (February 15 of survey year +1) estimated from the survey data, 3 yr running rage and the Random effects model. Bmsy proxy is the average of the 1991 to 2015 MMB at mating rey data (February 151992 to February 15 2016).

e 26. Random effects model estimates of biomass with process error fixed at $0.005,0.05,0.1,0$. 5.

=rom Spencer presentation at Wakefield 2015

A simple exponential smoothing model can give information on the ratio of variances

$$
\hat{z}_{t}=(\alpha) y_{t}+(1-\alpha)\left[\alpha y_{t-1}+\alpha(1-\alpha) y_{t-2}+\alpha(1-\alpha)^{2} y_{t-3}+\ldots\right]
$$

jpencer Wakefield 2015

he variance ratio is a function of stock longevity, ecruitment variability, and survey variability

Used as a prior to constrain the estimate of process error standard deviations

Implied from fit to GOA dogfish

Observation error variance on log scale is $\ln \left(c v^{\wedge} 2+1\right)$ M ean cv of survey biomass is 0.67 M ean Observation Error variance on log scale $=0.38$
Fitting a simple exponential model to Pribilof survey data using HoltW inters function in R gives,
Alpha $=0.396$, =variance ratio of 3.75 and process error of $0.38 / 3.75$ $=0.102$.
Pribilof red model variance of first difference in log biomass 0.046, Bristol Bay red king crab model 0.089 .

Integrated assessment model fit to male numbers (male only model)

gure 20. Model fit to survey male numbers.

Survey length sample size reduction - Francis N multiplier 0.05 (model did not onverge)

gure 25. Fit to male abundance for the 2016 base model and model scenarios with multipliers on the rvev lenoth camnle cize of $0 ? \cap 4$ and 06

A4. Likelihood component contribution to the likelihood and associated weights tor the assessment model sce h multipliers on the survey length sample sizes of $0.2,0.4,0.6$ and the base model (1.0).

Likelihood component	Base Model (1.0)	0.2	0.4	0.6	Weighting
Survey numbers	45.7	29.9	32.7	36.1	$.36-1(\mathrm{CVs})$
(males) Survey length frequencies (male)	$10,012.3$	2018.9	4024.6	6023.7	$18-200($ Base model sample size)
Catch	0.003	0.001	0.001	0.001	$.005(\mathrm{CV})$

Smoothness penalties

Trawl fishing mortality	38.6	38.4	38.3	38.4	$1(\mathrm{CV})$
Fishing mortality	4.3	4.3	4.3	4.3	$1(\mathrm{CV})$
Recruitment	48.9	20.4	30.1	37.5	$1(\mathrm{CV})$

Pribilof red king crab alternatives (biomass in tons

sessment thod	OFL	$B_{M S Y}$	MMB At mating Feb 15 2017 fishing at OFL	B/ $B_{\text {MSY }}$ (MMB)	$\begin{array}{\|lr} \hline \text { MMB } & \text { at } \\ \text { mating } & \\ \text { Feb } & 15 \\ 2016 & \\ \hline \end{array}$	γ	Years to define $\mathrm{B}_{\text {MSY }}$ (MMB at mating)	$F_{\text {MSY }}$	ABC $\left(p^{*}=0.49\right.$
nning erage	1,462	5,512	6,980	1.25	9,062	1.	$\begin{aligned} & 1991 / 92- \\ & 2015 / 16 \end{aligned}$	0.18	1,43
ndom ects M odel	119	5,512	2,044	0.37	2,154	1	$\begin{aligned} & 1991 / 92- \\ & 2015 / 16 \end{aligned}$	0.05	11
served vey	370	5,512	3,332	0.60	13,457	1	$\begin{aligned} & 1991 / 92- \\ & 2015 / 16 \end{aligned}$	0.10	
egrated essment	822	3,881	5,160	1.33	6127	1	$\begin{aligned} & 1991 / 92- \\ & 2015 / 16 \end{aligned}$	0.18	

ales only)

| egrated | 1,931 | 1,598 | 4,066 | 2.5 | 6127 | 1 | 1983-present
 recruitment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.49

