Tanner Crab Assessment Report for the May 2018 CPT Meeting

William T. Stockhausen
Alaska Fisheries Science Center
April 2018

THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PREDISSEMINATION PEER REVIEW UNDER APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY NOAA FISHERIES/ALASKA FISHERIES SCIENCE CENTER AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY DETERMINATION OR POLICY

Executive Summary

This report summarizes the results of work since September 2017 to improve the Tanner crab stock assessment, as well as address CPT and SSC comments from previous meetings. Several alternative models to be evaluated for the Fall 2018 assessment are proposed for consideration by the CPT and SSC.

Responses to recent CPT/SSC comments

Jan. 2018 Modeling Workshop

Comment: The CPT recommends that the author further develop the analysis (regarding trawl sampling efficiency to account for station-level effects) and to identify research or data needs that would be informative.
Response: Time has not permitted any further work on this issue at this time.
Comment: The CPT recommends as a next step that assessment authors do the dynamic B0 calculation and come forward in May with results for comparison.
Response: The calculations necessary to compute dynamic BO have been added to the TCSAM02 code. An example result is presented in this report.

Comment: There was concern from the CPT that classification error (e.g., mature crab incorrectly classified as immature [on the basis of CH:CW relationships]) for the maturity relationship established from the 2017 data was unknown and could not be incorporated into the model. A sensitivity analysis would need to be performed on the 2017 data analysis to determine the possible extent of classification error.

Response: Time has not permitted further work on this issue. It is unclear, however, how this analysis could proceed without histological verification of maturity to determine the classification error rate. Such data was not collected.

Comment: The CPT recommends that assessment authors conduct a retrospective analysis (for the terminal year for recruitment averaging) for the May 20218 CPT meeting.
Response: This issue is addressed in this report.
Comment: The CPT requested for the May 2018 meeting that assessment authors evaluate the impacts associated with discontinuing the collection of information on legal retention status by crab observers. The CPT also recommended that authors outline how legal not-retained information is used or addressed in stock assessments.
Response: Estimated total catch, based on at-sea crab observer sampling, is fit in the Tanner crab assessment model, as is landed (retained) catch. Legal retention status by crab observers is not used in the model.

Comment: The CPT recommended a further discussion on data weighting once the current methods used by the different authors are clear. The CPT recommended that authors use the Francis method first and then consider other approaches as necessary.
Response: Re-weighting algorithms based on the Francis and McAllister-Ianelli methods for size composition data have been implemented in TCSAM02. Preliminary results from applying these methods are discussed in this report. Briefly, though, the Francis method failed to converge in 5 iterations and substantially down-weighted the size composition data. The McAllister-Ianelli methods successfully converged in 5 iterations for most size composition data, but with the effect of up-weighting several datasets.

Oct. 2017 SSC Meeting

Comment: The SSC noted that several concerns remain (with the Tanner crab assessment), such as parameters hitting bounds and consistent overestimation of large male abundance. The SSC recommends a careful diagnosis of all parameters hitting bounds in this model with specific attention to whether those bounds are biologically meaningful, whether a reparameterization might help, whether there is prior information or auxiliary data that could be informative, and whether the parameter is even estimable given the data and model framework.
Response: Parameter specification in TCAM02 has been modified to incorporate parameter re-scaling using a control file, which will speed testing of some reparameterization schemes. Several of the parameters that hit their bounds are estimated on the logit-scale (e.g., those related to the size-specific probability of molt-to-maturity), with the arithmetic scale bounds corresponding to 0 or 1 . One practical solution for these parameters would be to fix them rather than estimate them. Others are selectivityrelated parameters. Several alternative selectivity functions have been added as options to TCSAM02, but there has not been time to explore their possible use yet.

Comment: Chronic overestimation of large males in the stock assessment was again discussed by the SSC. The SSC wonders whether retention could be related to temporal changes in size at maturity, as shell condition may affect marketability.
Response: Selectivity and retention in the directed fishery are currently modeled as the same for new shell and old shell males. However, legal new shell males are generally favored over old shell crab and the industry has some ability to avoid continuing to fish on aggregations of old shell crab. This would suggest that selectivity and retention should be estimated separately for new shell and old shell males. However, this possibility remains to be explored.

Comment: The SSC expressed some concern about the apparent poorer reproductive condition of female Tanner crab in the east compared to the west. The SSC would appreciate some analysis/discussion of the evidence for or against [several suggested] alternatives in next year's assessment.
Response: This issue has not yet been dealt with.

Sept. 2017 CPT Meeting

Comment: The CPT recommended that both the Francis and McAllister-Ianelli methods for re-weighting input sample sizes for size composition data should be evaluated.
Response: Model scenarios that used both methods to re-weight size composition data were included in this report. See the response to the comment from the Modeling Workshop above.

Comment: The CPT recommended that a full evaluation of fits to growth data needs to be undertaken with a range of likelihood weights to evaluate the impacts on model results.
Response: In the 2017 assessment, it was found that increasing the weight on fitting the growth data in the model by a factor of 20 led to convergence issues with the model. This report includes scenarios in
which the weight on the growth data in the likelihood was increased by a factor of 5, which did not lead to convergence issues. Results are discussed more fully in the report.

Comment: The CPT recommended considering several approaches to dealing with parameters hitting their bounds, including reparameterization, adding priors to poorly-estimated parameters, or simply reducing the number of parameters being estimated.
Response: A flexible approach to reparameterization (via a control file) has been implemented in TCSAM02. Model scenarios in which several bounded parameters were transformed to logit scales for estimation were addressed, but this did not always eliminate the problem. Model scenarios in which several parameters at bounds were fixed rather than estimated were also considered. A new selectivity function option was implemented (a half-normal function), but scenarios that utilized it were not included in this report.

Comment: The CPT recommended that lognormal priors with the median equal to the prior value should be evaluated for natural mortality parameters.
Response: This has not yet been addressed.
Comment: The CPT recommends that addressing the issue that the model overpredicts the abundance of large males in the NMFS trawl survey should be a priority for future assessments.
Response: It was hoped that including male maturity ogive data in the model fitting process would resolve this issue, but it has not. CPT suggestions that the growth increment at terminal molt may be different from prior molts or that natural mortality of old males increases with age will be addressed in the future.

Comment: The CPT requested that the issue of whether or not to include recruitment estimated for the final year in the calculation of average recruitment for $\mathrm{B}_{\text {MSY }}$ should be addressed.
Response: A retrospective analysis of recruitment patterns and averaging time periods is included in this report.

Comment: A potential refinement to Model B2b would be to allow annual variation in retention during the 1991-1996 period only.
Response: This suggestion has not yet been addressed.

1. Introduction

Recent developments in the Tanner crab stock assessment model are discussed in Section 2. These developments included incorporating male maturity ogive data into the model fitting process, new growth parameterizations, new parameter scaling options, a new approach to "devs" vectors, a new likelihood component for recruitment, and the addition of dynamic B0 calculations. Other issues are discussed in Section 3, including a retrospective recruitment analysis to inform the time period over which to calculate average recruitment for use in status determination and OFL setting, results for a dynamic B0 calculation, bootstrapped effective sample sizes for NMFS size composition data, and NMFS survey catchability for males and females at small sizes. Results from a large set of potential model scenarios for the fall assessment are discussed in Section 4, while recommendations for a few scenarios to be carried over to the fall assessment are made in Section 5.

2. Assessment model development

2.1 Male maturity data

For Chionoecetes spp. males, the terminal molt typically involves a change in the allometric relationship between carapace width (CW) and chela height (CH), with terminally-molted ("mature") males typically exhibiting a much larger ratio of CH:CW than do "immature" males (i.e., those which have not undergone the terminal molt). For Tanner crab in Prince William Sound, Tamone et al. (2007) used additional data on sexual development to determine that a CH:CW ratio of 0.18 provided a good discriminant for maturity status across all sizes, with males exhibiting a ratio > 0.18 classified as "mature" and those exhibiting a ratio < 0.18 classified as "immature.". Rugolo and Turnock (2011) used this ratio and a set of special collections of male CH data to develop a size-specific maturity ogive (i.e., the expected fraction of mature males at a given size) for new shell males in NMFS trawl surveys (Fig. 2.2.1).

Fig. 2.1.1. Maturity ogive (Rugolo and Turnock, 2011) for new shell male crab used to characterize maturity state (immature, mature) by size. Also shown is the estimated probability of molt-to-maturity (pr(M2M)) estimated by the 2016 assessment model.

Since the Tier 3 assessment model for Tanner crab was adopted in 2012, the ogive in Fig. 2.2.1 has been used to determine abundance and biomass of new shell male crab by maturity state (i.e., immature, mature) in the NMFS surveys, while all old shell males are assumed to be post-terminal molt and thus "mature", regardless of size. This approach allows one to estimate time series of abundance and biomass, as well as size compositions, outside the model for immature and mature new shell males separately, but it relies on the implicit assumption that the ogive does not change with time. Given the episodic and highly variable nature of recruitment to the Tanner crab stock in the EBS, this assumption cannot be true and is an approximation, at best. However, the classification of male maturity outside the assessment model by a time-invariant maturity ogive creates a conflict with the assumptions behind growth in the assessment model because the model estimates and applies a size-specific probability of undergoing terminal molt, not a maturity ogive, to determine the predicted new shell mature male component of the stock from the previous year's immature male component as part of the overall population dynamics for Tanner crab.

Fig. 2.1.1. Example year-specific maturity ogives (points) and logistic-type fits from chela height data collected in 1990 at 1 mm resolution (top plot) and 2017 at 0.1 mm resolution (bottom plot). Symbol sizes scale with relative sample size. Ogives are shown using two carapace width bin sizes, $1-\mathrm{mm}$ and $5-\mathrm{mm}$.

An alternative approach would be to drop the immature/mature classification of survey data outside the model and use the male chela height data collected during NMFS surveys to estimate year-specific maturity ogives for new shell crab (see examples in Fig. 2.1.1) and to fit those in the assessment as part of the overall model optimization. Although chela height data is not collected every year, this would still provide data to inform the size-specific probability of undergoing terminal molt, which is time-invariant
across some time block (only one time block, the entire model period, is used in the current assessment). To this end, a input data file format (Table 2.2.1) and a likelihood component for year-specific maturity ogives based on chela heights were developed for TCSAM02.

CHELAHEIGHT_DATA MATURITY_OGIVES NMFS_trawl_survey_(males_only)	\#survey name BINOMIAL \#. \#likelihood type \#likelihood weight		
year	size (mm CW)	sample size	Pr(mature Isize)
1990	32.5	42	0.04761905
1990	37.5	63	0.03174603
1990	42.5	106	0.04716981
1990	47.5	55	0.01818182
1990	52.5	28	0
1990	57.5	59	0.01694915
\ldots	\ldots	\ldots	\ldots

Table 2.1.1. Example format for a chela height/maturity ogive data file.
The likelihood component for chela height/maturity ogive data assumes the observed fraction of mature new shell males in size bin z is binomially-distributed, thus the negative log-likelihood is given by
$-\ln \mathcal{L}=\sum_{s}\left\{-w_{s} \cdot \sum_{y, z}\left(n_{s, y, z} \cdot\left\{p_{s, y, z} \cdot \ln \left(\tilde{p}_{s, y, z}\right)+\left(1-p_{s, y, z}\right) \cdot \ln \left(1-\tilde{p}_{s, y, z}\right)\right\}\right)\right\}$
where $n_{s, y, z}$ is the sample size of chela heights taken in survey s during year y in size bin $z, p_{s, y, z}$ is the corresponding observed fraction of mature males, $\tilde{p}_{s, y, z}$ is the model-predicted value, and w_{s} is a userspecified weight for the survey-specific component. The model-predicted value, $\tilde{p}_{s, y, z}$, is simply the ratio of the abundance of mature new shell males to immature males predicted for survey s during year y in size bin z. For diagnostic purposes, Pearson's residuals are calculated for each observed value.

2.2 Growth parameterizations

Mean growth in TCSAM02 is described as linear on the log-scale using

$$
\begin{equation*}
\bar{Z}^{\text {post }}=\exp \left[\alpha+\beta \cdot \ln \left(Z^{\text {pre }}\right)\right] \tag{2.2.1}
\end{equation*}
$$

where $Z^{\text {pre }}$ is the pre-molt size, $\bar{Z}^{\text {post }}$ is the mean post-molt size, and α and β are estimable parameters, where α is the \ln-scale intercept (i.e., $\alpha=\ln \left(\bar{Z}_{\text {post }}\right)$ when $Z_{\text {pre }}=1$) and β is the \ln-scale slope.

An alternative parameterization (used in the 2017 assessment) is
$\begin{array}{|l|l|l|}\hline \bar{Z}^{\text {post }}=\bar{Z}_{L}^{\text {post }} \cdot \exp \left[\frac{\ln \left(\frac{\bar{Z}_{U}^{\text {post }}}{\bar{Z}_{L}^{\text {post }}}\right)}{\ln \left(\frac{z_{U}^{\text {pre }}}{z_{L}^{\text {pre }}}\right)} \cdot \ln \left(Z^{\text {pre }}\right)\right]\end{array} \quad$ (2.2.2) $]$
where $\bar{Z}_{L}^{\text {post }}$ and $\bar{Z}_{U}^{\text {post }}$ are estimable parameters representing the mean post-molt sizes corresponding to the (user-specified) pre-molt sizes $z_{L}^{\text {pre }}$ and $z_{U}^{\text {pre }}$, respectively. Parameter estimation using this formulation is thought to be more stable than that in Eq. 2.2.1 if the pre-molt sizes $z_{L}^{\text {pre }}$ and $z_{U}^{\text {pre }}$ corresponding to the parameters are chosen to be within the range of the data.

A second alternative parameterization has now been implemented that provides a hybrid of the two above. This hybrid parameterization is

$$
\begin{equation*}
\bar{Z}^{\text {post }}=\bar{Z}_{L}^{\text {post }} \cdot \exp \left[\beta \cdot \ln \left(\frac{Z^{\text {pre }}}{z_{L}^{\text {pre }}}\right)\right] \tag{2.2.3}
\end{equation*}
$$

where $\bar{Z}_{L}^{\text {post }}$ and β are estimable parameters and $z_{L}^{\text {pre }}$ is user-specified the pre-molt size corresponding to $\bar{Z}_{L}^{\text {post }}$. This parameterization has the advantage that the ln-scale slope of the growth relationship (β) can easily be constrained to be >0 (which is the case for Tanner crab) while providing the assumed improved stability associated with estimating $\bar{Z}_{L}^{\text {post }}$ rather than α.

2.3 New parameter scaling options

Statistical inference when model parameters are estimated at their bounds, which has consistently occurred with the Tanner crab model for certain growth, selectivity and catchability parameters, is suspect (at best). One approach to addressing parameters that hit bounds is to change the scales on which those parameters are estimated to improve stability as, for example, estimating a parameter p which must be positive using a log-scale transformation $\left(p^{*}=\ln (p)\right)$ which allows the transformed parameter (p^{*}) to be estimated on $-\infty<p^{*}<\infty$. For parameters hitting an upper or lower bound, a logit or other transform that maps the "arithmetic scale" bounds $p_{\text {lower }} \leq p^{*} \leq p_{\text {upper }}$ to the "transformed scale" $-\infty<p^{*}<\infty$ might be appropriate. This capability to specify a transformed scale for a parameter has now been implemented in TCSAM02 using the "model parameters information" (MPI) file for all parameters. Potential transforms include the ln-scale, logit, and probit transforms. A possible advantage to specifying a parameter transformation in the MPI file is that a prior for a parameter is defined on the "arithmetic" scale while the parameter is estimated on the transformed scale.

2.4 A new approach to "devs" vectors

It is possible to define a set of related model parameters in ADMB as a "parameter vector" or, if the parameters represent deviations from some value, as a "devs" vector (the sum of which is zero). The phases in which estimation is "turned on" for the individual parameters that constitute a parameter vector or devs vector are all the same, as are the upper and lower bounds (if the parameters are bounded). ADMB also allows the user to define a vector of parameter vectors (e.g., in ADMB terminology, a param_init_vector_vector or a param_init_bounded_vector_vector), where the number of parameter vectors is arbitrary and each parameter vector can have its own estimation phase, bounds on possible values, and index values. This allows one to implement flexible model structures such as time blocks without having to pre-specify the number of time blocks or the size of individual time blocks. In the Tanner crab model, these vector of parameter vectors are used to implement parameters governing the probability of molting by size bin (a parameter vector) across potentially multiple time blocks. Unfortunately, at this point ADMB does not implement a similar structure for devs vectors-i.e., a vector
of devs vectors. This is a serious drawback to developing a model in which the number of recruitment time blocks or fisheries, for example, is not specified a priori because recruitment deviations across one time period and catch rate deviations for one fleet are both typically defined using a devs vector.

Given this lack of a "vector of devs vectors", I developed two approaches to a "vector of devs vectors" for TCSAM02 based on ADMB's param_init_bounded_vector_vector object. In the approach used in the 2017 assessment, an n-element devs vector d was represented by an ($n-1$)-element bounded vector v, with the final the devs vector element, $d(n)$, being given by $d(n)=-\sum_{i=1}^{n-1} v(i)$ such that $\sum_{i=1}^{n} d(i)=0$ identically. One problem with this approach is that there is no guarantee that the value of $d(n)$ respects the bounds imposed on the rest of the elements. In order to achieve this, a heavy penalty was placed on values of $d(n)$ that approached either bound.

An alternative approach, now incorporated into TCSAM02, is to use an n-element bounded vector to represent an n-element devs vector-which assures that all elements will fall within the prescribed bounds. The requirement that the elements of a devs vector sum to 0 is then enforced by placing a heavy penalty on $\left(\sum d_{i}\right)^{2}$ in the objective function. While this approach assures that all elements of a devs vector will fall within the prescribed bounds (and is simpler to implement), it reduces the effective number of defined parameters by 1 for each devs vector-and thus the overall model dimensionality-by essentially introducing a linear constraint among the elements of each vector. While linear constraints among parameters can lead to problems with inverting the model's hessian matrix to estimate parameter uncertainties, this does not seem to be an issue with ADMB.

Tests using the 2017 assessment model configuration comparing the old and new approaches to devs vectors in TCSAM02 indicate both approaches result in the same parameter estimates.

2.5 A new likelihood component for recruitment

Previously, a likelihood component related to recruitment variability was incorporated into the model objective function as prior probability functions applied to the ln-scale deviations from ln-scale mean recruitment defined by time block using

$$
\begin{equation*}
-\ln \mathcal{L}_{R}=-\sum_{k} w_{k} \cdot \sum_{i(k)} \ln \left[P_{k}\left(\delta_{i(k)}\right)\right] \tag{2.5.1}
\end{equation*}
$$

where $-\ln \mathcal{L}_{R}$ represents the total negative log-likelihood related to recruitment variability, w_{k} is a multiplier on the contribution from time block k to the total, $\delta_{i(k)}$ represents the ln-scale deviation in year i from ln-scale mean recruitment in time block k, and $P_{k}(\cdots)$ is the prior probability function assumed to apply to time block k. For example, in the current (2017) assessment model recruitment is estimated using two time blocks: the "historical" period (1948-1974; $k=1$) and the "current" period (1975+; $k=2$), with the prior probability function for the ln-scale deviations defined as a normally-distributed 1-lag random walk function (so $\delta_{(i+1)(k=1)}-\delta_{i(k=1)} \sim N\left(0, s_{k=1}^{2}\right)$) in the "historical" period and a normal distribution $\left(\delta_{i(k=2)} \sim N\left(0, s_{k=2}^{2}\right)\right)$ in the "current" period (the s_{k}^{2} are fixed.)

In addition to the likelihood contribution just described based on prior probabilities for the recruitment deviations, a second component has now been added in the form

$$
\begin{equation*}
-\ln \mathcal{L}_{R}=\sum_{k} w_{k} \cdot\left\{\sum_{i(k)}\left[-\ln \left(\sigma_{k}\right)+\frac{\delta_{i(k)}^{2}}{2 \cdot \sigma_{k}^{2}}\right]\right\} \tag{2.5.2}
\end{equation*}
$$

where σ_{k}^{2} is represents the ln-scale recruitment variance in time block k. This likelihood is appropriate for normally-distributed random variables $\left(\delta_{i(k)}^{2}\right)$ with unknown variance $\left(\sigma_{k}^{2}\right)$. The σ_{k}^{2} terms are parameterized using

$$
\begin{equation*}
\sigma_{k}^{2}=\ln \left(1+p_{k}^{2}\right) \tag{2.5.3}
\end{equation*}
$$

where the (potentially-estimable) parameter p_{k} is the coefficient of variation of recruitment in time block k.

2.6 New selectivity functions

A new size selectivity function, based on a half-normal distribution function, was added to TCSAM02 as alternative to the asymptotic logistic selectivity functions previously available. The new function is

$$
S(z)=\left\{\begin{array}{cc}
\exp \left[-\frac{\left(z-z_{u}\right)^{2}}{2 \cdot w^{2}}\right] & \text { if } z \leq z_{u} \tag{2.6.1}\\
1 & \text { if } z>z_{u}
\end{array}\right.
$$

where z represents size (CW in mm) and z_{u} and w are estimable location and scale parameters, respectively. z_{u} represents the minimum fully-selected size whereas w influences the size range over which S decreases as z gets smaller.

2.7 Dynamic BO

A function to calculate dynamic B0 was added to TCSAM02. Following model convergence, the population time series is recalculated by setting all fishery capture rates to zero while keeping all other aspects the same-in particular the recruitment time series. This allows estimation of the population trajectory in the hypothetical absence of fishing mortality. Using the current value of dynamic B0 as a basis for the calculation of $\mathrm{B}_{\text {MSY }}$ may provide an alternative that is more robust to decadal-scale changes in recruitment than the current approach based on mean recruitment and SPR considerations. An example using the 2017 assessment is presented in Section 3.2

3. Other issues

3.1 Retrospective recruitment analysis

At the January 2018 Modeling Workshop, the CPT requested that authors conduct a retrospective analysis on recruitment to help identify an appropriate period over which to calculate mean recruitment for use in determining $\mathrm{B}_{35 \%}$ (i.e., the Tier 3 proxy for $\mathrm{B}_{\text {MSY }}$). The time series of estimated recruitment from a retrospective analysis for Tanner crab using the "assessment years" 2011-2017 are shown in Fig. 3.1.1. Except for assessment year 2011, recruitment estimates for an assessment year tend to be higher in the final 2-3 years of the time series relative to those for the same year from later assessments with more data, suggesting the model tends to overestimate the most recent recruitment events.

Fig. 3.1.1. Results for the estimated recruitment time series since 1978 (upper) and 2001 (lower) from retrospective model runs (2011-2017) using the 2017 assessment model configuration and data. Note that, as plotted here, recruits in year y enter the population in year $y+1$.

To evaluate the efficacy of alternative averaging periods, the mean recruitment for each retrospective model run was calculated for the period 1982 to (assessment model year - lag), where lags of 0-6 years were evaluated (Fig. 3.1.2.). The variability in mean recruitment across the retrospective model runs does not change appreciably with lag, which seems to indicate there is no "optimal" lag which minimizes the variance in mean recruitment across the retrospective model runs.

Fig. 3.1.2. Results for mean recruitment averaged over the period 1982 to (assessment year-lag) from retrospective model runs for assessment years 2011-2017 using the 2017 assessment model configuration and data.

3.2 Dynamic BO

As noted previously, dynamic B0 calculations were incorporated into TCSAM02 earlier this year. Results from the base model 2018B0 (equivalent to the 2017 assessment model) are compared between the estimated dynamic B0 time series with no fishing mortality and the time series for MMB including fishing mortality in the Fig. 3.2.1.

Fig. 3.2.1. Dynamic B0 (red line) and estimated MMB (green line) time series from 2018B0 (the 2017 assessment model).The dotted black line represents B_{100} (the mean unfished MMB) from the OFL calculation using mean recruitment.

In 2017, $\mathrm{B}_{\text {MSY }}\left(\mathrm{B}_{35 \%}\right)$ using the dynamic B 0 approach would have been slightly larger than that based on the OFL calculation using mean recruitment.

3.3 Effective sample sizes for NMFS trawl survey size compositions

The NMFS trawl survey typically collect size composition data from several thousand Tanner crab at 100-150 stations each summer in the EBS. Because the crab at individual survey stations tend to be more similar to each other than those collected across the entire survey, the number of independent samples
associated with the size compositions is much smaller than the actual number of crab measured. To account for this lack of independence, input sample sizes for Tanner crab size compositions from the NMFS survey are typically set to 100-200 in the assessment model to avoid over-fitting. However, this choice of effective sample size is somewhat arbitrary. Here, I used a resampling approach to estimate empirical effective sample sizes for survey size compositions during 1988-2017 to compare with the values used in the assessment.

For each survey year, observed crab were resampled using an area-stratified two-stage bootstrapping approach. For each survey stratum, a station s was randomly selected with replacement from those in the stratum. Then, n_{s} crabs were randomly selected with replacement from the n_{s} crab which had been measured at that station. This was repeated for the number of stations in the stratum and for each stratum to yield a "bootstrapped" version of the survey observations, after which an EBS-wide bootstrapped size composition was computed using area-swept, stratified survey calculations. This procedure was then repeated 100 times for each survey year to generate bootstrapped statistics for the size composition. Example results from the 2017 NMFS trawl survey are shown in Fig.

Effective sample sizes for each year were calculated from the bootstrapped size compositions using

$$
\begin{equation*}
n_{e f f}=\frac{\sum_{z} \sigma_{z}^{2}}{\sum_{z} p_{z} \cdot\left(1-p_{z}\right)} \tag{3.3.1}
\end{equation*}
$$

where $n_{e f f}$ is the effective sample size, σ_{z}^{2} is the bootstrapped variance in size bin z, and p_{z} is the fraction of individuals in size bin z from the original size composition. Eq. 4.3.1 is derived from the standard formula for the variance of a multinomial distribution.

Fig. 3.3.1. Example bootstrapped Tanner crab size compositions, by sex and maturity state, from the 2017 NMFS trawl survey. The dashed line indicate the original size composition while the envelopes indicate the mean $+/$ - one standard deviation in each size bin.

Fig. 3.3.2. Effective sample sizes (solid line) for Tanner crab size compositions from the NMFS trawl survey estimated from 200 bootstrapped size compositions. The input sample size to the assessment model is indicated by the dashed line.

Fig. 3.3.3. Effective sample sizes for Tanner crab size compositions from the NMFS trawl survey estimated from 100 bootstrapped size compositions. The input sample size to the assessment model is indicated by the dashed line. Reduced scale to show details in the range 0-400.

As can be seen from Fig.s 3.3.2 and 3.3.3, the input sample size used in the assessment model (200) is smaller than the effective N calculated from the bootstrapping analysis in most years, except for those in
the mid-1990s, 2000 and 2009. It will be worth exploring whether the input sample sizes for size compositions from these years should be decreased relative to the nominal sample size.

It may also be worth exploring whether or not this type of approach would be appropriate to use with observer sampling from the crab and groundfish fisheries.

3.4 NMFS survey selectivity/catchability at small crab sizes

Small ($<45 \mathrm{~mm}$ CW) Tanner crab exhibit growth rates that are similar between the sexes. Assuming that natural mortality rates for small crab are not sex-specific (as in the current assessment model) and that the differential effect of fishing mortality on these crab is negligible, then the relative abundance of these small crab in the NMFS trawl survey should reflect both the sex ratio at recruitment and differences in survey capture probability.

A key assumption in the current assessment model configuration is that the female-to-male sex ratio at recruitment is $1: 1$. This determines the relative scale between males and females in the population and has implications with regard to survey catchability and selectivity functions. In particular, the observed sex ratio for small crab in the NMFS survey should be equal to the relative survey capture probabilities (i.e., the fully-selected catchability x selectivity-at-size) for females and males. The abundance of small (<45 mm CW) female crab in the NMFS survey is plotted in Fig. 3.4.1 (lefthand plot) against that for males for all survey years, as is the sex ratio (females to males) by year (righthand plot).

Fig. 3.4.1. Left: female abundance in the size range $25-45 \mathrm{~mm}$ CW from the NMFS survey plotted as a function of the corresponding male abundance. The dotted line indicates a $1: 1$ ratio. Right: The sex ratio for small crab (the ratio of abundance of small females to small males) by survey year.

The results from both plots in Fig. 3.4.1 suggest, given the assumptions of equal sex ratio at recruitment and equal natural mortality rates for small crab, that the capture probabilities for small crab should be equal for females and males (the mean ratio is 1.07). Currently, it is not possible to place a constraint of this type on the sex-specific capture probabilities estimated by the assessment model, although this could be implemented in the future. The righthand plot in Fig. 3.4.1 also suggests that the abundance estimates in 1975 and 1977 may be a matter for concern, given the highly-skewed nature of the sex ratios for those years.

3.5 BSFRF side-by-side survey integration

Natural Resources Consultants (NRC) have provided data from the joint Bering Sea Research Foundation (BSFRF)-NMFS "side-by-side" survey experiments conducted during the past several years. Integration with the assessment model is underway.

4. Potential model scenarios for Fall, 2018 assessment

4.1 Model datasets, model configurations and model scenarios

The model scenarios examined for this report were various combinations of six model datasets (Table 4.1.1) and ten model configuration options (Table 4.1.2). In all, 42 model scenarios were examined (Table 4.1.3).

The six model dataset configurations (Table 4.1.1) consisted of the dataset used in the 2017 assessment model (2018B here) and five alternatives that sequentially: 1) included fits to male maturity ogives based on chela height data in the parameter optimization (2018C); 2) changed how NMFS survey biomass and size composition data was fit (2018D); 3) included fits to the NMFS survey abundance time series, as well as the biomass time series (2018E); 4) increased the weight on fitting the molt increment and maturity ogive data by a factor of 5 (2018F); and 5) changed from fitting fishery catch biomass using normal likelihoods to using lognormal likelihoods (2018G). More details are provided in Appendix A.

The base model configuration ("0") was the configuration used for the 2017 assessment, in which the model is started in 1948 and the population is built up from zero using recruitment deviations ("rec devs") constrained on the ln-scale by random walk priors for 1948 to 1974 (the last year without survey data) while normal priors are applied on the ln-scale to subsequent rec devs during 1975-2017. Separate parameters describing ln-scale mean recruitment are estimated in each time period, and the rec devs sum to zero separately across each time period. Model configuration option " 1 " tested an alternative approach to initializing the model population: the model starts in 1900 and builds the population up from zero using rec devs with no priors imposed, only one parameter describing ln-scale mean recruitment is estimated, but separate recruitment CVs are assumed to apply to the two time periods. In model configuration option "a", the CV for recruitment was estimated in the 1975-2017 time period and used to calculate the value of the new recruitment likelihood component (described in Section 2.5). In addition, any priors on rec devs during this latter period were dropped. Configuration option "b" incorporated the options in "a" and also dropped the priors on \ln-scale catch rate deviations used to constrain their size. Configuration option " c " incorporated the options from "b" and also eliminated the fits to the NMFS survey data during the 19751981 time period and extended the "historical" recruitment time period from 1974 to 1981.

In the base model, capture rates in the directed and bycatch fisheries in the time periods before data (catch data or effort data) were available to inform the model were applied using estimated \ln-scale mean rates. Configuration option "d" eliminated the application of these rates to the population.

In the base model, the sex- and size-specific parameters governing the probabilities of the molt to maturity were estimated on the logit-scale for all size bins for males and for size bins up to 130 mm CW for females. However, the values for the parameters in the smallest and largest bins were very close to the lower or upper (respectively) bounds placed on them. The values were also highly uncertain on the logitscale, but essentially 0 (for small sizes) or 1 (for large sizes) on the arithmetic scale. In the 2017 assessment, it was suggested that fixing the values of the parameters at these small or large sizes rather than estimating them might improve overall model stability. Configuration "e" eliminated the estimation of these parameters in the smallest ($<45 \mathrm{~m}$ CW) size bins for both sexes and the largest size bins for males ($>170 \mathrm{~mm}$ CW).

As noted in Section 3.4, the sex ratios for Tanner crab in the NMFS survey data at small sizes indicate that the capture probabilities for small crab in the survey are probably the same for both sexes. As a first "cut" at addressing this concern, configuration "q" estimates a single survey catchability (Q) and selectivity function that applies to both males and females within each of the two survey time periods.

Finally, configuration options "-Fr" and "-Mcl" apply iterative re-weighting to size composition data using the Francis or McAllister-Ianelli approaches (as discussed in Punt, 2017), respectively.

Table 4.1.1. Model datasets.

Name	Description
2018B	TCSAM02 model run with the 2017 assessment data configuration.
2018C	2018B models but the parameter optimization now
	- includes fits to the male maturity ogive data
2018D	2018C models but the parameter optimization now
	- excludes fits to NMFS survey mature biomass by sex
	- excludes fits to NMFS survey size comp.s by sex/maturity state
	- includes fits to NMFS survey male biomass and size comp.s by shell condition
	- includes fits to the NMFS survey female biomass and size comp.s by maturity state/shell condition
2018E	2018D models but the parameter optimization now
	- includes fits to NMFS survey abundance time series, as well as biomass time series
2018F	2018E models but the parameter optimization now
2018G	2018F models but the parameter optimization now
	- includes lognormal fits to fishery catch biomass

Table 4.1.2. Model configuration options.

Indicator	Description
0	2017 assessment model configuration:
	- model starts in 1948
	- rec devs before 1975 have random walk priors
	- rec devs after 1974 have normal priors
1	0 +:
	- model starts in 1900
	- no priors on rec devs
	- 1 mean ln-scale recruitment parameter, separate CVs are defined for pre-1975, post-1974 time blocks
a	+:
	- estimate recruitment CV in 1975+ time block
	- include new recruitment likelihood component in parameter optimization
	- drop priors on rec devs in 1975+ period
b	"a" + no prior on catch rate rec devs
C	"b" +
	- drop fits to survey data 1975-1981
	- recruitment estimated in two time blocks: model start to 1981 and 1982 to 2017.
d	ln-scale mean fishery capture rates applied starting when effort or catch data are first available
e	probabilities of terminal molt are fixed at
	- 0 for smallest size classes
	- 1 for largest size classes
q	estimate single survey Q, selectivity function for males and females in each time block
-Fr	iteratively re-weight size comp.s using the Francis approach
-McI	iteratively re-weight size comp.s using the McAllister-Ianelli approach

The model naming convention adopted here for the 42 model scenarios is "dataset" + "model configuration indicators" + "iterative re-weighting options" (Table 4.1.3). Thus, scenario "2018G0bdeFr" is based on dataset "2018G", model configuration options "0bde", and iterative re-weighting option "Fr". The "2018" in the scenario names will subsequently be dropped when identifying specific scenarios since it is common to all.

Table 4.1.3. Model scenarios examined for this report.

Name	Description
2018B0	2018B- data + "0" configuration
	(i.e., the 2017AM)
2018B0q	2018B0 + "q" configuration
2018B0-Fr	2018B0 + "-Fr" configuration
2018B0-McI	2018B0 + "-McI" configuration
2018B0a	2018B0 + "a" configuration
2018B0b	2018B0a + 'b" configuration
2018B0c	2018B0b + "c" configuration
2018B1	2018B0 + "1" configuration
2018B1b	2018B1 + 'b" configuration
2018B1c	2018B1b + "c" configuration
2018C0	2018C- data + "0" configuration
2018C0a	2018C0 + "a" configuration
2018C0b	2018C0a + 'b" configuration
2018C0c	2018C0b + "c" configuration
2018C1	2018C0 + "1" configuration
2018C1b	2018C1 + 'b" configuration
2018C1c	2018C1b + "c" configuration
2018D0	2018D- data + "0" configuration
2018D0a	2018D0 + "a" configuration
2018D0b	2018D0a + 'b" configuration
2018D0c	2018D0b + "c" configuration
2018D1	2018D0 + "1" configuration
2018D1b	2018D1 + 'b" configuration
2018D1c	2018D1b + "c" configuration

Name	Description
2018 E 0	2018E- data + "0" configuration
2018E0a	2018E0 + "a" configuration
2018E0b	2018E0a + "b" configuration
2018E0c	2018E0b + "c" configuration
20180	2018E0 + "1" configuration
2018E1b	2018E1 + 'b' configuration
2018E1c	2018E1b + "c" configuration
2018F0	2018F- data + "0" configuration
2018F0a	2018F0 + "a" configuration
2018F0b	2018F0a + "b" configuration
2018F0c	2018F0b + "c" configuration
2018G0	2018F- data + "0" configuration
2018G0a	2018G0 + "a" configuration
2018G0b	2018G0a + "b" configuration
2018G0bd	2018G0b + "d" configuration
2018G0bde	2018G0bd + "e" configuration
2018G0bde-Fr	2018G0bde + "-Fr" config.
2018G0bde-McI	2018G0bde + "-Mcl" config.

4.2 Model results

Summary results from all model scenarios are shown in Table 4.2.1, including the "minimum" objective function value, the maximum gradient associated with the minimum, and a number of quantities related to quantities of management interest that are determined after the model has converged: average recruitment, unfished mature male biomass (B_{100}), $\mathrm{B}_{\text {MSY }}$ (i.e., $\mathrm{B}_{35 \%}$ for this Tier 3 stock), current MMB, Fofl , $\mathrm{F}_{\text {MSY }}$, OFL, MSY, and the projected MMB. These latter quantities are presented for model diagnostic purposes, not management decisions, because they integrate the estimated population and fishery processes in a synthetic fashion.

Given the large number of model scenarios addressed here, it was not possible to evaluate the models for convergence using parameter jittering due to time and processing constraints. Model scenarios that resulted in a large maximum gradient of the objective function at model "convergence" presumably did not convergence to that scenario's true minimum objective function value. Scenarios B0b, C1c, D0c, D1, E0, and E0c exhibited maximum gradients larger than 0.01 , so results from these models will not be examined further.

Parameter estimates from all models are presented in Appendix B. Uncertainty estimates for the parameters were those reported in the model's "std" file, which are standard deviations derived using the assumption that the objective function in the vicinity of the minimum is adequately described as a multivariate normal distribution. Scenario B0 had no non-devs parameters whose CVs were larger than 1, while the closely-related scenario with Francis weighting, B0-Fr, had 17. The other scenarios fell within this range. Across the scenarios, the parameters pLgtRet[2] (logit-scale max retention in the directed fishery during 2005-2009), pLgtRet[3] (logit-scale max retention in the directed fishery during 2013-
2015), and pRCV[2] (the coefficient of variation for recruitment during the 1975-2017 period) tended to be consistently estimated with large uncertainty.

Parameters whose estimated values were near or at one of the bounds placed on the parameter are presented in Appendix C. Model B0 had 11 parameters estimated near or at their bounds, out of 351 total. Most of these parameter were related to selectivity functions for the various fisheries or survey. Only models F0 and F0a had fewer parameters at or near their bounds (10 each). The two models that incorporated iterative re-weighting of size compositions using the Francis method had the highest number of parameters at or near their bounds (18 for B0-Fr and 39 for $\mathrm{G} 0 \mathrm{bde}-\mathrm{Fr}$). Across all the model scenarios, parameters that were most frequently estimated at or near their bounds included pLgtRet[1] (the logitscale parameter for max retention in the pre-1997 time period; at its upper bound), pLgtPrM2M[1] at size index 32 (the logit-scale parameter for the male probability of terminal molt in the largest size bin; at its upper bound), pLgtPrM2M[2] at size index 1 (the logit-scale parameter for the female probability of terminal molt in the smallest size bin; at its lower bound), pGrBeta[1] (the shape factor for the growth probabilities; at its upper bound), $\mathrm{pS1}$ [20] (the size-at-50\% selected for male bycatch in the groundfish fisheries during 1987-1996; at its lower bound), pS1[23], pS1[24] and pS1[27] (size-at-95 \% selected parameters for crab bycatch in the BBRKC fishery), pS2[4] (the difference between the 95\%- and 50\%selected sizes for females in the NMFS survey after 1981; at its upper bound), pS4[1] (the descending slope for male bycatch in the snow crab fishery before 1997; both upper and lower limits, depending on scenario), and pQ[1] and pQ[3] (ln-scale catchability for males and females, respectively, prior to 1982 in the NMFS survey).

Values of various components in the model objective function are compared for all scenarios in the tables given in Appendix D. Pertinent results are discussed on a case-by-case basis below.

Table 4.2.1. Summary of results for all model scenarios. Maximum gradient values >0.01, indicating lack of model convergence, are highlighted in orange. OFL-related results are provided for diagnostic purposes only. Most objective function values are not directly comparable.

Model scenario	objective function value	max gradient	average recruitment (millions)	$\begin{gathered} \mathrm{B} 100 \\ (1000 \text { 's t) } \end{gathered}$	$\begin{gathered} \text { Bmsy } \\ (1000 \text { 's t) } \end{gathered}$	$\begin{gathered} \text { current } \\ \text { MMB } \\ \text { (1000's t) } \end{gathered}$	Fofl	Fmsy	$\begin{gathered} \text { OFL } \\ (1000 \text { 's t) } \end{gathered}$	$\begin{gathered} \text { MSY } \\ (1000 \text { 's t) } \end{gathered}$	$\begin{aligned} & \text { projected } \\ & \text { MMB } \\ & \text { (1000's t) } \end{aligned}$
B0	2,905.84	0.00009	213.96	83.34	29.17	80.58	0.75	0.75	25.42	12.26	43.32
B0q	2,966.31	0.00053	279.95	108.58	38.00	117.29	0.75	0.75	37.03	14.85	64.30
$\mathrm{BO}-\mathrm{Fr}$	905.96	0.00019	600.22	82.98	29.04	58.52	9.43	14.77	32.65	10.25	19.60
B0-Mcl	3,834.97	0.00001	238.52	88.27	30.90	88.19	0.80	0.80	28.65	13.49	46.04
B0a	2,979.45	0.00290	197.68	83.47	29.21	80.68	0.72	0.72	25.08	12.08	43.94
B0b	2,514.74	0.08414	215.00	86.72	30.35	86.89	0.74	0.74	27.11	12.27	47.35
B0c	2,526.45	0.00041	212.60	86.47	30.26	86.17	0.74	0.74	26.84	12.21	47.03
B1	2,887.31	0.00011	278.80	95.81	33.53	102.99	0.91	0.91	35.18	14.61	52.08
B1b	2,462.07	0.00010	230.75	91.70	32.09	95.58	0.76	0.76	30.14	13.01	51.71
B1c	2,471.08	0.00081	233.37	91.92	32.17	96.20	0.76	0.76	30.37	13.08	51.98
co	3,690.43	0.00062	381.10	101.51	35.53	115.02	1.79	1.79	48.71	17.60	46.37
COa	3,712.09	0.00078	391.81	103.45	36.21	118.51	1.82	1.82	50.51	17.99	47.48
cob	3,313.87	0.00111	361.71	100.81	35.28	116.05	1.77	1.77	48.74	16.74	47.67
COc	3,357.47	0.00171	278.36	89.66	31.38	97.38	1.35	1.35	37.88	14.44	43.54
C1	3,660.46	0.00059	409.56	109.43	38.30	128.33	1.82	1.82	54.78	18.97	51.44
C1b	3,253.82	0.00022	407.81	111.50	39.02	134.59	1.90	1.90	57.61	18.51	54.17
C1c	3,301.45	58.02755	309.30	96.17	33.66	109.05	1.41	1.41	43.06	15.56	48.00
DO	5,412.73	0.00221	389.97	99.52	34.83	110.56	1.92	1.92	47.53	19.76	41.09
DOa	5,430.87	0.00163	388.70	99.68	34.89	111.14	1.92	1.92	47.74	19.78	41.36
DOb	5,072.15	0.00082	347.84	92.20	32.27	102.35	1.86	1.86	43.35	17.65	38.96
DOc	5,257.62	44.34706	239.37	79.79	27.93	84.37	1.40	1.40	33.23	14.77	35.15
D1	5,381.85	15.57300	389.17	102.15	35.75	114.76	1.88	1.88	49.16	20.16	43.00
D1b	5,018.05	0.00020	373.59	98.43	34.45	111.85	1.92	1.92	47.79	18.86	42.16
D1c	5,174.30	0.00210	301.25	88.05	30.82	96.97	1.57	1.57	39.47	16.62	38.77
E0	6,353.98	144.46094	343.12	82.93	29.02	97.97	1.57	1.57	40.27	18.14	36.10
E0a	6,372.73	0.00150	345.91	83.48	29.22	98.94	1.59	1.59	40.76	18.28	36.36
E0b	5,984.60	0.00195	337.59	82.49	28.87	98.56	1.57	1.57	40.49	17.83	36.40
EOc	6,260.70	0.09729	213.75	66.45	23.26	73.43	1.22	1.22	27.84	13.43	30.30
E1	6,317.20	0.00104	365.75	87.86	30.75	105.70	1.60	1.60	43.73	19.30	38.63
E1b	5,971.60	0.00326	317.74	79.79	27.92	94.61	1.59	1.59	38.70	16.89	35.34
E1c	6,174.64	0.00067	251.55	70.26	24.59	79.88	1.31	1.31	30.97	14.50	31.92
F0	9,901.13	0.00174	355.25	82.94	29.03	98.91	2.18	2.18	43.86	18.30	33.18
FOa	9,922.74	0.00250	354.53	82.93	29.02	98.99	2.18	2.18	43.88	18.30	33.22
FOc	9,952.32	0.00850	236.43	69.46	24.31	79.73	1.74	1.74	33.33	14.45	29.29
G0	10,417.65	0.00185	357.01	82.96	29.04	99.04	2.09	2.09	44.17	18.32	33.34
G0a	10,109.68	0.00176	587.81	90.27	31.59	107.16	2.15	2.15	47.87	23.41	32.43
G0b	9,737.90	0.00411	520.12	91.55	32.04	108.45	2.36	2.36	48.80	22.80	33.21
G0bd	9,828.30	0.00041	472.61	80.85	28.30	96.43	2.27	2.29	42.83	21.77	28.10
G0bde	9,428.14	0.00263	503.73	84.90	29.71	100.90	2.34	2.35	44.96	22.52	29.56
GObde-Fr	5,161.97	0.00054	867.05	48.08	16.83	50.53	0.46	0.46	13.66	10.26	25.27
GObde-Mcl	9,538.26	0.00020	573.22	91.58	32.05	114.29	2.70	2.70	52.66	24.12	32.09

4.2.1 B0 vs. B0q

This comparison examines what the impact on model results would be if catchability and selectivity for the NMFS survey were the same for males and females. This change had the effect that catchability for males was substantially smaller in B0q across all sizes in surveys after 1981 (Fig. 4.2.1.1) whereas little change occurred for females. Estimated recruitment was somewhat higher in B0q compared with B0, as was mature male biomass-although mature female biomass was not (Fig. 4.2.1.2). The difference in effect on male and female mature biomass can be traced to changes in the sex-specific rates of natural mortality estimated in the two scenarios for mature crab (Fig. 4.2.1.3).

Fig. 4.2.1.1. NMFS survey capture probability functions as estimated in scenarios B0 and B0q.

4.2.1.2. Recruitment and mature biomass time series as estimated in scenarios B0 and B0q.

Fig. 4.2.1.3. Natural mortality rates as estimated in scenarios B0 and B0q.
The fit to survey mature biomass was degraded somewhat for both males (25 likelihood units) and females (6 units) in B0q compared with B0, while the fit to male survey size compositions was substantially degraded (162 units). In contrast, the fit to the female survey size compositions was substantially improved in B0q (143 units). Fits to growth data were also somewhat improved in B0q (13 units), as were fits to the bycatch size compositions in the groundfish fisheries (12 units). Otherwise, fits to data components that were included in the objective function were similar between the two scenarios.

These results reinforce the suggestion that forcing survey capture probabilities for males and females to be similar at small sizes, but allowing them to be different at large sizes, would improve overall model fit. However, these results also highlight the issue of why capture probabilities in the NMFS survey would be different between males and females at any in the first place, given that the survey (certainly since 1988) essentially covers the entire stock. One potential explanation is that the survey does not adequately cover mature females in deeper water near or beyond the continental shelf edge (thus resulting in lower capture probabilities for large females), although this idea is not strongly supported by first-look results from the NMFS EBS slope survey.

4.2.2. B0-B0a-BOb-BOc

The estimated CV for recruitment in the 1975+ time period in scenarios B0a, B0b and B0c was ~ 1.16, while the fixed value assumed in B0 was 0.5 . Although the scenarios differed substantially in temporal trends for estimated recruitment and mature biomass prior to 1975, the temporal trends after 1975 were very similar for all four scenarios (Fig. 4.2.2.1). Average recruitment was somewhat smaller in B0a (198 millions) compared with the other scenarios (~ 214 million), but all other management quantities were quite similar (Table 4.2.1).

Removing priors on the ln-scale fully-selected fishery capture rate deviations in scenarios B0b and B0c led to several "spikes" in estimated capture rates in the directed fishery ("TCF") and elevated bycatch rates in the BBRKC ("RKF") fishery relative to the B0 scenario (Fig. 4.2.2.2). The spikes in the directed fishery appear to offset slightly prior spikes in recruitment in scenarios B0b and B0c, while the elevated rates in the BBRKC fishery accompany a right-shift in the estimated selectivity curves such that the sizespecific capture rates are actually quite similar across the scenarios. Removing the priors had little effect on estimates of capture rates of selectivity curves for the snow crab fishery and groundfish fisheries.

Dropping fits to the pre-1982 NMFS survey data (scenario B0c) had very little effect on model results (relative to B0b) after 1982.

Fig. 4.2.2.1. Estimated recruitment and mature biomass time series from scenarios B0, B0a, B0b, and B0c.

Fig. 4.2.2.2. Estimated fully-selected fishery catchability (capture) rates in the directed fishery (TCF) and the BBRKC ("RKF") fisheries, from scenarios B0, B0a, B0b, and B0c.

4.2.3 B0-B1-B1b-B1c

Starting the model in 1900 and using independently-distributed ln-scale recruitment deviations to "build up" the Tanner crab stock resulted in estimated recruitment time series for scenarios B1, B1b and B1c that were substantially different in character from B0 prior to 1975 (Fig. 4.2.3.1). Following 1975, the trends in all scenarios exhibited similar timing in fluctuations although mean recruitment in B0 was less than that in the B1 scenarios. Similar results hold for mature biomass (Fig. 4.2.3.2).

Removing priors on the ln-scale fishery capture rate deviations in B1b and B1c had similar effects to those in scenarios B0b and B0c. Similarly, starting the fits to the NMFS survey data in 1982 in scenario B1c led to almost no difference in the results from B1b.

Fig. 4.2.3.1. Estimated recruitment time series for scenarios B0, B1, B1b and B1c. Lefthand plot is on the log-scale; righthand plot is on the arithmetic scale, but only for recent years.

Fig. 4.2.3.2. Estimated mature biomass time series for scenarios B0, B1, B1b and B1c. The righthand plot shows recent years only.

4.2.4 B0-C0-D0

Including the maturity ogive data from the NMFS survey in the parameter optimization (scenario C 0) had little effect on female population processes (Fig. 4.2.4.1) but did have effects on male population processes: the slope of the probability of male molt-to-maturity decreased somewhat in the range 75-150 mm CW relative to B 0 ; male growth increments were slightly smaller, and natural mortality rates for
mature males were larger. Changing the characteristics of the NMFS survey data fit in the parameter optimization (scenario D0) had little effect on the estimated probability of molt-to-maturity or growth, but did affect estimates of natural mortality, with those for mature crab somewhat higher still relative to C 0 . One consequence of the changes to the estimated probability of the molt to maturity for males was to increase $\mathrm{F}_{\text {ofl }}$ and $\mathrm{F}_{\text {msy }}$ from 0.7 in B 0 to 1.8 in C0 and E0 (Table 4.2.1).

Fig. 4.2.4.1. The estimated probability of the molt to maturity (left), mean growth (center), and natural mortality rates (right) for scenarios B0, C0 and D0.

Fig. 4.2.4.2. Estimated time series for recruitment and mature biomass from scenarios B0, C0, and D0.
Including the male maturity ogive data in the parameter optimization also resulted in changes to the estimated survey capture probabilities, with capture probabilities generally smaller at all sizes for both males and females than those in scenario B0 (Fig. 4.2.4.3). This partly explains the differences in recruitment levels and mature biomass among the three scenarios. Fits to mature male survey size compositions improved by more than 170 likelihood units in scenarios C0 and D0 relative to B0, while fits to immature males degraded by 170 . Both immature and mature female size compositions degraded by about 28 likelihood units.

Fig. 4.2.3.3. Estimated capture probabilities in the NMFS trawl survey from scenarios B0, C0 and D0.
The actual fits to the maturity ogive data were not terribly impressive, although they did represent an improvement over not fitting the data.

Fig. 4.2.4.4. Fits to recent male maturity ogives from NMFS survey data (data collected since 1990 is included in the parameter optimization).

4.2.5 DO-EO-F0

Fitting the time series of NMFS survey abundance in the model optimization reduced the scale of the estimated recruitment and mature biomass time series in scenarios E0 and F0 relative to D0 (Fig. 4.2.5.1), particularly early in the time series (the 1960s for recruitment, the 1970s for mature biomass). Estimated rates of natural mortality were slightly elevated in E0 and F0 (Fig. 4.2.5.2). Increasing the weight on fitting the growth data and male maturity ogive data in F0 resulted in slightly larger mean growth and
slightly left-shifted probabilities of terminal molt (so that males between had a slightly higher chance of having undergone terminal molt) relative to D0 and E0, which were almost identical.

Including the NMFS survey abundance data in the model optimization also improved the fits to survey biomass data for both males and females in scenarios E0 and F0 relative to D0 (by 149 and 80 likelihood units, respectively) but degraded the fits to survey size compositions (by 115 units for males and 56 units for females; Tables D.2-3). Much of the improvement in the fits to survey biomass for scenarios E0 and F0 over D0 can be traced to better fits to the data for old shell crab in the late 1970s (Fig.s 4.2.5.3-4). There seems to be a distinct disconnect in the late 1970s between model dynamics and what is seen in the survey for new/old shell crab abundance and biomass, because the survey sees more new shell and fewer old shell crab than the model predicts. However, this does not seem to be because substantially different survey capture probabilities were estimated pre-1982 in the three scenarios (Fig. 4.2.5.5) The agreement between survey and model seems much better after 1981. In the scenarios considered in this report, the survey capture probabilities are independent of shell condition, which is probably appropriate if the stock is fully covered by the survey-as it is assumed to be for Tanner crab. One possible source for the disconnect prior to 1982, then, is the variable survey coverage during the 1975-1981 time period which could have led to different survey capture probabilities for new shell and old shell crab if these crab occupied different areas on the continental shelf. Survey coverage after 1981 is far more stable and covers the stock reasonably well, so that the assumption of equal capture probabilities for new shell and old shell Tanner crab in the NMFS survey after 1981 seems fairly reasonable.

Fig. 4.2.5.1. Estimated time series of recruitment and mature biomass for scenarios D0, E0, and F0.

Fig. 4.2.5.2. Estimated natural mortality rates, probabilities of molt-to-maturity, and mean growth for scenarios D0, E0, and F0.

Fig. 4.2.5.3. Observed NMFS trawl survey abundance time series and corresponding estimates for scenarios D0, E0 and F0. Note that these data are not included in the objective function for D0.

Fig. 4.2.5.4. Observed NMFS trawl survey biomass time series and corresponding fits for scenarios D0, E0 and F0.

Fig. 4.2.5.5. Estimated NMFS survey capture probabilities for scenarios D0, E0 and F0.

4.2.6 F0-G0

Changing from normal likelihoods (scenario F0) to lognormal likelihoods (scenario G0) to express fits to fishery catch biomass had little impact on model results (Fig.s 4.2.7.1-3). For example, estimated time series for recruitment and mature biomass were nearly identical (Fig. 4.2.7.1). There were only small differences in estimated total catch biomass from the directed fishery for the two scenarios, as well as for fully-selected catchability (Fig. 4.2.7.2). Similarly, fits to survey biomass were also nearly identical (Fig,
4.2.7.3). Not surprisingly, the management-related quantities for these two scenarios were very similar, as well (Table 4.2.1).

Fig. 4.2.6.1. Estimated recruitment and mature biomass time series from scenarios F0 and G0.

Fig. 4.2.6.2. Fits to total catch biomass (left) and estimates of fully-selected catch catchability (right) in the directed fishery for scenarios F0 and G0.

Fig. 4.2.6.3. Fits to NMFS survey biomass for scenarios F0 and G0.

4.2.7 G0-G0b-G0bd-G0bde

Dropping the priors on the ln-scale fishery capture rate "devs" (G0b) resulted in spikes in estimated recruitment in 1960 and 1970 that were similar in timing to spikes in scenario G0 but far exceed them in magnitude (Fig. 4.2.7.1). Applying mean fishery capture rates to the population dynamics only after effort or catch data are first available to the model (G0bd, G0bde) eliminated these early spikes in recruitment and made for a much smoother model startup from 1948 to 1970. Differences among the scenarios in timing and scale of the estimated recruitment time series were much reduced after 1975, as were differences in the estimated time series for mature biomass.

The estimated probabilities of terminal molt were practically identical for these scenarios, except that those for the G0bde scenario were fixed at 0 below 45 mm CW (Fig. 4.2.7.2). Estimated mean post-molt sizes were also quite similar, but estimated rates of natural mortality were somewhat elevated for mature crab in scenarios G0b, G0bd, and G0bde relative to those in G0.

Fits to retained catch biomass in all four scenarios were generally quite good, as were fits to total male catch biomass in the directed fishery (Fig. 4.2.7.3). Fits to total female catch biomass were less good, but this was not unexpected because fully-selected capture rates on females were assumed to be proportional to those on males (and this doesn't appear to be the case in the early 1990s, in particular).

It is worthwhile pointing out that average recruitment in scenarios G0b, G0bd and G0bde is ~500 million crab (Table 4.2.1), more than twice as much as for the baseline scenario, B0. However, virgin biomass for these scenarios is only about 10% larger than for B0 due to the higher rates of natural mortality estimated for males (fewer older crab) and left-shifted probabilities of terminal molt for males (fewer males reaching legal size) in these scenarios. These differences also help explain the much larger Fmsy's (> $2 x$) obtained for these scenarios relative to B0 (Table 4.2.1).

Fig. 4.2.7.1. Estimated time series for recruitment and mature biomass from scenarios G0, G0b, G0bd, and G0bde. Note that y-axes in both plots are log-scale to encompass the full range and show details.

Fig. 4.2.7.2. Estimated rates of natural mortality (left), probability of terminal molt (center), and mean post-molt size (right) from scenarios G0, G0b, G0bd, and G0bde.

Fig. 4.2.7.3. Fits to retained catch and total catch in the directed fishery for scenarios G0, G0b, G0bd, and G0bde.

Fig. 4.2.7.4. Fits to NMFS survey biomass time series for scenarios G0, G0b, G0bd, and G0bde.

Fig. 4.2.7.5. Fits to NMFS survey abundance time series for scenarios G0, G0b, G0bd, and G0bde.
4.2.8 Use of iterative re-weighting for size composition data (B0-Fr, B0-McI, GObde-Fr, GObde-McI) This set of scenarios provides an initial examination of the use of iterative re-weighting using either the Francis or McAllister-Ianelli approaches discussed in Punt (2017). For each iterative re-weighting scenario, the model was run for five additional phases after the final estimation phase (5) for the un-reweighted scenario. The appropriate re-weighting scheme was applied to all size composition data prior to the start of each additional model estimation phase for a total of five iterations.

In both scenarios that used the Francis approach ($\mathrm{B} 0-\mathrm{Fr}$ and $\mathrm{G} 0 \mathrm{bde}-\mathrm{Fr}$), the iterative re-weighting failed to converge for all of the size composition data within the five iterations allowed. As noted previously, the scenarios using the Francis approach resulted in the most parameters estimated at or near one of their bounds. Cumulative weights for the Francis approach after 5 iterations were all small (<0.05), with most extremely small (<0.0001), indicating that this approach was severely down-weighting all size composition data.

In both scenarios that used the McAllister-Ianelli approach (B0-McI and G0bde-McI), the iterative reweighting converged for all fishery-related size compositions within the five iterations allowed. However, the resulting cumulative weighting was typically > 1 (in the range $1.5-10$), indicating that this method was increasing the weight placed on the fishery size composition data in the objective function. As a consequence, negative log-likelihoods reflecting fits to fishery size compositions in B0-McI and G0bdeMcI increased by several hundred units for each fishery relative to B0 and GObde, respectively. The iterative re-weighting did not converge within the allotted five iterations for the survey-related size compositions, although it appeared that extending the number of re-weighting iterations would improve convergence. In contrast to the fishery size compositions, the iterative re-weighting on the survey data appeared to be decreasing the weight placed on this data in the objective function. As a consequence, the negative log-likelihoods reflecting fits to the size compositions in B0-McI and GObde-McI were much smaller (50-100 likelihood units) smaller than those in B0 and G0bde.

5. Recommendations for Fall 2018 Alternative Model Scenarios

I recommend the following model configurations be evaluated for the Fall 2018 assessment:

- 2017AM: the 2017 assessment model configuration
- B0: the 2017 assessment model configuration with updated data for 2018
- B1: B0 + include the male maturity ogive data in the model optimization, with the probability of the molt-to-maturity fixed at 0 in size bins $<45 \mathrm{~mm}$ CW.
- B2: B1 + exclude NMFS survey data in the 2017AM configuration that included estimates of immature and mature male biomass determined outside the model using Rugolo' and Turnock's empirical maturity ogive include NMFS survey biomass and size composition data for males by shell condition and for females by maturity status and shell condition in the model optimization
- B3: B2 + include aggregated NMFS survey abundance estimates in the model optimization
- B4: B3 + use lognormal fits to fishery catch biomass in the objective function

In scenario B1, I recommend that the probability of the molt-to-maturity should be fixed at 0 for size bins $<45 \mathrm{~mm}$ CW in B1 and subsequent scenarios. It seems highly unlikely that males classified as "mature" on the basis of CH:CW ratios at sizes less than 45 mm CW are truly capable of mating with adult females in the wild. However, the model exhibits a tendency to estimate rather large probabilities of molt-tomaturity at very small sizes when left unconstrained. Thus, it seems prudent to fix these values to zero and let the model estimate probabilities in larger size bins.

In scenario B2, I recommend dropping the fits to the NMFS survey data used in the 2017 assessment. The Rugolo and Turnock empirical maturity ogive was used to apportion new shell male abundance and biomass by size bin as immature and mature outside the model. Keeping this data in the model fitting process introduces some circularity. Instead, I recommend fitting male biomass and size composition data by shell condition (without apportioning to immature/mature status outside the model) and fitting female biomass and size composition data by shell condition and maturity status (since the latter is unambiguous in the survey data).

In scenario B3, I recommend adding the time series of aggregated abundance estimates from the NMFS survey data to the model optimization. Fitting only the time series of aggregated biomass estimates from the NMFS survey data effectively up-weights the importance of large crab relative to small crab in the model optimization. Including the aggregated abundance time series in the model fitting process ameliorates this effect and may produce better estimates of recruitment. Although this undoubtedly leads to some amount of "double counting" in the model objective function, the bias this would introduce is probably rather small and certainly on the order of that introduced by selectively other components in the objective function.

Literature Cited

Francis, R.I.C.C., 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68, 1124-1138.

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

McAllister, M.K., Ianelli, J.N., 1997. Bayesian stock assessment using catch-age data and the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 54,284-300.

Punt, A. 2017.Some insights into data wewighting in integrated stock assessments. Fish. Res. 192: 52-65. http://dx.doi.org/10.1016/j.fishres.2015.12.006

Rugolo, L. and B. Turnock. 2011. Length-Based Stock Assessment Model of eastern Bering Sea Tanner Crab. Report to the North Pacific Fishery Management Council, Crab Plan Team. 158 p.

Stockhausen, W. 2017. 2017 Stock Assessment and Fishery Evaluation Report for the Tanner Crab Fisheries of the Bering Sea and Aleutian Islands Regions. In: Stock Assessment and Fishery Evaluation Report for the King and Tanner Crab Fisheries of the Bering Sea and Aleutian Islands: 2017 Final Crab SAFE. North Pacific Fishery Management Council. Anchorage, AK.

Tamone, S., S. Taggart, A. Andrews, J. Mondragon, and J. Nielsen. 2007. The relationship between circulating ecdysteroids and chela allometry in male Tanner crabs: evidence for a terminal molt in the genus Chionoecetes. J. Crust. Biol. 27: 635-642.

Accompanying Supplemental Material (available online)

The following files are provided online to provide more comprehensive results than can be presented in this report.

File name	Description
OFCs.DataComponents.xlsx	Excel spreadsheet with pivot tables for the data components to the objective function for each model scenario.
OFL.Rsults.xlsx	Excel spreadsheet with pivot tables for management-related quantities from the OFL calculations for each model scenario.
Params.Values.xlsx	Excel spreadsheet with pivot tables for the estimated parameter values and approximate standard errors for each model scenario.
Params.AtBounds.xlsx	Excel spreadsheet with pivot tables for the parameters that were estimated at or near one of their bounds for each model scenario.

Appendix A: Alternative model datasets

Table A.1. Dataset 2018B (the 2017 assessment model dataset).

Name	component	type	Distribution	Likelihood
$\left\lvert\, \begin{gathered} \text { 2017AM, } \\ \text { 2018B0 } \end{gathered}\right.$	TCF: retained catch	abundance	--	--
		biomass	norm2	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	--	--
		biomass	lognormal	by sex for mature only
		size comp.s	multinomial	by sex/maturity
		chela height data	--	--
	growth data	EBS only	gamma	by sex

Table A. 2 Dataset 2018C. Changes from 2018B are highlighted.

Name	component	type	Distribution	Likelihood
2018C	TCF: retained catch	abundance	--	--
		biomass	norm2	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	--	--
		biomass	lognormal	by sex for mature only
		size comp.s	multinomial	by sex/maturity
		chela height data	binomial	binomial
	growth data	EBS only	gamma	by sex

Table A.1. Dataset 2018D. Changes from 2018C are highlighted.

Name	component	type	Distribution	Likelihood
2018D	TCF: retained catch	abundance	--	--
		biomass	norm2	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	--	--
		biomass	lognormal	¢ males: by shell condition
		size comp.s	multinomial	(females: by maturity/shell condition
		chela height data	binomial	binomial
	growth data	EBS only	gamma	by sex

Table A. 2 Dataset 2018E. Changes from 2018D are highlighted.

Name	component	type	Distribution	Likelihood
2018E	TCF: retained catch	abundance	--	--
		biomass	norm2	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	lognormal	$\left\{\begin{array}{c} \text { males: by shell condition } \\ \text { females: by maturity/shell condition } \end{array}\right.$
		biomass	lognormal	
		size comp.s	multinomial	
		chela height data	binomial	binomial
	growth data	EBS only	gamma	by sex

Table A.1. Dataset 2018F. Changes from 2018E are highlighted.

Name	component	type	Distribution	Likelihood components
2018F	TCF: retained catch	abundance	--	--
		biomass	norm2	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	norm2	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	lognormal	$\left\{\begin{array}{c} \text { males: by shell condition } \\ \text { females: by maturity/shell condition } \end{array}\right.$
		biomass	lognormal	
		size comp.s	multinomial	
		chela height data	binomial $x 5$	males only
	growth data	EBS only	gamma $x 5$	by sex

Table A. 2 Dataset 2018G. Changes from 2018F are highlighted.

Name	component	type	Distribution	Likelihood components
2018G	TCF: retained catch	abundance	--	--
		biomass	lognormal	males only
		size comp.s	multinomial	males only
	TCF: total catch	abundance	--	--
		biomass	lognormal	by sex
		size comp.s	multinomial	by sex
	SCF: total catch	abundance	--	--
		biomass	lognormal	by sex
		size comp.s	multinomial	by sex
	RKF: total catch	abundance	--	--
		biomass	lognormal	by sex
		size comp.s	multinomial	by sex
	GTF: total catch	abundance	--	--
		biomass	lognormal	by sex
		size comp.s	multinomial	by sex
	NMFS survey	abundance	lognormal	$\left\{\begin{array}{c} \text { males: by shell condition } \\ \text { females: by maturity/shell condition } \end{array}\right.$
		biomass	lognormal	
		size comp.s	multinomial	
		chela height data	binomial $x 5$	males only
	growth data	EBS only	gamma $x 5$	by sex

Appendix B: All Model Parameter Values

This appendix includes tables of estimates for all model parameters, by model scenario. These tables are also provided as an Excel spreadsheet ("ParamValues.xlsx") in the supplementary online material.

Table B.1. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B model scenarios. Values for recruitment devs are not shown.

Table B.2. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the C model scenarios. Values for recruitment devs are not shown.

Table B.3. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the D model scenarios. Values for recruitment devs are not shown.

category process		name	label	index	$\begin{gathered} \text { parameter } \\ \text { scale } \\ \hline \end{gathered}$	Scenarios		$\begin{gathered} \text { Do } \\ \text { param. } \\ \text { value } \end{gathered}$	stad dev.	$\begin{gathered} \text { Doa } \\ \substack{\text { param. } \\ \text { palue }} \\ \hline \end{gathered}$	std. dev.	$\begin{gathered} \text { dob } \\ \text { poram. } \\ \text { value } \end{gathered}$	stad dev.	$\begin{gathered} \text { doc } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { D1 } \\ \text { param. } \\ \text { value } \end{gathered}$	stad dev.	$\begin{gathered} \text { Dib } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { Dac } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	
		$\begin{gathered} \text { Bo } \\ \substack{\text { param. } \\ \text { value }} \\ \hline \end{gathered}$				std. dev.																
population p growth maturity			PGGA[1]	males	1	ARITHMETIC	33.136	0.360	35.138	0.293	35.176	0.293	35.320	0.299	35.783	0.000	35.153	0.301	${ }^{35.223}$	0.293	${ }^{35.483}$	0.310
		PGGA[2]	females	1	ARITMMETIC	34.424	0.435	35.639	0.344	35.670	0.345	35.536	0.343	35.860	0.000	35.646	0.345	35.467	0.338	35.358	0.335	
		pGGE[1]	males	1	ARITMETIC	166.785	1.123	160.073	0.633	160.027	0.632	159.749	0.651	161.201	0.000	160.045	0.638	159.390	0.649	160.727	0.688	
		${ }^{\text {PGGBE[2] }}$	females	1	ARITHMETIC	115.141	0.853	${ }^{116.206}$	0.592	116.143	0.591	116.133	0.598	116.673	0.000	116.180	0.591	116.061	0.597	116.810	0.597	
		pGribeta[1]	both sexes	1	ARITMETIC	0.820	0.129	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	
		PLgtrim2M	11 males (entire model period)	1	ARITHMETIC	-12.087	7.441	1.869	0.921	1.914	0.929	2.001	0.947	2.293	0.000	1.890	0.926	1.940	0.934	2.104	0.969	
				2	ARITHMETIC	-10.892	5.612	-0.759	0.309	-0.720	0.313	${ }^{-0.652}$	0.324	-0.453	0.000	-0.744	0.313	-0.700	0.315	${ }^{-0.579}$	0.340	
				3	ARITHMETIC	-9.697	4.014	-2.850	0.203	-2.838	0.203	-2.827	0.203	-2.831	0.000	-2.851	0.203	-2.836	0.203	-2.827	0.204	
				4	ARITMETIC	-8.503	2.678	${ }^{3} .595$	0.176	-3.591	0.176	${ }^{-3.593}$	0.176	-3.642	0.000	-3.599	0.176	-3.592	0.176	-3.608	0.176	
				5	ARITHMETIC	.7.321	1.624	${ }^{-4.091}$	0.198	${ }^{-4.990}$	0.198	${ }^{-4.998}$	0.199	-4.184	0.000	${ }^{-4.996}$	0.198	-4.092	0.199	${ }^{4.133}$	0.199	
				6	ARITMMETIC	-6.162	0.909	-4.432	0.221	-4.431	0.221	-4.437	0.221	-4.538	0.000	${ }^{-4.437}$	0.221	-4.432	0.221	${ }^{4.486}$	0.221	
				7	ARITHMETIC	-5.104	0.541	${ }^{4.469}$	0.214	4.469	0.214	-4.475	0.214	4.575	0.000	-4.474	0.214	-4.471	0.214	-4.532	0.214	
				8	ARITHMETIC	-4.47	0.364	${ }^{-3.854}$	0.161	-3.854	0.161	${ }^{-3.865}$	0.161	-3.978	0.000	-3.858	0.161	-3.860	0.161	-3.941	0.161	
					ARITHMETIC	-4.90	0.290	-3.619	0.147	-3.619	0.147	-3.628	0.147	-3.732	0.000	-3.623	0.147	-3.624	0.147	-3.705	${ }^{0.146}$	
				10	ARITHMETIC	-3.448	0.224	${ }^{-3.061}$	0.109	-3.061	0.109	${ }^{-3.067}$	0.109	-3.150	0.000	${ }^{-3.064}$	0.109	-3.066	0.109	-3.135	0.109	
				11	Arithmetic	-2.913	0.175	${ }^{-2.617}$	0.087	-2.617	0.087	-2.627	0.087	-2.704	0.000	-2.620	0.087	-2.627	0.087	-2.692	0.087	
				12	ARITHMETIC	-2.887	0.144	${ }^{-1.848}$	0.065	-1.848	0.065	${ }^{-1.865}$	0.065	-1.944	0.000	${ }^{-1.851}$	0.065	-1.862	0.065	-1.930	0.065	
				13	ARITMETIC	-2.021	0.125	${ }^{-1.213}$	0.054	-1.213	0.054	-1.228	0.054	-1.295	0.000	-1.216	0.054	-1.227	0.054	-1.285	0.054	
				14	ARITHMETIC	-1.430	0.109	-0.774	0.048	-0.774	0.048	${ }^{-0.781}$	0.048	-0.813	0.000	-0.777	0.048	-0.784	0.048	-0.814	0.049	
				15	ARITMMETIC	-0.937	0.095	-0.431	0.048	-0.431	0.048	-0.435	0.048	-0.448	0.000	-0.434	0.048	-0.441	0.048	-0.455	0.048	
				16	ARITMETIC	-0.668	0.092	${ }^{-0.314}$	0.048	-0.315	0.048	-0.325	0.048	-0.349	0.000	-0.318	0.048	-0.330	0.048	-0.351	0.048	
				17	ARITMETIC	-0.536	0.089	0.330	0.053	0.030	0.053	0.004	0.053	-0.054	0.000	0.025	0.053	0.002	0.053	-0.042	0.052	
				18	ARITHMETIC	-0.093	0.100	0.318	0.055	0.317	0.055	0.289	0.055	0.234	0.000	0.313	0.055	0.290	0.055	0.250	0.054	
				19	ARITHMETIC	0.512	0.130	0.642	0.062	0.640	0.062	0.634	0.063	0.604	0.000	${ }^{0.637}$	0.062	0.631	0.062	0.617	0.064	
				20	ARITHMETIC	1.362	0.202	${ }^{1.171}$	0.077	1.169	0.077	1.190	0.078	1.197	0.000	${ }^{1.167}$	0.077	1.182	0.077	1.202	0.080	
				${ }_{21}$	ARITHMETIC	2.708	0.366	1.608	0.102	1.604	0.102	1.651	0.103	1.687	0.000	1.603	0.102	1.636	0.102	1.688	0.105	
				22	ARITHMETIC	4.957	0.591	2.105	0.119	2.099	0.119	2.163	0.118	2.195	0.000	2.099	0.119	2.150	0.118	2.202	0.119	
				23	ARITHMETIC	7.096	1.048	3.160	0.169	3.155	0.169	3.236	0.169	3.255	0.000	3.159	0.169	3.235	0.169	3.272	0.168	
				${ }^{24}$	ARITHMETIC	8.917	1.667	4.216	0.262	4.213	0.262	4.283	0.262	4.266	0.000	4.217	0.262	4.293	0.262	4.291	0.262	
				25	ARITMMETIC	10.412	2.305	5.997	0.566	5.995	0.566	6.040	${ }^{0.568}$	6.000	0.000	5.999	${ }^{0.566}$	6.057	0.568	6.028	${ }^{0.569}$	
				26	ARITHETIC	11.615	2.838	7.759	1.056	7.758	1.056	7.778	1.062	7.724	0.000	7.761	1.056	7.799	1.062	7.755	1.062	
				27	ARITHMETIC	12.566	3.175	9.322	1.578	9.322	1.578	9.324	1.588	9.264	0.000	9.325	1.578	9.346	1.588	9.296	1.587	
				28	ARITHMETIC	13.306	3.248	10.694	1.963	10.694	1.963	10.686	1.972	10.626	0.000	10.696	1.963	10.706	1.973	10.658	1.971	
				29	Arithmetic	13.87	3.007	11.909	2.080	11.909	2.880	11.897	2.088	11.843	0.000	11.911	2.880	11.914	2.088	11.873	2.887	
				30	ARITHMETIC	14.321	2.412	13.005	1.841	${ }^{13.005}$	1.841	12.995	1.846	12.954	0.000	${ }^{13.006}$	1.841	13.007	1.846	12.977	1.845	
				${ }^{31}$	ARITHMETIC	14.682	1.434	14.022	1.181	14.022	1.181	14.016	1.183	13.988	0.000	${ }^{14.023}$	${ }^{1.181}$	14.023	1.183	14.007	${ }_{1.183}$	
				32	ARITMMETIC	15.000 15000	0.004	15.000	0.005	15.000 15000	0.005	15.000 15000	${ }^{0.005}$	15.000 15000	${ }^{0.000}$	15.000 15000	${ }^{0.003}$	15.000 15000	${ }^{0.005}$	15.000	${ }^{0.005}$	
		${ }^{\text {PLgtPrM2M }}$	2.1 females (entire model period)	1	ARITHMETIC	-15000	0.002	- 15.000	0.002	$\begin{array}{r}15.000 \\ \hline 1350\end{array}$	0.002	-15.000	${ }^{0.0022}$	-15.000	${ }^{0.000}$	-15.000	${ }^{0.015}$	-15.000	0.002	-15.000	${ }_{0}^{0.002}$	
				${ }_{3}$	ARRTHMETIC ARITHMETC	-13.764	0.784 1.186 1	-13.661 .12269	0.724 1049	-13.660 -1266	0.724	-13.660 -1267	0.723	-13.633 -12214	0.0000	-13.657 .1261	0.724 1049	-13.661 -1269	0.723 1048 10	-13.655 .12257	0.724 1048 10	
				3 4	ARITHMETIC ARITHMEIC	-	1.186 1.288	-12.269 -10.770	1.049 1.077	- ${ }^{-12.2666}$	1.049 1.077	- ${ }_{-10.767}$	1.048 1.075	-12.214 -10.693	0.000 0.000	- ${ }_{-12.261}$	1.049 1.077	-12.269 -10.770	${ }_{1}^{1.048}$	- ${ }_{-12.257}$	1.048 1.075	
				5	ARITMMETIC	-9.518	1.152	-9.113	0.892	-9.108	0.891	-9.110	0.889	-9.024	0.000	-9.100	0.892	-9.113	0.889	-9.990	0.890	
				6	ARITHMETIC	.7.748	0.863	-7.267	0.603	-7.262	0.603	-7.264	0.601	-7.178	0.000	-7.254	0.602	-7.267	0.600	.7.238	0.601	
				7	ARITHMETIC	-5.743	0.525	-5.310	0.295	-5.306	0.294	-5.310	0.294	-5.239	0.000	-5.299	0.294	-5.314	0.293	-5.27	0.294	
				8	ARITHMETIC	-3.584	0.243	-3.317	0.117	${ }^{-3.315}$	0.117	${ }^{-3.323}$	0.117	-3.274	0.000	-3.310	0.117	-3.328	0.117	-3.284	0.117	
				10	${ }_{\text {ARITHMETIC }}$	-1.780	${ }^{0.110}$	${ }^{1.761}$	${ }^{0.069}$	-1.760	0.069	-1.771	0.070	-1.721	0.000	-1.755	${ }^{0.069}$	-1.778	0.070	- 1.727	0.069 0.059	
				10 11	ARITHMETIC ARITHMETC	${ }^{-0.433}$	${ }_{0.092}^{0.087}$	- ${ }^{-0.409} 0$	${ }_{0}^{0.059}$	-0.409 0.386	${ }_{0}^{0.059}$	${ }_{0}^{0.4 .421}$	0.060 0.063	-0.370	0.000 0.000	-0.404 0.391	0.059 0.063	-0.330 0	0.060	${ }^{-0.374}$	0.059 0.063	
				${ }_{12}^{11}$	ARITHMEIC ARITMEITC	- 0.388	${ }_{0}^{0.0932}$	${ }^{0.387} 0$	${ }_{0}^{0.0063}$	${ }^{0.386}$	${ }_{0}^{0.063}$	${ }^{0.375}$	0.076	0.419	${ }_{0}^{0.0000}$	${ }^{0.391}$	${ }_{0}^{0.0039}$	${ }^{0.365}$	${ }_{0}^{0.063}$	${ }_{0}^{0.416}$	${ }_{0}^{0.0063}$	
				13	ARITHMETIC	1.274	0.165	1.484	0.119	1.477	0.119	1.462	0.120	1.542	0.000	1.484	0.119	1.445	0.119	1.543	${ }_{0} 0.122$	
				14	ARITHMETIC	2.575	0.347	2.873	0.235	2.860	0.233	2.838	0.334	3.000	0.000	2.871	0.234	2.810	0.232	2.987	0.245	
				15	Arithmetic	4.025	0.670	4.351	0.545	4.327	0.541	4.293	0.537	4.615	0.000	4.347	0.544	4.249	0.530	4.567	0.578	
natural mort				16	ARITHMETIC	5.512	1.280	5.922	1.126	5.886	1.119	5.844	1.110	6.311	0.000	5.916	${ }^{1.123}$	5.786	1.097	6.234	1.181	
		pomi[1]	mutipilie for immature crab	1	ARITHMETIC	1.000	0.051	0.875	0.043	0.871	0.043	0.875	0.044	0.736	0.000	${ }^{0.854}$	0.043	0.868	0.044	0.828	0.044	
		pomil2]	multiplie for mature males	1	ARITHMETIC	1.150	0.040	1.649	0.032	1.648	0.032	1.602	0.033	1.538	0.000	1.637	0.032	1.603	0.034	1.574	0.033	
		PDM1[3]	multipier for mature females	1	ARITMMETIC	1.374	0.036	${ }^{1.476}$	0.032	1.477	${ }^{0.032}$	1.471	${ }^{0.033}$	1.539	0.000	1.478	0.033	1.463	0.033	1.498	0.033	
		pom2[1]	1980-1984 multiplier for mature males	1	ARITMETIC	2.601	0.243	2.461	0.130	2.437	0.129	2.544	0.140	2.243	0.000	2.449	0.130	2.506	0.140	2.308	0.133	
		pom2[2]	1980-1984 multiplier for mature females	1	ARITHMETIC	1.323	0.101	1.861	0.107	1.848	0.107	1.923	0.110	1.725	0.000	1.850	0.107	1.899	0.111	1.775	0.106	
		${ }^{\text {PM }}$ [1]	base In-scale M	1	$\stackrel{106}{\text { ABITMETC }}$	-1.470 5.622	0.000	-1.470 680	${ }_{0}^{0.000}$	1.470 6317	${ }_{0}^{0.000}$	1.470 695	0.000	-1.470 5 5	0.000	-1.470 5773	${ }^{0.000}$	-1.470 5	${ }_{0}^{0.000}$	-1.470 5	0.000	
recruitment		$\mathrm{PLnR}[1]$ $\mathrm{pLnR}[2]$	historical recruitment period current recruitment period	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ARITHMETIC ARITHMETIC	5.622 5.115	0.400 0.072	6.280 5.749	${ }_{0}^{0.413} 0$	6.317 5.737	${ }_{0}^{0.394}$	6.595 5.640	${ }_{0}^{0.485}$	5.716 5.153	0.000 0.000	5.743	0.033	5.716	0.067	5.395	${ }^{0.063}$	
		PRa[1]	fixed value	1	106	2.442	0.000	2.442	0.000													
			In-scale gamma distribution location parameter for	1	LOGIT					-0.251	0.000	-0.251	0.000	-0.251	0.000	${ }^{-0.251}$	0.000	-0.251	0.000	${ }^{-0.251}$	0.000	
		prb[1]	fixed value In-scale gamma distribution scale parameter for	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Log } \\ & \text { LOGIT } \end{aligned}$	1.386	0.000	1.386	0.000	-0.431	0.000	-0.431	0.000	-0.431	0.000	-0.431	0.000	-0.431	0.000	-0.431	0.000	
		prev[1]	full model period	1	106	-0.693	0.000	${ }^{-0.693}$	0.000													
			historical recruitment cv	1	106					-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.411	${ }^{0.106}$	${ }^{-0.468}$	0.103	-0.270	${ }^{0.103}$	
		${ }^{\text {previl2] }}$	current recruitment $\mathrm{V}^{\text {V }}$	1	${ }^{106}$					0.088	${ }^{0.161}$	${ }^{0.091}$	${ }^{0.161}$	0.019	${ }^{0.000}$	${ }^{0.073}$	${ }^{0.159}$	0.064	0.159	${ }^{-0.004}$	${ }^{0.169}$	
		pRX[1]	fraction of males at recruitment full model period	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	${ }_{\text {LOGIT }}^{\text {L0GIT }}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Table B.4. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the E scenarios. Values for recruitment devs are not shown.

						scenarios															
category	process	name	label	index	parameter scale	$\begin{gathered} \text { Bo } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { Eo } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { Eoaa } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { Eob } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { Eacac. } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	stad dev.	$\begin{gathered} \text { Es } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	stad dev	$\begin{gathered} \text { Eab } \\ \text { param. } \\ \text { value } \end{gathered}$	std. de	$\begin{gathered} \text { Elc } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	stad dev.
population P	p growth	PGTA[1]	males	1	ARITMETIC	33.136	0.360	${ }^{35.656}$	0.000	35.687	0.298	35.701	0.000	${ }^{36,348}$	0.316	35.687	0.296	36.097	0.297	36.194	${ }_{0} 0.320$
		PGral[$]$	females	1	ARITMETIC	34.424	0.435	36.313	0.000	36.341	0.321	36.332	0.000	36.537	0.328	${ }_{36,376}$	${ }_{0} .322$	36.351	0.325	${ }_{36} 335$	0.328
		pGG[[1]	males	1	ARITMETIC	166.785	1.123	163.989	0.000	${ }_{163.896}$	0.732	163.711	0.000	165.288	0.737	163.731	${ }_{0}^{0.731}$	162.727	0.692	164.998	0.740
		PGBE[2]	females	1	ARITMETIC	115.141	0.853	116.859	0.000	116.792	0.589	116.781	0.000	117.268	0.600	116.747	0.589	116.699	0.590	117.262	0.598
		pGribeta[1]	both sexes	1	ARITMETIC	0.820	0.129	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000
	maturity	PLetpram 2 M	1 l males (entire model period)	1	ARITMETIC	-12.087	7.441	2.239	0.000	2.284	1.001	2.282	0.000	2.913	1.141	2.299	1.003	2.682	1.085	2.858	1.132
				2	ARITMETIC	-10.892	5.612	-0.496	0.000	${ }^{-0.460}$	0.350	${ }^{-0.465}$	0.000	-0.050	0.430	-0.445	${ }^{0.350}$	-0.174	0.395	${ }^{-0.057}$	${ }^{0.427}$
				3	ARITMETIC	-9.697	4.014	-2.844	0.000	-2.833	0.202	-2.841	0.000	-2.806	0.205	-2.825	0.202	-2.774	0.203	-2.755	0.205
				4	ARITMETIC	-8.503	2.678	${ }^{-3.652}$	0.000	-3.647	0.176	-3.655	0.000	-3.701	0.178	${ }^{-3.642}$	0.176	-3.638	0.177	${ }^{-3.645}$	0.178
				5	ARITHMETIC	-7.321	1.624	${ }^{-4.185}$	0.000	-4.183	0.198	4.192	0.000	-4.298	0.198	${ }^{-4.178}$	0.198	-4.194	0.198	-4.230	0.199
				6	ARITMETIC	-6.162	0.909	${ }^{-4.539}$	0.000	-4.537	0.221	4.546	0.000	-4.698	0.221	-4.532	0.221	-4.551	0.222	${ }^{4.629}$	0.221
				7	ARITHMETIC	-5.104	0.541	-4.574	0.000	-4.572	0.215	-4.579	0.000	-4.733	0.215	-4.568	0.215	-4.586	0.215	${ }^{-4.680}$	0.215
				8	ARITHMETIC	-4.477	0.364	-3.951	${ }^{0.000}$	-3.949	0.161	-3.956	${ }^{0.000}$	-4.101	0.160	${ }^{-3.947}$	${ }^{0.161}$	-3.963	0.161	-4.062	0.161
				9	ARITMETIC	-4.090	0.290	${ }^{-3.691}$	0.000	-3.689	0.147	-3.697	0.000	-3.837	0.145	${ }^{-3.687}$	0.147	-3.700	0.146	${ }^{-3.807}$	${ }^{0.146}$
				10	ARITHMETIC	-3.448	0.224	${ }^{-3.114}$	0.000	-3.112	0.109	-3.121	0.000	-3.263	0.109	-3.111	0.109	-3.125	0.109	-3.240	${ }^{0.109}$
				${ }^{11}$	ARITHMETIC	-2.913	0.175	-2.678	0.000	-2.67	0.088	-2.684	0.000	-2820	0.087	-2.675	0.088	-2.694	0.088	-2.803	0.088
				12	ARITMETIC	-2.487	0.144	-1.910	0.000	-1.909	0.065	-1.915	0.000	-. 2.028	0.065	-1.907	0.065	-1.927	0.065	-2.015	0.065
				13	ARITMETIC	-2.021	0.125	${ }^{-1.242}$	0.000	-1.242	0.055	${ }^{-1.250}$	0.000	-1.319	0.055	${ }^{-1.241}$	0.055	-1.255	0.055	${ }^{-1.313}$	0.055
				14	ARITMETIC	-1.430	0.109	${ }^{-0.758}$	0.000	-0.758	0.049	-0.769	0.000	-0.801	0.049	-0.759	0.049	-0.767	0.049	${ }^{-0.801}$	0.049
				15	ARITHMETIC	-0.937	0.095	-0.407	0.000	-0.407	0.048	-0.419	0.000	-0.462	0.047	-0.409	0.048	-0.419	0.048	-0.460	0.047
				16	ARITHMETIC	-0.668	0.092	${ }^{-0.332}$	0.000	-0.331	0.048	-0.341	0.000	-0.418	0.047	-0.333	0.048	-0.351	0.048	-0.411	0.047
				17	ARITMETIC	-0.536	0.089	-0.030	0.000	-0.029	0.053	-0.033	0.000	-0.143	0.052	-0.029	0.053	-0.063	0.052	-0.130	0.052
				18	ARITHMETIC	${ }^{-0.093}$	${ }^{0.100}$	${ }^{0.297}$	${ }^{0.000}$	0.297	0.056	${ }^{0.298}$	${ }^{0.0000}$	0.231	0.057	${ }^{0.296}$	${ }^{0.056}$	${ }^{0.266}$	0.056	${ }_{0}^{0.244}$	${ }^{0.057}$
				19	ARITMETIC	0.512	0.130	0.708	0.000	0.705	0.067	0.708	0.000	0.709	0.070	0.701	0.067	0.694	0.067	0.721	0.070
				${ }^{20}$	ARITHMETIC	1.362	0.202	1.339	0.000	1.334	0.084	1.335	0.000	1.400	0.086	1.327	0.084	1.341	0.084	1.411	${ }^{0.086}$
				${ }^{21}$	ARITHMETIC	2.708	${ }^{0.366}$	1.876	${ }^{0.000}$	1.869	0.106	1.869	${ }^{0.000}$	1.968	0.104	1.860	${ }^{0.106}$	1.898	0.106	1.984	${ }^{0.105}$
				22	ARITMETIC	4.957	0.591	${ }^{2} .358$	0.000	2.352	0.116	2.355	0.000	2.459	0.113	2.346	0.116	2.418	0.116	${ }^{2} .481$	0.114
				${ }^{23}$	ARITHMETIC	7.096	1.048	${ }^{3.347}$	0.000	${ }^{3.343}$	0.166	${ }^{3.345}$	0.000	3.447	0.165	${ }^{3.345}$	${ }^{0.166}$	3.464	0.166	3.475	${ }^{0.165}$
				24	ARITHMETIC	8.917	1.667	4.286	0.000	4.285	0.263	4.279	0.000	4.332	0.263	4.291	0.263	4.413	0.263	4.366	${ }^{0.264}$
				25	ARITHMETIC	10.412	2.305	6.002	0.000	6.002	0.565	5.989	0.000	6.002	0.566	6.010	0.565	6.114	0.567	${ }_{6} 6.39$	${ }^{0.566}$
				${ }^{26}$	ARITHMETIC	11.615	2.838	7.728	0.000	7.729	1.049	7.711	${ }^{0.000}$	7.695	1.053	7.738	1.049	7.819	1.056	7.732	1.053
				27	ARITMETIC	12.566	3.175	9.274	0.000	9.275	1.569	9.254	0.000	9.222	1.574	9.284	1.569	9.343	1.579	9.255	1.575
				${ }^{28}$	ARITHMETIC	13.306	3.248	10.641	0.000	10.642	1.953	10.622	0.000	10.583	1.959	10.650	1.954	10.692	1.964	10.612	1.959
				29	ARITHMETIC	13.87	3.007	11.861	0.000	11.861	2.073	11.844	0.000	11.807	2.077	11.868	2.073	11.896	2.081	11.830	2.078
				30	ARITMETIC	14.321	2.412	12.969	0.000	12.969	1.836	12.957	0.000	12.929	1.839	12.974	1.836	12.991	1.841	12.945	1.839
				31	ARITMMETIC	14.682 15000	1.434	14.003	${ }^{0.000}$	14.003 15000	1.179	13.997 15000	${ }^{0.0000}$	13.982 15000	1.180	${ }^{14.006}$	1.179	14.014 15000	1.181	13.990 15000	${ }^{1.1 .180}$
				32	ARITHMETIC	15.000	0.004	15.000	0.000	15.000	0.005	15.000	0.000	15.000	0.005	15.000	0.005	15.000	0.005	15.000	${ }^{0.005}$
		PLgterm2M\|	2.1 females (entire model period)	1	ARITHMETIC	-15.000	0.002	-15.000	0.000	-15.000	0.002	-15.000	${ }^{0.000}$	-15.000	0.002	-15.000	${ }^{0.002}$	-15.000	0.002	-15.000	${ }^{0.002}$
				${ }^{2}$	ARITHMETIC	-13.764	0.784	-13.684	${ }^{0.000}$	-13.683	0.726	-13.683	${ }^{0.000}$	-13.651	${ }^{0.726}$	-13.682	${ }^{0.726}$	-13.680	0.726	-13.673	${ }^{0.726}$
				${ }^{3}$	ARITHMETIC	-12.475	1.186	-12.312	0.000	-12.310	1.554	-12.309	${ }^{0.000}$	-12.249	1.053	-12.309	1.054	-12.304	1.053	-12.291	1.054
				${ }_{5}$	ARITHMETIC	-11.077	1.288	-10.827	${ }^{0.000}$	-10.825	1.083	-10.824	${ }^{0.000}$	-10.742	1.082	-10.823	1.084	-10.817	1.082	-10.798	1.083
				5	ARITMETIC	-9.518	1.152	${ }^{-9.176}$	${ }^{0.000}$	- 9.173 .7319	0.899	-9.172	0.000	- 9.979	0.896	-9.171	0.899	$\begin{array}{r}\text {-9.164 } \\ \hline 731\end{array}$	0.898	9.1900 7283	0.898 0.608
				${ }^{6}$	ARITHMETIC ARITHMETC	-7.748 -5.743	0.863	-7.322 .5337	0.000 0.000	.7 .319 .5335	0.609	$\begin{array}{r}-7.318 \\ .5334 \\ \hline\end{array}$	0.000 0.000	.7 .226 .5261	0.606 0.295	-7.318 .5334	0.609	-7.310	0.608	7.7283 .5298	0.608 0.298
				8	ARITHMEETC ARITHETIC	-5.743 -.54	0.525 0.243	- ${ }_{\text {- }}^{\text {- }}$-3127	${ }_{0}^{0.000} 0$	- 5.335 -3.311	${ }_{0}^{0.117}$	${ }_{-5.311}^{-5.34}$	0.000 0.000		${ }_{0}^{0.295}$	- $\begin{aligned} & -5.334 \\ & -3.311\end{aligned}$	${ }_{0.117}^{0.299}$	- - -.3.311	-	-5.298 -3.281	${ }_{0.117}^{0.298}$
				9	ARITMETIC	-1.780	0.110	-1.724	0.000	-1.725	0.068	-1.726	0.000	-1.688	0.068	${ }^{-1.726}$	0.068	-1.727	0.068	${ }_{-1.695}$	0.068
				10	ARITMETIC	-0.433	0.087	${ }^{-0.353}$	0.000	-0.355	0.058	-0.355	0.000	-0.322	0.058	-0.356	0.058	-0.357	0.058	${ }^{-0.328}$	0.058
				11	ARITMETIC	0.302	0.092	0.450	0.000	0.448	0.063	0.447	0.000	0.474	0.063	0.447	0.063	0.445	0.063	${ }^{0.468}$	0.063
				${ }^{13}$	ARITMMETIC	0.586	0.103	${ }^{0.833}$	${ }^{0.000}$	0.829	0.077	${ }^{0.828}$	${ }^{0.0000}$	${ }^{0.857}$	0.078	0.826 1	${ }_{0}^{0.077}$	0.824	${ }^{0.077}$	0.850	${ }^{0.077}$
				13	ARITHMETIC	1.274	0.165	1.630	0.000	1.620	0.126	1.618	${ }^{0.000}$	1.672	0.129	1.613	0.126	1.608	${ }^{0.125}$	1.659	${ }^{0.128}$
				14 15	ARITMMETIC ARITHMETIC	2.575 4.025	${ }_{0}^{0.347} 0$	${ }_{4}^{3.1754}$	0.000 0.000	3.099 4.706	0.252 0.603	3.094 4.699	0.000 0.000	3.217 4.947	${ }_{0}^{0.267}$	3.086 4.689	0.251 0.602	3.070 4.653	-0.250	3.181 4.868	0.261 0.631
				${ }_{16}^{15}$	ARITHMETIC	5.512	${ }_{1.280}^{0.680}$	${ }_{6.427}^{4.734}$	0.000 0.000	4.388 6	${ }_{1.227}^{0.603}$	${ }_{6.379}^{4.699}$	${ }_{0}^{0.0000}$	${ }_{6}^{4.9742}$	${ }_{1}^{0.648}$	${ }_{6.367}$	0.622 1.225	${ }_{6} .6 .313$	${ }^{0} 1.295$	${ }_{6.623}^{4.868}$	${ }_{1}^{0.6372}$
	natural mor	rt pomili]	mutipilie for immature crab	1	ARITHMETIC	1.000	0.051	0.889	0.000	0.889	0.042	${ }^{0.887}$	${ }^{0.000}$	0.783	0.041	0.888	0.042	0.883	0.042	0.860	${ }^{0.043}$
		${ }_{\text {pDM }}$ [2]	multiplie for mature males	1	ARITMETIC	1.150	0.40	1.846	0.000	1.848	0.031	1.830	0.000	1.701	0.029	1.852	0.031	1.796	0.031	1.743	0.030
			muttipier for mature females	1	ARITHMETIC	1.374	0.036	1.625	0.000	1.625	0.030	1.622	0.000	1.681	0.029	1.621	0.030	1.615	0.030	1.644	0.030
		pDM2[1]	1980-1984 multiplier for mature males	1	ARITMETIC	2.601	0.243	2.318	0.000	2.301	0.091	${ }^{2} .325$	0.000	2.233	0.089	${ }^{2} 2277$	0.091	2.401	0.994	${ }^{2} 2.291$	0.092
		pDM22[2]	1980-1984 multiplief for mature females	1	ARITMETIC	1.323	0.101	1.680	0.000	1.670	0.075	1.685	0.000	1.587	0.069	1.651	0.075	1.734	0.076	1.642	0.073
		pM[1]	base linscale M	1	106	-1.470	0.000	${ }^{1.470}$	0.000	-1.470	0.000	-1.470	${ }^{0.000}$	${ }^{-1.470}$	0.000	${ }^{-1.470}$	${ }^{0.000}$	${ }^{-1.470}$	0.000	${ }^{-1.470}$	${ }^{0.000}$
	recruitment	plnR[1]	historical recruitment period	1	ARITHMETIC	5.622	0.400	6.997	0.000	6.119	0.406	${ }^{6.518}$	0.000	${ }^{5} .365$	0.485	5.675	${ }^{0.059}$	5.552	0.055	5.227	0.051
		${ }_{\text {PlnR[2] }}^{\text {PRal }}$	current tecruitment period fixed value	1	ARITHMETIC	5.115 2.42	0.072 0.000	5.618 2442	0.000 0.000	5.615	0.056	5.596	0.000	5.055	0.044						
		PRa[1]	fixed value In-scale gamma distribution location parameter for	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 106 \\ & \text { LOGIT } \end{aligned}$	2.442	0.000	2.442	0.000	-0.251	0.000	-0.251	0.000	-0.251	0.000	-0.251	0.000	-0.251	0.000	-0.251	0.000
		prb[1]	fixed value	1	${ }^{106}$	1.386	0.000	1.386	0.000												
			In.scale gamma distribution scale parameter for	1	L0GIT					-0.431	0.000	-0.431	0.000	-0.431	0.000	${ }^{-0.431}$	0.000	-0.431	0.000	-0.431	0.000
		prev[1]	full model period historical recruitment cv	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 106 \\ & 106 \end{aligned}$	${ }^{-0.693}$	0.000	${ }^{-0.693}$	0.000	-0.693	0.000	-0.693	0.000	${ }^{-0.693}$	0.000	-0.505	0.104	-0.509	0.104	-0.250	0.106
			current recruitment ov	1	${ }^{106}$					0.115	0.162	0.114	0.000	-0.006	0.168	0.095	${ }^{0.161}$	0.098	0.161	-0.021	0.167
		pRX[1]	fration of males at recruitment	1	L0GIT					0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			fuil model period			0.000	0.000	0.000													

Table B.5. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the F and G model scenarios. Values for recruitment devs are not shown.

Table B.6. Estimated model parameter values and standard deviations related to selectivity and retention functions for the B model scenarios.

Table B.7. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the C model scenarios.

						Scenarios															
categor	rocess	name	label	index	$\underset{\substack{\text { parameter } \\ \text { sale }}}{\text { a }}$	$\begin{gathered} \text { Bo } \\ \text { param. } \end{gathered}$	stad dev.	$\begin{gathered} \text { co } \\ \text { param. } \end{gathered}$	stad dev.	$\begin{gathered} \text { poaram. } \\ \text { param. } \end{gathered}$	stad dev.	$\begin{gathered} \text { cob } \\ \text { param. } \end{gathered}$	stad dev.	$\begin{gathered} \text { paca } \\ \text { par. } \end{gathered}$	stad dev.	$\underset{\text { pam. }}{\text { param. }}$	stad dev.	$\begin{gathered} \text { ciab } \\ \text { para } \end{gathered}$	stad dev.	$\begin{gathered} \text { cicam } \\ \text { param } \end{gathered}$	std. dover
Selectivity	selectivity	poevsi[1]	In(LIS dess) for TCF felectivity (males, $1991+$)	1	ARTHMETIC	0.029	0.018	0.039	0.016	0.039	0.016	0.041	0.019	0.040	0.000	0.037	0.016	0.034	0.030	0.039	0.019
					ARITHMETC	0.116	0.012	0.114	0.012	0.114	0.011	0.173	0.025	0.166	0.000	0.112	0.011	0.193	0.017	0.17	0.035
				3	ARITMETIC	0.097	0.014	0.086	0.012	0.085	0.012	0.190	0.035	0.179	0.00	${ }_{0}^{0.084}$	0.012	0.223		0.194	0.047
				4	ARITMETIC	0.077	0.021	0.050	0.017	0.049		0.266		0.249							
				5	thMEIC	0.010	0.027	0.028	0.023	-0.028	0.023	-0.009	0.029	0.012		-0.229	0.023	0.028			
				6		0.120	0.040	0.091		0.091		0.113	0.04	0.127		0.095		0107			
				7	ARITMETIC	-0.086	0.017	-0.072	0.015	${ }^{-0.071}$	0.015	${ }^{-0.125}$	0.018	-0.124	0.000	-0.071	0.015	-0.142	0.032	-0.129	0.021
				8	Aritmetic	-0.095	0.018	-0.076	0.015	-0.075	0.015	-0.129	0.018	-0.130	0.000	-0.075	0.015	-0.145	0.032	${ }^{-0.135}$	0.021
				9	ARITHMETIC	-0.131	0.016	-0.112	0.014	-0.112	0.014	-0.165	0.017	-0.164	0.000	-0.111	${ }^{0.014}$	-0.183	0.031	-0.170	0.021
				10	ARITHMETIC	0.010	0.014	${ }^{0.013}$	0.012	0.014	0.012	-0.039	0.016	-0.409	0.000	0.014	0.012	-0.056	0.031	-0.044	0.020
				${ }^{11}$	ARITMETIC	0.180	0.016	0.150	0.013	0.150	0.013	0.098	0.016	0.099	0.000	0.151	${ }_{0}^{0.013}$	0.082	0.031	0.094	0.020
				12	ARITMETIC	-0.048	0.017	-0.035	0.014	${ }^{-0.036}$	0.014	-0.090	0.018	-0.089	0.000	-0.335	0.014	-0.108	0.032	${ }^{-0.094}$	0.021
				13	ARTHMETIC	-0.109	0.014	-0.093	0.011	${ }^{-0.093}$	0.011	${ }^{-0.146}$	0.015	${ }^{-0.146}$	0.000	${ }^{-0.093}$	0.011	-0.163	0.030	${ }^{-0.151}$	0.019
				14	Aritmetic	-0.199	0.016	${ }^{-0.127}$	0.012	${ }^{-0.127}$	0.012	${ }^{-0.178}$	0.015	${ }^{-0.179}$	0.000	-0.127	0.012	${ }^{-0.196}$	0.330	${ }^{-0.184}$	0.020
		${ }^{\text {pSI [1] }}$	250 for NMFS s sunev selectuvit (males, pre-1982)	1	ARITMMETIC	52306	2.115	90.000	0.000	90.000	0.000	90.000	${ }^{0.000}$	52.689	${ }^{0.000}$	90.000	0.000	90.000	0.000	${ }^{53.449}$	1.630
		${ }_{\substack{\text { psilio] } \\ \text { psil11] }}}$		1		87704 95.698	${ }_{3}^{1.564}$	${ }_{\substack{89.052 \\ 9965}}$	${ }_{4.112}^{1.988}$	88.104 99754	${ }_{4.151}^{1.150}$	87.958 97309	${ }_{\substack{1.922 \\ 3.17}}^{1}$	87725 96577	0.0000	87.926 100.150	1.946	${ }^{91.052} 9$	${ }_{\text {2, }}^{\substack{\text { 3,951 }}}$	87599 96796	(1.798
		${ }^{\text {pSil }}$ [11]		1			$\begin{aligned} & 3.754 \\ & \hline 1410 \end{aligned}$	99.675	${ }_{1.476}^{4.112}$	99,754 109901	4.151 1.480	¢7309 109545	3.177 1.464		${ }_{0}^{0.0000}$	100.150 109993	${ }_{1.514}^{4.470}$	97736 110.016	3.451 1.575	96,966 109012	3.158 1.456
				1		105.606		109.869	${ }_{4.693}^{1.476}$	${ }^{1099901} 7$	${ }_{4.648}^{1.480}$	${ }^{109595}$	${ }_{4.562}^{1.464}$	${ }^{1088851} 7$	0.0000	${ }_{71357}^{10993}$	${ }_{4.605}^{1.514}$	${ }_{1}^{110.016} 7$			1.456 4.515
		${ }_{\substack{\text { pS } \\ \text { pSI[1] } 114]}}$		1		${ }_{7}^{76.255}$	4.524	76.907	${ }_{4.559}$	${ }_{7} 17.922$	4.560	${ }_{76,744}$	4.533	76.534	0.000	76.963	4.557	76.557	4.542	${ }_{76,632}$	${ }_{4.501}^{4.515}$
		${ }_{\text {pSII[15] }}$	ascending 550 for SCFF selectivity (females, 2005+)	1	ARITMETIC	85.218	5.644	90.231	7785	90.353	7.890	89.994	7.239	87.581	0.000	90.618	7.994	84.897	5.576	87.960	6.685
		pSil1]	250 for GF.All Gears selectiviv (males, pre-198)	1	ARTHMETIC	55.023	1.859	63.053	3.042	62.708	3.112	${ }^{62} 3.376$	3.161	57.830	0.000	62.787	3.554	63.411	3.474	57.653	2.365
		${ }^{\text {pSil17] }}$	250 for GF.All cear selectivity (males, 1987.1996)	1	ARITMETIC	59.073	4.849	${ }^{81.861}$	7.436	${ }^{81.487}$	7.412	${ }_{81.992}$	${ }^{8.686}$	72.92	0.000	${ }^{80.968}$	7.04	82.78	9.369	${ }^{72117}$	6.771
		$\left.{ }^{\text {pS }} 1118\right]$	250 for GF.All Gear selectivity (males, 1977)	1	ARTHMETIC	80.841	2.175	100.129	2.626	100352	2.737	100370	2.733	95.76	0.000	100.116	2.601	10.111	2.696	95.637	2.536
		${ }^{\text {psil1 }}$ [19]	250 for GF. All eara selectivity (males, pre-198)	1	ARTHMETIC	41.200	1.660	40.087	1.562	40.000	0.002	40.001	1.492	40.000	0.000	40.000	0.003	40.032	1.597	40.000	0.003
		I	250 for NMFS suneves selectivity (males, 1982+)	1	ARITMETIC	34.918	4.188	57.723	4.609	58.316	5.012	55.762	4.692	47574	0.000	57.463	4.221	57.12	4.248	50.254	5.017
		${ }^{\text {pS } 120]}$	250 for GF.All gear selectivity (male, 1987.1996)	1	ARITMMETIC	40.000	0.000	40.000	0.000	40.000	0.000	40.000	0.000	40.000	0.000	40.000	0.000	40.000	0.000	40.000	0.001
		$\left.{ }^{\text {PS }} 1212\right]$	${ }^{250}$ 25 or GF.A.AlGear selectivity (males, 1997+)	1	ARITHEETIC	76.113	2.531		${ }^{3.193}$	${ }^{83.909}$	${ }^{3.113}$	${ }^{83.672}$	${ }^{3.230}$	81.985	${ }^{0.0000}$	${ }^{83.787}$	${ }^{3.108}$	84.020	${ }^{3.316}$		2.885
		${ }^{\text {PS } 122]}$	295 for RkF selectivity (males, pre-1997)	1	ARTHMETIC	158.210	6.552	159.627	5.911	${ }^{159.627}$	5.901	180.000	${ }^{0.000}$	180.000	${ }^{0.000}$	159.643	5.903	180.000	0.000	188.000	0.003
		psi[23]	295 for Rek selectuvity (males, 1997-2004)	1	ARITHMETIC	180.000	0.005	179,738	15.352	179.984	15.317	174.770	${ }^{15.981}$	172323	0.000	180.000	0.073	176.791	16.520	172.816	16.242
		${ }^{\text {prisil24] }}$	${ }_{2} 295$ for RKF s selectivivy (males, 20055)	1	ARTHMETIC	188000	0.000	188.000	${ }^{0.000}$	180.000 122014	0.000	177.94	${ }_{\text {8, }}^{\text {8.866 }}$	174.720	${ }^{0.000}$	${ }^{180.000}$	${ }^{0.000}$	178.589	${ }^{8.718}$	175.474	${ }^{8.872}$
		${ }^{\text {PS } 12[2]}$	295 for RKF selectivity (females, pre-1997)	1	ARTHMETIC	${ }^{121.1572}$	37.669	122060	${ }^{34.022}$	1222143	34.182	${ }^{120.964}$	${ }^{29} 5337$	${ }^{120.531}$	0.000	122.075	${ }^{33.856}$	${ }^{120953}$	29.592	${ }^{120.360}$	${ }^{28,736}$
		${ }^{\text {p } 512126]}$	295 for Ref. selectivy (females, 1997-2004)	1	ARTHMETIC	${ }^{121.215}$	${ }^{53.480}$	${ }^{124.872}$	${ }^{62.571}$	${ }^{125069}$	${ }^{63.175}$	${ }^{130.038}$	${ }_{93}^{93327}$	${ }^{129.063}$	${ }^{0.000}$	${ }^{125.139}$	${ }_{1}^{63315}$	${ }^{130.151}$	${ }^{94.272}$	${ }^{128.851}$	${ }^{87.286}$
		${ }^{\text {psil2 }}$ [2]	295 for RRF Selectivity (females, 2005+)	1	ARITHMETIC	140.000	0.034	140.000	0.033	140000	${ }^{0.033}$	140000	${ }^{0.031}$	140.000	0.000	${ }^{140.000}$	${ }^{0.033}$	140.000	${ }^{0.031}$	140.000	${ }^{0.032}$
		${ }^{\text {pS } 128]}$	${ }^{250}$ for TCF retention (2005-2009)	1	ARITMMETIC	138.717	${ }^{1.632}$	138.935	1.485	135933 12593	1.488	${ }^{1392144}$	1.384	${ }^{138.891}$	0.000	${ }^{1385922}$	1.478	${ }^{1392216}$	1.352	${ }^{139295}$	1.275
		${ }^{\text {p } 5129]}$	${ }^{250} 5$ for TCF Pretention (2013-2015)	1	ARITMETIC	${ }^{125.037}$	${ }^{0.758}$	125.259	${ }^{0.575}$	125.259	0.574	${ }^{1255261}$	${ }^{0.573}$	${ }^{125.125}$	0.000	${ }^{125,254}$	${ }^{0.574}$	125.261	0.571	${ }^{125.127}$	${ }^{0.775}$
		${ }^{\text {pSIII3] }}$	${ }^{25} 50$ for NMFS suneves selectivity (females, pre-1982)	1	ARITMMETIC	${ }_{5}^{56.293}$	${ }_{2}^{2856}$	${ }^{87} 7078$	3.938	${ }^{87} 723$	4.193	${ }^{85.32}$	3.578	57.880	0.000	${ }^{87} 327$	${ }^{3.626}$	86.94	3.449	59.804	2.362
		${ }^{\text {pS } 144]}$	${ }^{2} 50$ for NMFS ssunev selectuvis (females, $1982+$)	1	ARITMMETIC	-29.135	${ }^{26.960}$	-50.000	0.009	-50.000	0.010	-50.000	${ }^{0.032}$	${ }^{42} 42951$	0.000	-50.000	0.021	-50.00	0.078	-27255	25.049
		${ }_{\substack{\text { pS115] } \\ \text { pS1[6] }}}^{\text {che }}$		1	ARRTMMETIC ARITMETIC a	${ }_{\text {l }}^{\text {137.988 }}$	0.416 0.249	138.308 137.710	${ }_{\text {a }}^{0.416}$ 0.243	183310 13717	${ }_{0}^{0.415} 0$	${ }^{1387.558}$	${ }_{\substack{0.411 \\ 0.245}}^{0.4}$	137.568 13757	${ }_{0}^{0.0000}$	${ }_{\text {l }}^{138.7 .748}$	${ }^{0.396}$	${ }_{\text {l }}^{1377.738}$	${ }_{0}^{0.241}$	137369 137.62 1	0.409 0.247
		psi[7]	dummr value	1	ARITHM	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000
		${ }_{\text {pSIL } 18]}$	In(250) for TCF selectivit (maies)	1	ARITMEIC	4.865	0.008	4.874	0.007	4.874	0.007	4.926	0.012	4.916	0.000	4.875	0.007	4.946	0.029	4.923	0.017
		${ }^{\text {pSilf }}$]	250 or TCF seleectivy (females)	1	ARITMMETIC	96.581	${ }^{2.622}$	${ }^{97380}$	2.709	97.419	2.723	${ }^{97.280}$	2.705	96.938	0.000	97.382	${ }_{2}^{2.712}$	${ }^{97.193}$	2.706	${ }^{96,938}$	${ }^{2.628}$
		${ }^{\text {ps2 } 21]}$	295-250 for NMF5 sune s selectivity (males, pre-	1	Arithmetic	23.996	3.922	79.688	5.710	80.362	5.920	79.351	5.730	24.042	0.000	79.368	5.554	76.550	5.351	24.554	0.000
		${ }_{\text {p } 2210] ~}^{10}$	ascending slope for SCF selectivity (males, pre-199)	1	Artumetic	0.374	0.129	0.304	0.099	0.302	0.098	0.307	0.101	0.339	0.000	0.304	0.100	0.337	0.078	0.334	0.113
		ps2[11]	ascending slope for ScF selectivity (males, 1997-	1	ARITHMETIC	0.208	0.063	0.178	0.045	0.17	0.045	0.201	0.052	0.207	0.000	0.174	0.044	${ }^{0.198}$	0.052	0.205	0.054
		${ }^{\text {p } 52[12] ~}$	ascending stope for ScF s selectivity (males, 2005 +)	1	ARTHMETIC	0.175	0.015	${ }^{0.164}$	${ }^{0.011}$	0.164	${ }_{0}^{0.011}$	${ }^{0.164}$	${ }^{0.011}$	${ }^{0.1266}$	${ }^{0.000}$	${ }^{0.163}$	0.011	${ }^{0.162}$	0.011	${ }^{0.165}$	${ }^{0.012}$
		${ }^{\text {P } 2[13] ~}{ }^{\text {P2 }}$	slope for ScF selectuvi (females, pre-1997)	1	ARTHMETIC	0.220	0.128	${ }^{0.222}$	${ }_{0}^{0.118}$	0.223	0	${ }_{0}^{0.227}$	- $\begin{aligned} & 0.120 \\ & 0.124 \\ & 0\end{aligned}$	0.228 0.262	0.000 0	${ }^{0.224}$	0	${ }^{0.217}$	${ }_{0}^{0.109}$	${ }^{0.229}$	${ }^{0.120}$
				1	ARRITMEITC ArITMEITC	(1.264	0.129 0.049	${ }^{0.131}$	${ }_{0}^{0.122} 0$	${ }_{0}^{0.254}$	${ }_{0}^{0.122} 0$	${ }_{0}^{0.136}$	(0.042	${ }^{0.262}$	0	${ }_{0}^{0.259}$	0	${ }_{0}^{0.263}$	${ }_{0}^{0.127}$	${ }^{0.262}$	(0.125
		ps2[16]	Slope for 6 F.Allear selectivit (males, pre-1987)	1	ARITMMETC	0.104	0.010	0.079	0.008	0.080	0.009	0.079	0.009	0.090	0.000	0.079	0.008	0.077	0.009	0.091	0.010
		$\mathrm{p}_{\text {P2 } 217]}$	slope for GF.all gear selectivity (males, 1987.1996)	1	Arithmetic	0.057	0.012	0.035	0.005	0.036	0.005	0.033	0.005	0.038	0.000	0.036	0.005	0.032	0.005	0.038	0.006
		P52[18]	slope for GF. All cears selectivity (male, 1997+)	1	ARITHME	0.074	0.004	${ }^{0.058}$	${ }^{0.002}$	0.058	${ }^{0.002}$	0.057	${ }^{0.002}$	0.059	0.000	0.058	${ }^{0.002}$	${ }^{0.057}$	0.002	${ }^{0.059}$	0.003
		${ }^{\text {p } 22119]}$	slope for GF.Alligear selectuvity (females, pre-1987)	1	ARITHME	${ }^{0.137}$	0.022	0.144	0.023	0.145	0.022	${ }^{0.144}$	0.023	0.145	0.000	0.144	0.021	0.141	0.023	${ }^{0.146}$	0.022
		${ }^{\text {p } 22[2] ~}$	295.250 for NMFS s sune s selectuvity (males, 1982+)	1	ARITMMETIC	75.073	10.254	100.000	0.000	100000	0.000	100000	0.000	100.000	0.000	100.000	0.000	100.000	0.000	100.000	0.003
		${ }^{\text {p } 52[2] 0]}$	slope for 6 F. All Gear selectivity (females, 1987-1996)	1	ARTHMETIC	${ }^{0.185}$	${ }^{0.038}$	${ }^{0.181}$	${ }^{0.039}$	${ }^{0.188}$	${ }^{0.038}$	${ }_{0}^{0.184}$	${ }^{0.039}$	${ }^{0.182}$	${ }^{0.000}$	${ }^{0.181}$	${ }^{0.038}$	${ }^{0.185}$	${ }^{0.0388}$	${ }^{0.181}$	${ }^{0.0388}$
		${ }^{\text {p } 52[21] ~}$		1	ARTHMETIC	${ }^{0.072}$	${ }^{0.0066}$	${ }^{0.064}$	${ }_{0}^{0.005}$	0.064	0.005	- 0.065	${ }^{0.005}$	${ }^{0.066}$	0.000	${ }^{0.064}$	${ }^{0.005}$	${ }^{0.064}$	${ }^{0.005}$	${ }^{0.067}$	0.005
		${ }_{\text {pS2 [2] }}{ }_{\text {p } 2[23]}$	In(295-250) for RKF Selectivit (males, pre-1997)	1	ARTHMETIC ARITMEITC	${ }_{3}^{3.077} 3$	${ }_{0}^{0.162}$	${ }_{\substack{3.492 \\ 3.94}}^{\text {3 }}$	${ }^{0.144} 0$	3.9.922	0.184	(3.430	${ }_{0}^{0.062}$ 0.194	3.084 3,428	0	${ }_{\substack{3.045 \\ 3.499}}^{\substack{\text { a }}}$	${ }_{0}^{0.145} 0$	3.031 3.499	0	-3.073 3.43	0.065 0.205
				1		${ }^{3.582}$ 3.87	${ }_{0}^{0.085}$	${ }_{3}^{3.494}$ 3,	${ }_{0.039}^{0.183}$	3.497 3.428	${ }_{0}^{0.188} \mathbf{0 . 3 9 8}$	${ }_{3}^{3.436}$	-	3.2.28 3.338	${ }^{0.0000}$	${ }_{\text {3, }}^{3.488}$	${ }_{0}^{0.039}$	3.499 3.42	0.107	${ }_{3.422}^{3.432}$	${ }_{0}^{0.117}$
		P52[25]	In(295-550) for RKE selectivity (males, pre-1997)	1	ARITHMETC	2785	0.684	2.77	0.606	2.778	0.605	2.759	0.565	2.759	0.000	2.777	0.602	2.760	0.566	2.754	0.570
		[26]	In(295-550) for RKF Selectivity (males, 1997-2004)	1	ARITMMEIC	2.899	0.903	2.883	0.871	2885	0.870	2.930	0.928	2928	0.000	2.886	0.870	2.932	0.929	2.224	0.937
		[27]	In(295.250) for RkF selectivity (males, 205 +)	1	ARITHMETIC	2991	0.220	2.966	0.217	2.964	0.217	2.964	0.216	2974	0.000	2.965	0.217	2.964	0.216	2.972	0.216
				${ }_{1}^{1}$	ARRTMM ArITHME	0.894	0.725 0.126	${ }^{0.0388} 0$	0	0.835 0.548	0	-0.783	0.408 0.105 0	0.847 0.567 0.58	${ }^{0.000}$	${ }_{\substack{0.835 \\ 0.547}}^{\substack{\text { a }}}$	${ }_{0}^{0.527} 0$	0.766 0.545	-0.374	0.752 0.564	0.344 0.122
		pS2[3]	295.550 tor NMFS S suney selectivit (females, pre-	1	ARITHM	39.982	5.871	${ }^{73.601}$	7.947	75.359	8.199	70.339	7.267	43.747	0.000	73.812	7.666	70.550	7.225	43.444	0.000
		${ }^{\text {ps 2 2 } 4]}$	$295-250$ for NMFS suner selectivity (females, 1982+)	1	ARITHMEIT	100.000	0.002	100.000	0.005	100000	0.005	100000	0.004	100.000	0.000	100000	0.004	100.000	0.004	100.000	0.006
		${ }^{\text {pr } 225] ~}$	slope for TCF F etention (reere 1991)	1	ARTHMETIC	${ }^{0.090}$	${ }^{0.126}$	${ }^{0.717}$	${ }^{0.126}$	0.719	${ }_{0}^{0.126}$	${ }^{0.7088}$	${ }^{0.128}$	${ }^{0.687}$	0.000	${ }^{0.728}$	${ }^{0.128}$	0.714	0.129	${ }^{0.673}$	${ }^{0.1222}$
		${ }^{\text {pS2 } 26]}$	slope for TCF retention (1997+)		ARITHMETIC	0.956	0.192	0.996	${ }^{0.234}$	0.997	${ }_{0}^{0.236}$	${ }^{0.957}$	${ }^{0.209}$	0.955	0.000	1.004	${ }^{0.2264}$	${ }^{0.976}$	${ }^{0.228}$	${ }^{0.962}$	0.219
		${ }^{\text {ps 2 [}}$ [] $]$	siope for TCF selectivity (males, pre-1997)	1	ARITMMETIC	0.118	0.006	${ }^{0.126}$	0.006	${ }^{0.126}$	0.006	${ }^{0} .1110$	0.005	0.109	0.000	0.125	${ }^{0.006}$	${ }^{0.106}$	0.004	0.107	0.005
		${ }_{\text {p }}^{\text {p } 218]}$		1	ARRTMETIC ARITHETIC a	0.155	0.008 0.019	${ }_{0}^{0.164}$ 0.185	0	${ }_{0}^{0.163}$ 0.185	0.008 0.018	${ }_{0}^{0.164} 0$	(0.0.088	${ }^{0.196}$	${ }^{0.0000}$	${ }_{\substack{0.185}}^{0.163}$	0	${ }^{0.1162}$0.185	${ }_{0}^{0.008} 0$	${ }_{0}^{0.165}$ 0.187	0.008 0.019
		${ }_{\text {pSS }}^{\text {pS3] }}$		1	ARITHMETIC	${ }_{3.956}$	0.040	${ }_{3.965}^{0.185}$	0	$\underset{\substack{0.965}}{0.105}$	${ }_{0}^{0.058}$	${ }_{3.963}$	${ }_{0}^{0.050}$	${ }_{3} .961$	0.000	3.970	${ }_{0}^{0.055}$	3.57	0.222	${ }_{3.967}$	0.047
		[332]	Ind(t250-a250) for SCF selectivy (males, 197-2004)	1	ARITMEIC	3.730	0.210	3.701	0.225	3.698	0.229	3.856	0.165	3.862	0.000	3.663	0.264	3.813	0.188	3.948	0.159
		ps33]	1 ln (d50:-250) for SCF selectiviv (males, 2055+)	1	ARITMETIC	3.466	0.082	${ }^{3.331}$	0.101	${ }^{3} .330$	0.101	3.350	0.098	${ }^{3} .362$	0.000	3.322	0.106	3.320	0.111	${ }^{3.353}$	0.096
		${ }^{\text {ps441] }}$	descending slope for Sccs selectivity (males, pre-	1	ARI	0.500	0.001	0.500	0.006	0.500	0.015	0.500	${ }^{0.004}$	0.500	0.000	0.443	0.368	0.100	0.000	0.500	0.003
		${ }_{\substack{\text { pssal3] }}}^{\text {pel }}$		1	AR	${ }_{0}^{0.185}$	0.024	0.143	${ }_{0.026}$	${ }_{0}^{0.142}$	${ }_{0}^{0.026}$	${ }_{0.183}^{0.186}$	${ }_{0}^{0.027}$	-0.192	0.0000	${ }_{0}^{0.182}$	${ }_{0}^{0.029}$	0.161 0.17	${ }_{0}^{0.1116}$	-0.185 0.185	0.128 0.026

Table B.8. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the D model scenarios.

	process	name	label	index	Scenarios			$\begin{gathered} \text { poram. } \\ \text { param. } \\ \text { nave } \end{gathered}$	stad dev.	$\begin{gathered} \text { pooa } \\ \text { param. } \end{gathered}$	sta. dev.	$\begin{aligned} & \text { porb } \\ & \text { para. } \end{aligned}$	sta. dev.	$\begin{gathered} \text { poocm. } \\ \hline \text { anc. } \end{gathered}$	sta. dev.	$\begin{gathered} \text { popm. } \\ \text { param. } \end{gathered}$	sta. dev.	$\begin{gathered} \text { patam. } \end{gathered}$	stad dev.	$\begin{aligned} & \text { per } \\ & \text { pape. } \end{aligned}$	stad dev.
categr					$\underset{\substack{\text { parameter } \\ \text { sale }}}{\text { a }}$	$\begin{gathered} \text { bo } \\ \text { param. } \end{gathered}$	stad dev.														
electivity	selectivity	poevsi[1]	In(LIS dess) for TCF felectivity (males, $1991+$)	1	ARTHMETIC	0.029	0.018	0.054	0.017	0.054	0.017	0.062	0.032	0.061	0.000	0.052	0.017	0.059	0.024	0.058	0.024
					ARITHMETC	0.116	0.012	0.119	0.012	0.119	0.012	0.183	0.025	0.186	0.000	0.118	0.012	0.180	0.017	0.183	0.017
				3	ARITHETIC	0.097	0.014	0.076	0.012	0.076	0.012	0.202	0.040	0.206	0.000	${ }_{0}^{0.076}$	0.012	0.198		0.203	0.037
				4	ARITMETIC	0.077	0.021	${ }^{0.032}$	0.017	0.032		0.467								0.500	
				5	THMETIC	0.010	0.027	0.046	0.025	-0.046	0.025	${ }_{0}^{0.061}$	0.039	-0.051		-0.045	0.025	0.066		-0.055	
				6				0.101	0.036	0.102	0.036	0.112	0.058	0127		0.104		0113		0.126	
				7	ARITMETIC	-0.086	0.017	${ }_{-0.069}$	${ }_{0}^{0.015}$	-.0.69	0.015	${ }_{-0.199}$	0.028	${ }^{0} 0.156$	${ }_{0}^{0.000}$	${ }_{0}^{0.069}$	${ }_{0}^{0.015}$	${ }^{-0.152}$	${ }_{0}^{0.016}$	-0.155	0.016
				8	ARITMETIC	-0.095	0.018	-0.073	0.015	-0.073	0.015	-0.153	0.028	-0.160	0.000	-0.073	0.015	-0.155	0.015	${ }^{-0.159}$	0.016
				9	ARITHMETIC	-0.131	0.016	${ }^{-0.108}$	0.014	-0.108	0.014	-0.188	0.027	-0.194	0.000	-0.108	0.014	-0.191	0.014	-0.194	0.015
				10	ARITHMETIC	0.010	0.014	0.015	0.012	0.015	0.012	-0.063	0.027	-0.070	0.000	0.015	0.012	-0.065	0.013	-0.070	0.014
				${ }_{12}^{11}$	ARITHETIC	0.180	${ }^{0.016}$	0.154	${ }_{0}^{0.013}$	0.154	${ }_{0}^{0.013}$	0.077	${ }_{0}^{0.027}$	0.071	0.000	0.155	${ }^{0.013}$	0.075	0.014	0.072	${ }^{0.014}$
				12	ARITMETIC	-0.048	0.017	-0.029	0.014	-0.029	0.014	-0.110	0.028	-0.116	0.000	-0.30	0.014	-0.112	0.015	${ }^{-0.116}$	0.015
				13	ARITMETIC	-0.109	0.014	-0.095	0.011	-0.095	0.011	${ }_{-0.12}$	0.026	-0.178	0.000	-0.095	0.012	-0.175	0.012	${ }^{-0.179}$	0.013
				14	Aritmetic	-0.149	0.016	${ }^{-0.131}$	0.012	-0.131	0.012	-0.207	0.026	${ }^{-0.214}$	0.000	-0.131	0.013	${ }^{-0.210}$	0.013	${ }^{-0.214}$	0.014
		${ }^{\text {pSI [1] }}$	250 for NMFS s sunev selectuvit (males, pre-1982)	1	ARITMMETIC	52.306	2.115	90.000	${ }^{0.000}$	90.000	${ }^{0.000}$	90.000	${ }^{0.000}$	52.689	0.000	90.000	${ }^{0.000}$	90.000	0.000	57.115	1.998
		${ }^{\text {pSilio] }}$		1	${ }^{\text {ARRITHETIC }}$	-87.04	1.564 3754 154	89.481	${ }_{5}^{2.638}$	89.527 100810	${ }_{5}^{2.338}$	${ }_{\substack{912.23 \\ 97311}}$	3.3.930	${ }_{96323}^{9097}$	0.0000 0.000	89.415 101270	${ }_{5}^{2.559}$	${ }^{907745} 9$	3.641	90392 ${ }_{9}^{968888}$	退3.355
		${ }^{\text {pSil }}$ [11]		1		95.688 105.606	3.54 1.419	100.799	${ }_{\text {c.3.59 }}$		5.393 1.506		li.330 ${ }_{1}^{3.398}$	${ }^{96323}$			5.559 1.532	${ }_{1} 97.99938$	3.3.530		${ }_{\text {l }} \begin{aligned} & 3.290 \\ & 1.57\end{aligned}$
				1		105.606	1.149 5.330	${ }_{\text {c }}^{109.930}$	1.507 5.070	109.988 68382	${ }_{5.053}^{1.506}$	${ }^{109.740}$	${ }_{4}^{1.938}$	10990202 68.264	${ }^{0.0000}$	109.933 68.388	(1.332	${ }_{6}^{109.833}$	${ }_{4.861}^{1.539}$		1.527 5.020
		${ }_{\substack{\text { pS } \\ \text { pSI[1] } 114]}}$		1	ARITHMETC	${ }^{70.295}$	4.524	${ }_{75.579}$	${ }_{4.670}$	${ }_{7} \mathbf{5} 5.574$	4.650	${ }_{75.473}$	4.663	${ }_{75.231}$	0.000	${ }_{75.624}$	${ }_{4} .654$	${ }^{75.500}$	4.650	${ }^{75} 5.94$	${ }_{4} .645$
		${ }_{\text {pSII[15] }}$	ascending 550 for SCFF selectivity (females, 2005+)	1	ARITMETIC	85.218	5.64	84.115	5.791	84.090	5.779	82.054	4.979	80.78	0.000	84.184	5.828	82.774	5.144	${ }^{81} 1774$	4.747
		pSil1]	250 for GF.All Gears selectiviv (males, pre-198)	1	ARTHMETIC	55.023	1.859	59.263	2.356	58.967	2.331	58.236	${ }_{2} 306$	52.871	0.000	59.065	2.353	58.75	2.374	55.383	1.964
		psil17]	250 for GF.alleear selectivity (males, 1987.1996)	1	ARITMETIC	59.073	4.849	73.551	5.272	73.672	5.254	72.006	5.721	64.120	0.000	${ }^{73.183}$	5.302	72.464	5.87	${ }^{67.487}$	5.262
		$\left.{ }^{\text {pS }} 1128\right]$	250 for GF.All gear selectivit (males, 1974)	1	ARTHMETIC	80.841	2.175	99.183	2.557	${ }^{99.137}$	2.561	99.163	2.692	93.517	0.000	98.769	2.564	99.592	2.707	95.669	2.559
		$\left.{ }^{\text {pS }} 1119\right]$	250 for GF.All earas selectivity (males, pre-1987)	1	ARITHMETIC	41200	1.660	40.523	1.447	40.414	1.445	40.59	1.455	40.000	0.000	40.551	${ }^{1.460}$	40.32	1.470	40.79	1.435
		2	${ }^{250}$ for NMFS sunve selectivit (males, 1982+)	1	ARITHMETIC	34918	4.148	${ }^{60.599}$	${ }^{3.860}$	60.320	3.866	59.994	4.069	45.864	0.000	59.23	3.916	60.546	4.082	${ }^{53} 3.955$	4.100
		${ }^{\text {pS } 120]}$	${ }^{2} 50$ for GF.all cear selectivity (males, 1987. 1996)	1	ARITHMETIC	40.000	0.000	${ }^{40.000}$	${ }^{0.000}$	40.000	0.000	40.000	${ }^{0.0000}$	40.000	0.000	40.000	${ }^{0.001}$	${ }^{40.000}$	0.000	40.000	0.000
		${ }_{\substack{\text { pSil21] }}}^{\text {pS12] }}$		1		76.113 158210	${ }_{6.552}^{2.531}$	${ }^{89.513}$	${ }_{6}^{3.574}$ 6,	89.596 162748	3.572 6.346	89.893 18000	3.646 0.000	88.29 180000	0.0000	${ }^{899333}$	${ }_{\text {3,355 }}^{3.65}$	90.008 180000	3.673 0.000	88.70 18000	3.414
		${ }_{\substack{\text { psis }}}^{\text {psi2] }}$		1	ARITMETIC	180.000	0.005	180.000	0.031	180.000	0.027	174.567	${ }_{17243}$	172.095	0.000	180.000	${ }_{0}^{0.026}$	174.941	${ }^{17} 7383$		${ }_{17}{ }^{2} / 435$
		${ }_{\text {PSII } 124]}$	295 for RKFf selectivity (males, 2005+1)	1	ARTHMETIC	180.000	0.000	188.000	0.000	180.000	0.000	1880000	0.052	17.751	0.000	1880000	0.000	1880000	0.011	178.620	9.136
		${ }^{\text {pSI } 125]}$	295 for RKF selectivit (females, pre-1997)	1	ARTHMETIC	121.572	37.669	117.584	27.062	117.616	27.109	116.170	23.315	115.396	0.000	117.586	27.051	116.210	23.335	115.278	22.148
		${ }^{\text {p51126] }}$	295 for RkF selectivity (females, 1997-2004)	1	ARTHMEIC	121.215	53.480	117.823	46.948	117.862	47.068	121.919	60.311	121.222	0.000	117.815	46.985	121.981	60.499	120.787	57.138
		${ }^{\text {pS } 1227]}$	295 for Refs selectivity (females, 205 ${ }^{\text {+ }}$	1	ARITMETIC	140.000	0.034	140.000	0.091	140.000	0.089	140.000	0.063	140.000	0.000	140.000	0.091	140.000	0.063	140.000	0.081
		${ }^{\text {pS } 128]}$	${ }^{250}$ for TCF retention (2005-2009)	1	ARITMMETIC	138.717	${ }^{1.632}$	${ }^{133.082}$	1.407	139.081	1.407	${ }^{139.312}$	1.332	133.049	0.000	139.064	1.415	1393.346	1.306	139.157	1.379
		${ }^{\text {p } 5129]}$	${ }^{250} 5$ for TCF Pretention (2013-2015)	1	ARITMETIC	${ }^{125.037}$	${ }^{0.758}$	125.257	${ }^{0.576}$	125.257	0.576	${ }^{125.261}$	0.574	${ }^{125.151}$	0.000	${ }^{125.252}$	${ }^{0.766}$	125.259	0.573	125.200	${ }^{0.761}$
		${ }^{\text {PS } 1313]}$	250 for NMFS suneves selectivity (females, pre-1982)	1	ARITHMETIC	56.293	${ }^{2} 856$	100.000	0.001	100.000	0.001	${ }^{100000}$	0.001	57880	0.000	100000	0.000	100.000	0.001	${ }^{7} 5.566$	2.069
		${ }^{\text {pS } 144]}$	${ }^{25} 50$ for NMF5 sunee selectivity (temases, $1982+$)	1	ARITHMETIC	-29.135	26.960	-50.00	0.003	-50.000	0.003	-50.000	0.003	26.998	0.000	-50.000	0.003	-50.000	0.003	-50.000	0.005
		${ }_{\substack{\text { pS115] } \\ \text { pS1[6] }}}^{\text {che }}$		1	ARRTMMETIC ARITMETIC a	137.986	0.416 0.249	138.178 137823	${ }_{0}^{0.381} 0$	138.173 137.822	${ }_{0}^{0.380} 0$	${ }^{1377.642}$	${ }_{0}^{0.023} 0$	${ }_{\text {l }}^{1377.063}$	0.000 0.000	${ }_{\text {138.832 }}^{13.052}$	0.0.368	${ }_{1}^{1377.506}$	0.0 .371	137.094 137.625	0.336 0.242
		pS1[7]	dummr value	1	ARITMETIC	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000
		${ }^{\text {pSIII8] }}$	${ }^{\text {In (20) }}$ (for TCF seleetivity (males)	1	ARITHMETIC	4.865	0.008	4.879	${ }^{0.007}$	4.879	0.007	4.954	${ }^{0.024}$	4.952	0.000	4.878	0.007	4.958	0.008	${ }^{4.956}$	0.008
		pS19]	250 for TCC selectivity female	1	ARITMEETIC	96.581	2.622	94.92	2.052	94.706	2.055	94.640	2.051	94.113	0.000	94.697	2.052	94.653	2.55	${ }^{94306}$	1.970
		${ }^{\text {p } 52[1] ~}{ }^{\text {a }}$	295.250 for NMFS suney selectivit (males, pre-	1	ARITHMETIC	${ }^{23.936}$	3.492	${ }^{69.941}$	${ }^{3.616}$	70.262	${ }^{3.643}$	${ }^{70.993}$	${ }^{3.706}$	24.042	0.000	69.910	3.612	69333	${ }^{3.605}$	${ }^{24.554}$	0.000
		${ }^{\text {p } 52110]}$	ascending slope for scf selectivit (males, pre-1997)	1	ARTHMETIC	0.374	0.129	${ }_{0}^{0.251}$	${ }_{0}^{0.036}$	0.251	${ }^{0.086}$	0.218	${ }^{0.088}$	${ }^{0.231}$	0.0000	${ }^{0.252}$	${ }^{0.087}$	${ }^{0.224}$	${ }^{0.087}$	${ }^{0.237}$	0.094
			ascending siope forscr selectivir (males, 197.	1		0.208	${ }^{0.063}$	${ }^{0.168}$	${ }_{0}^{0.044}$	${ }^{0.168}$	0.048	${ }^{0.199}$	${ }^{0.052}$	${ }^{0.2088}$	0.000	${ }^{0.165}$	${ }^{0.042}$	${ }^{0.197}$	${ }^{0.052}$	${ }^{0.203}$	${ }^{0.054}$
		${ }^{\text {pr } 2[12] ~}$	ascending slope fors scf selectivir (males, 2055+)	1	ARRTHMETIC ARITHETCC	0.175	${ }^{0.015}$	${ }_{\substack{0 \\ 0.162 \\ 0.276}}^{0 .}$	${ }_{0}^{0.011}$	- $\begin{aligned} & 0.162 \\ & 0.276\end{aligned}$	0	${ }_{0}^{0.162} 0$	(0.184	${ }_{0}^{0.163}$	0.000 0.000	(0.012	${ }_{\substack{0.011 \\ 0.215}}^{0.081}$	0.162 0.264 024	0	${ }^{0.162}$	${ }^{0.012}$
		${ }_{\text {pS2 }}^{\text {pS2 [13] }}$	Stione	1	ARRITMMEITC	0.269	-0.128	${ }_{0.267}^{0.276}$	${ }_{0.139}^{0.217}$	${ }_{0}^{0.276}$	${ }_{0}^{0.139}$	${ }_{0}^{0.261}$	${ }_{0.141}^{0.124}$	0.274	0.000	${ }_{0}^{0.266}$	${ }_{0}^{0.138}$	${ }_{0} 0.271$	0.191	- 0.272	${ }_{0.141}^{0.191}$
		P52[15]	stipe for SCF selectivit (females, 2005+)	1	ARITHETIC	0.156	0.049	0.154	0.053	0.154	0.053	0.171	0.058	0.182	0.000	0.153	0.052	0.167	0.057	0.175	0.058
		pS2[16]	Slope for 6 F.Allear selectivit (males, pre-1987)	1	ARITHMET	0.104	0.010	0.087	0.009	0.087	0.009	0.089	0.009	0.105	0.000	0.086	0.009	0.087	0.009	0.098	0.010
		P52[17]	slope for GF.all gear selectivity (males, 1987.1996)	1	ARTHMETC	0.057	0.012	0.043	0.005	0.003	0.005	0.042	0.006	0.047	0.000	0.043	0.005	0.091	0.006	0.045	0.007
		P52[18]	Slope for GF.All ears selectivity (males, 1997+)	1	ARTITMEI	0.074	0.004	${ }^{0.057}$	${ }^{0.002}$	0.057	${ }^{0.002}$	0.056	${ }^{0.002}$	0.058	0.000	0.057	0.002	0.056	0.002	${ }^{0.058}$	0.003
		${ }^{\text {p } 22119]}$	slope for GF.Alligear selectuvity (females, pre-1987)	1	ARITHME	${ }^{0.137}$	0.022	${ }^{0.150}$	0.022	0.150	0.022	${ }^{0.149}$	0.022	0.154	0.000	${ }^{0.149}$	0.022	0.148	0.022	0.152	0.022
		${ }^{\text {p } 52[2]}$		1	ARTHMETIC	${ }^{75.073}$	${ }^{10.254}$	${ }^{100.000}$	${ }^{0.001}$	100.000	${ }^{0.001}$	${ }^{100.000}$	${ }^{0.0011}$	97.492	0.000	100000	${ }^{0.0022}$	${ }^{1000000}$	${ }^{0.001}$	${ }^{100.000}$	${ }^{0.0288}$
		${ }_{\text {pre }}^{\text {p } 2[20]}$	slope for GF.All earas selectivit (females, 1987.1996)	1	ARRTMETIC	0.185	${ }^{0.038}$	${ }^{0.171}$	${ }_{0}^{0.037}$	0.171 0.056 0,	0	${ }_{0}^{0.176}$	0	0.176 0.056	0.0000	${ }_{0}^{0.171}$	${ }^{0.037}$	0.176 0.056	${ }_{0}^{0.037}$	${ }^{0.175}$	0.037
		${ }_{\text {ps2 }}^{\substack{\text { p } 212] \\ \text { pS[2] }}}$	Stope for 6F.Alleare selectivy (temales, 1997+)	1	ARRTMETIC ArITMEITC	${ }^{0.072} 3$	0.0.162	${ }_{3.117}^{0.056}$	0.004 0.145		0.0.04	0.056 3.089	${ }_{\substack{0 \\ 0.0062}}^{0.04}$	${ }_{3.112}^{0.056}$	${ }^{0.0000}$	${ }_{\text {0, }}^{0.056}$	(0.0.094	${ }_{\text {a }}^{0.056}$	${ }_{0}^{0.009}$	0.058 3.108	0.004 0.062
		${ }_{\text {pS2 [2] }}{ }_{\text {p } 2[23]}$	In(295-250) for RKF Selectivit (males, pre-1997)	1	ARTHMETIC ARITMEIC	3.077 3.552	${ }_{0}^{0.162}$	${ }_{\substack{3.117 \\ 3.510}}^{\text {a }}$	${ }_{0}^{0.145} 0$	($\begin{aligned} & 3.116 \\ & 3.511\end{aligned}$	0	($\begin{aligned} & 3.089 \\ & 3.452\end{aligned}$	${ }_{\substack{0 \\ 0.062 \\ 0.205}}$	${ }_{\substack{3.112 \\ 3.452}}$	0.000 0.000	${ }_{\substack{3.117 \\ 3.513}}$	- 0	(${ }_{0}^{0.0062} 0$	3.108 3.450	0.062 0.215
		P52[24]	In(295-550) for RkF selectivity (males, 205 + +	1	ARITMMETIC	3.487	0.044	${ }_{3.226}$	0.039	3.426	0.039	${ }^{3.457}$	0.041	3.465	0.000	3.428	0.039	3.452	0.041	3.464	0.113
		p52[25]	In(29-250) for RKE selectivity (males, pre-1997)	1	ARITHMETC	2.785	0.684	2.754	0.646	2755	0.646	2.719	0.603	2.714	0.000	2.754	0.646	2.720	0.602	2.701	0.600
		${ }^{\text {P } 52126]}$	In(295-250) for RKF Selectivity (males, 1997-2044)	1	ARITHMETIC	2849	0.903	2.832	0.978	2832	0.978	2.896	1.018	2.896	0.000	2.831	0.978	2.896	1.016	${ }^{2.881}$	1.022
				1	A ARTHMET	2.894	${ }^{0.2720}$	${ }^{3.062}$	${ }_{\substack{0.2188 \\ 0.438}}$	3.061 0.797	${ }_{0}^{0.2188} 0$	3.059 0.745	${ }_{0}^{0.2173}$	3.078 0.803	${ }^{0.0000} 0$	3.061 0.801	(0.418	3.058 0.788	${ }_{0}^{0.2126}$	3.067 0.776	0.216 0.399
		${ }_{\text {pS2 [2] }}$ P	slope for TCP retention (2013-2015)	1	ARITHM	0.576	0.126	0.547	0.105	0.546	0.105	0.548	0.105	0.564	0.000	0.547	0.116	0.546	0.105	0.556	0.118
		${ }^{\text {PS } 23]}$	295.250 for NMFS Suners selectivity (females, pre-	1	ARITHMEIL	39.982	5.871	69.49	4.225	69.752	4.260	69.861	4.280	43.74	0.000	69.173	4.190	69.245	4.203	43.44	0.000
		ps24]	$295-250$ for NMFS sunev selectivity (females, 1982+)	1	ARITHMETIC	100000	0.002	100.000	0.069	100.000	0.019	100000	0.013	0.000	0.000	100000	0.008	100.000	0.012	100.000	0.006
		ps2[5]	slope for TCF retention (pre- -191)	1	ARTHMETIC	0.690	0.126	0.740	0.128	0.741	0.128	0.748	0.131	0.764	0.000	0.748	0.129	0.740	0.129	0.749	0.129
		${ }^{\text {pS } 266]}$	slope for TCF retention (1997+)		ARITHMETIC	0.956	0.192	1.031	${ }_{0}^{0.284}$	${ }^{1.031}$	${ }^{0.284}$	0.966	${ }^{0.226}$	0.960	0.000	1.032	${ }^{0.287}$	0.971	0.234	${ }^{0.969}$	0.322
		${ }^{\text {ps 2 [}}$ [] $]$	siope for TCF selectivity (males, pre-1997)		ARITMMETIC	0.118	0.006	${ }^{0.121}$	${ }^{0.006}$	0.121	0.006	0.099	${ }^{0.003}$	0.098	0.000	${ }^{0.121}$	0.006	0.098	0.003	${ }^{0.097}$	0.003
		${ }^{\text {p } 2288]}$	slope for TCF selectivity (males, 1997+)		ARITHMETIC	0.155	0.008	0.158	0.007	0.158	0.007	0.160	0.008	0.161	0.000	0.158	0.007	0.159	0.007	0.160	0.008
		${ }^{\text {pss } 29]}$	Slope for TCF selectivivy (females)	1		${ }^{0.187}$	${ }^{0.0049}$	${ }_{\substack{0.190 \\ 3.65}}^{\text {a }}$	${ }_{0}^{0.019} 0$	0.190 3.673	0	- $\begin{aligned} & 0.190 \\ & 3.499\end{aligned}$	0	-	0.000 0.000	${ }_{\substack{0.191 \\ 3.69}}$	${ }_{0}^{0.019} 0$	0.190 3.516	${ }_{0}^{0.019}$	0.193	0.020 0.243
		${ }_{\text {pS35 [2] }}$		1	ARITHMETC	3,730	0.210	${ }_{3.599}$	${ }_{0.382}^{0.109}$	${ }_{3.597}$	${ }_{0}^{0.384}$	${ }_{3.823}$	${ }_{0.169}^{0.27}$	${ }_{3}^{3.485}$	0.000	${ }_{3.552}^{3.51}$	${ }_{0}^{0.447}$	${ }_{3.810}$	0.175	${ }_{3.825}$	${ }_{0.163}$
		${ }_{\text {pS3 [3] }}$	1 ln (d50:-250) for SCF selectiviv (males, 2055+)	1	ARITMME	3.446	0.082	${ }^{3.332}$	0.103	3.332	0.103	${ }^{3.337}$	0.105	${ }^{3} .353$	0.000	${ }^{3.327}$	0.105	3.332	0.107	${ }^{3.342}$	0.102
		[1]	, pre-	1	Arithmeitic	0.500	0.001	${ }^{0.100}$	0.000	0.100		0.100	0.000	-0.100	0.000		0.0000	0.100	0.000	0.100	0.000
				1	THMET	${ }^{0.1385}$	${ }_{0}^{0.081}$	${ }^{0.1142}$	${ }_{0.026}^{0.02}$	${ }^{0.114}$	${ }_{0.026}^{0.01}$	${ }_{0}^{0.181}$	${ }_{0.027}^{0.119}$	O.183 0.186	${ }_{0}^{0.000}$	${ }_{0}^{0.181}$	0	0.170 0.180	${ }_{0}^{0.1110}$	${ }_{0}^{0.178}$	${ }_{0}^{0.1126}$

Table B.9. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the E model scenarios.

						Scenarios															
categor	process	name	label	index	parameter	poo	std. dev.	$\underset{\text { poram. }}{\text { por }}$	sta. dev.	$\begin{gathered} \text { poar } \\ \text { param. } \end{gathered}$	sta. dev.	$\begin{aligned} & \text { pob } \\ & \text { param. } \end{aligned}$	stad dev.	$\begin{gathered} \text { Eqc } \\ \text { param. } \end{gathered}$	stad dev.	$\underset{\text { pram. }}{\text { param. }}$	stad dev.	$\underset{\text { pibam. }}{\text { par }}$	stad dev.	$\begin{gathered} \text { plc } \\ \text { param. } \end{gathered}$	stadev.
Selectivit	selectivity	pDeessI[1]	In(L[50 dess) for TCF felectivity (males, $1991+$)	1	ARITHMETIC	0.029	0.018	0.068	0.000	0.067	0.017	0.088	0.000	0.091	0.029	0.065	0.017	0.107	0.032	0.095	0.030
				2	ARITMMETIC	0.116	0.012	0.119	0.000	0.118	0.012	0.143	0.000	0.187	0.018	0.116	0.012	0.181	0.018	0.185	${ }_{0}^{0.018}$
				3	ARITHMETIC	0.097	0.014	0.065	0.000	0.065	0.011	0.082	0.000	0.142	0.037	0.063	0.011	0.141		${ }_{0} 0.144$	
				4	ARITMMETIC	0.077	0.021	0.013		0.013		0.025									0.000
				5	THMETIC	0.010	0.027	0.058	0.000	O58	0.028	0.053	0.000	-0.051		.0.60		0.074			
				6		0.120	0.040	0.093	0.000	0.093	0.042	0.090		0.145	0.060	0.094		0119		0.14	
				7	ARITMMETIC	${ }_{-0.086}$	0.017	${ }^{0.0 .067}$	0.000	-0.067	0.015	${ }_{-0.077}$	${ }_{0}^{0.000}$	${ }^{0.1 .160}$	0.0017	-0.066	0.015	${ }_{-0.153}$	0.016	${ }_{-0.159}^{0.15}$	${ }_{0}^{0.017}$
				8	ARITMMETC	-0.095	0.018	-0.070	0.000	-0.070	0.015	${ }^{-0.081}$	0.000	${ }^{0.160}$	0.016	-0.069	0.015	0.156	0.016	${ }^{0.160}$	0.016
				9	Aritmetic	-0.131	0.016	-0.102	0.000	-0.102	0.014	${ }^{0.112}$	0.000	${ }^{-0.193}$	0.015	${ }^{-0.101}$	0.014	-0.188	0.015	${ }^{-0.193}$	0.015
				10	Aritmmetic	0.010	0.014	${ }^{0.017}$	0.000	0.017	0.013	0.007	0.000	${ }^{-0.073}$	0.014	${ }^{0.018}$	0.013	${ }^{-0.066}$	0.014	-0.072	0.014
				${ }^{11}$	ARITMMETC	0.180	0.016	0.157	0.000	0.157	0.013	${ }^{0.145}$	0.000	0.070	0.015	0.158	0.013	0.076	0.014	0.070	0.015
				12	ARITMMETC	-0.048	0.017	-0.023	0.000	-0.023	0.014	${ }^{-0.034}$	0.000	-0.114	0.016	-0.022	0.014	-0.109	0.015	${ }^{-0.114}$	0.016
				13	ARITMEETC	-0.109	0.014	-0.087	0.000	-0.085	0.012	${ }^{-0.093}$	0.000	-0.173	0.014	${ }^{-0.0084}$	0.012	${ }^{0} 0.170$	0.013	${ }_{0}^{0.173}$	${ }_{0}^{0.014}$
				14	ARITMMETC	${ }^{-0.149}$	0.016	${ }^{-0.125}$	0.000	${ }^{-0.123}$	0.013	${ }^{-0.131}$	0.000	-0.211	0.015	-0.122	0.013	-0.207	0.014	${ }^{0.211}$	0.015
		${ }^{\text {pSill] }}$	250 for NMFs suner selectivit (males, pre-1982)	1	Aritmmetic	52306	2.115	${ }^{90.000}$	0.000	90.000	0.000	90.000	0.000	52.689	0.000	90.000	0.000	90.000	0.000	56.858	${ }^{1.418}$
		${ }^{\text {pSS }}$ [10]	ascending 250 Oor SCF selectuvit (males, pre-197)	1	ARITMMETC	87.04	1.564	${ }^{88,330}$	0.000	${ }^{88361}$	2.143	89.653	0.000	${ }^{87} 382$	1.962	${ }^{88.253}$	2.184	88.74	2.640	87.428	2.093
		${ }^{\text {pSS [11] }}$	ascending 5 50 for SCF selectivity (males, 1997-204)	1	ARITMMETIC	95.988	3.754	99.455	0.000	${ }^{99.523}$	4.273	97.155	0.000	95.773	2937	100.176	4.818	97.055	3.226	96.236	${ }^{3.038}$
		${ }^{\text {PSS }}$ [12]	ascending 250 Oor SCF Felectivivy (males, 2055+1)	1	ARITMMETC	105.606	1.419	109.232	0.000	109.256	1.434	109.184	0.000	107.98	1.351	1093386	1.470	109.089	1.468	108.250	1.394
		${ }^{\text {pSSI } 133]}$	ascending 555 fors ScFs selectivity (Iemales, pre-999	1	ARITHMETIC	${ }^{70.265}$	5.330	${ }^{68.612}$	${ }^{0.0000}$	68.550 7531	4.933	${ }^{692} 206$	0.000	${ }^{67992}$	5.415	${ }^{68.735}$	${ }_{4}^{4.860}$	${ }_{6} 693310$	4.809	${ }^{68.578}$	${ }^{5} .088$
		${ }^{\text {pSSI [14] }}$	ascending 555 fors ScF sfeectivity (females, 1997 -	1	ARITMMETIC	${ }^{76.295}$	${ }_{4}^{4.524}$	${ }^{7} 5.318$	0.000	${ }^{7} 5.321$	4.677	${ }^{75.231}$	0.000	${ }^{7} 75.042$	4.659	${ }^{75.364}$	4.678	75.268	4.687	${ }^{75.160}$	${ }^{4.688}$
			ascending 550 forscr sfeectivy (females, 2005+)	1	ARITHMETC	85.218	5.644	¢	${ }^{0.000}$	¢	5.389 2187	${ }_{\text {cke }}^{82.178}$	${ }^{0.000}$	${ }_{\substack{80.655}}^{\text {5459 }}$	4.394	83.625 59734	${ }_{\text {S }}^{5.547}$	${ }_{8}^{81.005}$	4.849	${ }_{8}^{811.66}$	4.522
		${ }^{\text {pSILII6] }}$	${ }^{25} 50$ for GF.All 6 ears selectivivy (males, pre- 1987)	1	ARITHMETIC	55.23	1.859	${ }^{59.577}$	${ }^{0.000}$	${ }^{59.487}$	2.187	${ }^{59.923}$	${ }^{0.0000}$	54549	1.755	${ }^{59734}$	${ }_{2}^{2.216}$	${ }^{58936}$	2.199	${ }_{5}^{56375}$	${ }_{1}^{1.894}$
		${ }^{\text {pSSI } 177]}$	${ }^{2} 55$ for GF.All fear selectivity (males, 1987, 1996)	1	ARITMMETIC	59.073	${ }_{4}^{4.849}$	${ }^{79.572}$	${ }^{0.000}$	79.425	${ }_{2}^{4.476}$	79.250	${ }^{0.0000}$	${ }^{7} 3.011$	4.434	${ }^{79.159}$	${ }_{4}^{4.464}$	7.574	${ }_{4}^{4.374}$	75.34	${ }_{4}^{4.481}$
		${ }^{\text {pS5 } 188]}$	250 for GF.All Gear selectivity (males, 1977)	1	ARITMMETC	80.841	2.175	94.976	0.000	95.028	2.226	94.555	0.000	${ }^{89,650}$	2.162	95.011	2.224	95.088	2.325	91.030	${ }^{21.167}$
		${ }^{\text {PS } 5[19]}$	250 for GF. All cear selectivity (males, pre-1987)	1	ARITMMETIC	41.200	1.660	40.00	0.000	40.000	0.001	40.000	0.000	40.000	0.000	40.000	0.001	40.000	0.001	40.000	0.000
		${ }^{\text {pS } 512]}$	250 for NMFs surues selectivit (males, 1982+)	1	ARITMMETIC	34918	4.148	${ }^{47893}$	${ }^{0.000}$	47.894	2.843	47.315	0.000	${ }^{38.034}$	2.442	47.62	2.832	46.762	3.006	42.339	2.527
		${ }^{\text {pS } 5120]}$	250 for GF.all cear selectivity (males, 1987. 1996)	1	ARITHMETIC	40.000	0.000	44.307	0.000	44.258	2.071	44.010	${ }^{0.000}$	${ }^{43,990}$	1.987	${ }^{44.058}$	2.026	${ }^{42954}$	1.874	${ }_{3}^{43.513}$	
		$\left.{ }^{\text {PS }} 12121\right]$	${ }^{250}$ 25 for GF.A.AlGear selectivity (males, 1997+)	1	ARITHMETIC	${ }^{7} 1.113$	2.531	${ }^{83} 3330$	${ }^{0.000}$	${ }^{83.973}$	${ }^{3.057}$	${ }^{82,984}$		${ }^{81.187}$	2.905	${ }^{83.470}$	${ }^{3.067}$	83.519	${ }^{3.106}$	${ }^{812.23}$	2.908
		${ }^{\text {pSS } 122]}$	295 tor RkF selectivity (males, pre-1997)	1	ARITHMETIC	158.210	6.552	160.883	0.000	${ }^{160.887}$	6.862	${ }^{180.000}$	${ }^{0.000}$	188.000	0.000	160.885	6.896	180.000	0.000	180.000	0.000
		${ }^{\text {pS1 [23] }}$	${ }^{2955} 5$ fork. Selectivir (males, 1977-2004)	1	ARITHMETC	180.000	${ }^{0.005}$	175.600	${ }^{0.000}$	175.623 180000	${ }^{16163}$	${ }^{164.005}$	${ }^{0.000}$	1165922	17.215	${ }^{175.668}$	16.220	169.433 17250	${ }_{\substack{17343 \\ 934}}$	${ }^{1664332}$	${ }^{17.177}$
			${ }^{295}$ for Rer. selectiviv (males, $2005+$ +	1	ARITHMETIC	180.000	${ }^{0.000}$	180.000	${ }^{0.000}$	1880.000 117714	0.001	${ }^{173538}$	${ }^{0.000}$	${ }_{1}^{122323}$		${ }^{180.000}$	${ }^{0.0001}$	177.250	${ }^{9.1284}$	173.420 11.454	${ }^{9.135}$
		${ }^{\text {pSSIL25] }}$	295 for RKF selectivity (females, pre-1997)	1	ARITMEETIC	121572	37.669	${ }^{117.102}$	${ }^{0.0000}$	${ }^{1177144}$	26.979	${ }^{115.772}$	0.000	${ }^{114.770}$	${ }_{5}^{22134}$	${ }^{1177039}$	${ }^{26.661}$	1155.58	${ }_{5}^{22769}$	114.664	${ }^{21,755}$
		${ }^{\text {pSS12] }}$ [12]	295 for RKF selectivity (females, 1997-2004)	1	ARITMMEITC	121212	53.880	116.874	0.000	${ }^{1168837}$	44.695	${ }^{120.102}$	${ }^{0.000}$	119.508	54.130	${ }^{117.012}$	45.058	120.672	56.656	119.565	53.890
		${ }^{\text {pSILI27] }}$		1	ARITHMETIC	${ }^{1200000}$	0.034	140.000	${ }^{0.0000}$	1140000	${ }^{0.152}$	140.000	${ }^{0.0000}$	1130.000	0.099	${ }^{140.000}$	${ }^{0.1455}$	${ }^{140.000}$	0.075	140.000	0.104
		${ }^{\text {pSS128] }}$ [12]	${ }_{250}^{250 \text { for TCF retention (2005-2099) }}$	1	ARITMMETIC	${ }^{138.717}$	${ }_{1}^{1.732}$	138.655	${ }^{0.0000}$	${ }^{138.674}$	1.662	${ }^{138.781}$	${ }^{0.0000}$	${ }^{138596}$	1.751	${ }^{138.682}$	${ }^{1.655}$	${ }^{1395026}$	1.335	138.688	${ }_{1}^{1.554}$
		${ }^{\text {pSI } 129]}$	${ }^{250}$ for TCF Fetention (2013.2015)	1	Aritmetic	125.037	0.758	125.201	0.000	${ }^{125.012}$	0.757	${ }^{125.068}$	0.000	${ }^{124926}$	0.757	${ }^{124.997}$	0.758	${ }^{125.141}$	0.757	124.554	${ }^{0.757}$
		${ }^{\text {pS }}$ [13]	250 for NMFS suney selectivity (temales, pre--1982)	1	Arithmetic	56.293	2.856	100.000	0.000	100.000	0.001	100.000	0.000	57.880	0.000	100.000	0.001	100.000	0.001	72.290	1.676
		${ }^{\text {pSil4] }}$	${ }^{20} 50$ for MMFS suney selectivit (females, 1922+)	1	ARITHMETIC	-29.135	26.960	-45.715	0.000	-49823	2703.100	-34,761	0.000	-16.554	241330.000	-49.099	13799.000	26.050	11686.000	26.891	1058.400 0554
		${ }_{\substack{\text { pSilis] } \\ \text { psil6] }}}^{\text {che }}$		1	${ }^{\text {ARPITHMEETC }}$	${ }_{\text {l }}^{\text {137.996 }}$	${ }_{0}^{0.416}$	${ }^{1377.586}$	${ }^{0.0000}$	1377587 137836	-	l 1377888 1387	0	135515 137.621	${ }^{0.566}$	137.519 13789	- 0.344	${ }^{1367.753} 1$	${ }_{0}^{0.416}$		(0.548
		psil]	dummr value	1	ARITHMETIC	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000
		${ }^{\text {pS } 188]}$	In(250) for TCF selectivy (maies)	1	Arithmetic	4.865	0.008	4.860	0.000	4.860	0.007	4.866	0.000	4.940	0.009	4.859	0.007	4.945	0.009	4.942	0.009
		${ }^{\text {prin }}$ [19]	250 for TCF seleetrviv((temales)	1	ARITHMETIC	${ }^{96.581}$	2.622	94.500	0.000	94.510	1.992	${ }^{94.488}$	0.000	${ }^{93.008}$	1.926	94.500	1.973	94.474	1.998	94.031	1.922
		ps2[1]	$295-250$ for NMFFs sune selectivity (males, pre-	1	ARITMMETC	23.96	3.992	75.63	0.000	75.872	3.851	75.251	0.000	24.042	0.000	74.991	3.774	76.561	3.918	24.554	0.000
		ps5210]	ascending slope for SCF selectivity (males, pre-1997)	1	ARTHMETIC	0.374	0.129	0.308	0.000	0.307	0.110	0.260	0.000	0.381	0.154	0.304	0.110	0.291	0.119	${ }^{0.363}$	0.149
		${ }^{\text {PS } 2[11] ~}$	ascending slope for ScF selectivity (males, 1997.	1	ARITHMETC	0.208	0.063	0.180	0.000	0.180	0.047	0.204	0.000	0.218	0.059	${ }^{0.175}$	0.046	0.205	0.054	0.213	0.057
		${ }^{\text {pS } 5212]}$	ascendins silope for scf sfeectivit (males, 2005+)	1	ARTHMETTC	0	${ }_{0}^{0.015}$	${ }^{0.105}$	${ }^{0.0000}$	0.165	0.011	0.164	0.000	0.168	0.012	${ }^{0.164}$	0.011	0.165	0.012	${ }^{0.167}$	${ }^{0.012}$
		${ }^{\text {pS } 213] ~}$	slope forscris selectuvi (females, prei-199)	1	ARITHMETTC	0.220	${ }^{0.128}$	${ }^{0.275}$	${ }^{0.0000}$	${ }^{0.275}$	${ }^{0.209}$	${ }^{0.260}$	${ }^{0.000}$	${ }^{0.282}$	${ }_{0}^{0.263}$	${ }_{0}^{0.276}$	0.207 0.143	${ }^{0.264}$	${ }^{0.184}$	${ }^{0.273}$	${ }_{0}^{0.217}$
				1		(e.264	${ }_{0}^{0.129} 0$	${ }^{0.150}$	0	${ }_{0}^{0.159}$	${ }_{0}^{0.054}$	0.274 0.169	${ }_{0}^{0.0000} 0$	-0.278 0.182 0	${ }_{0}^{0.150}$	${ }_{0.157}^{0.271}$	${ }_{0}^{0.143}$	0.274 0.171	${ }_{0}^{0.195}$	${ }_{0}^{0.178}$	${ }_{0}^{0.147} 0$
		PS2[16]	slope for GF. All gear selectivit (males, pre-1987)	1	Arithmetic	0.104	0.010	0.088	0.000	0.088	0.008	0.087	0.000	0.102	0.010	0.087	0.008	0.088	0.009	0.097	0.009
		${ }^{\text {P5 } 217]}$	slope for GF.All cear selectivit (males, 1977.1996)	1	ARTHMETC	0.057	0.012	0.048	0.000	0.048	0.005	0.048	0.000	0.050	0.006	0.048	0.005	0.047	0.005	0.049	0.005
		pS5[18]	Slope for GF.All ears selectivity (male, 1997+)	1	ARITHMETIC	${ }^{0.074}$	${ }^{0.004}$	${ }^{0.061}$	${ }^{0.000}$	0.061	0.003	${ }^{0.061}$	${ }^{0.000}$	${ }^{0.0631}$	0.003	${ }^{0.061}$	${ }^{0.003}$	${ }^{0.060}$	0.003	${ }^{0.063}$	0.003
		${ }^{\text {p } 2219]}$	slope for GF.Allicear selectivity (females, pre-1987)	1	ARITHMETIC	${ }^{0.137}$	0.022	0.160	0.000	0.160	0.022	0.159	0.000	0.161	0.022	0.159	0.022	0.159	0.022	0.160	0.022
		${ }^{\text {p } 222]}$	295.25 for NMFS sunees selectivity (males, 1982+)	1	ARITHMETC	75.073	10.254	76.088	0.000	76.664	5.926	${ }^{76} 384$	0.000	66.781	5.699	76.275	5.900	78.857	6.549	68.94	5.496
		ps52[20]	slope for GF Alllear selectivit (females, 1987.1996)	1	ARTHMETC	0.185	0.038	0.136	0.000	0.136	0.030	0.138	0.000	0.143	0.031	0.139	0.030	0.151	0.032	0.145	0.031
		ps5221]	Slope for 6 F All ear selectivit (females, 1997)	1	ARTHMETC	0.072	0.006	0.062	0.000	0.062	0.005	0.062	0.000	0.064	0.005	0.062	0.005	0.062	0.005	0.064	0.005
		P5522]	In(29-250) for RXF selectivit (males, pre-1997)	1	ARTHMETIC	3.07	0.162	${ }^{3.132}$	0.000	3.132	0.157	3.275	0.000	3.171	0.064	${ }^{3.136}$	0.158	3.165	0.064	3.172	0.064
		${ }^{\text {p } 5223]}$	In(295-250) for RxF selectivity (males, 1997-2044)	1	ARITHMETIC	${ }^{3.552}$	0.085	${ }^{3.977}$	${ }^{0.0000}$	3.497	0.203	${ }^{3.373}$	${ }^{0.0000}$	3.407	${ }^{0.243}$	${ }^{3.499}$	${ }^{0.003}$	${ }^{3.224}$	0.226	${ }^{3.408}$	${ }^{0.239}$
		${ }^{\text {pS5 [24] }}$	In(299.250) for RxF selectivity (males, 2005+)	1	ARITHMETIC	3.487	0.044	${ }^{3.471}$	0.000	3.471	0.040	${ }^{3.426}$	0.000	${ }^{3.422}$	0.128	${ }^{3.470}$	0.040	3.460	0.116	${ }^{3.446}$	${ }_{0}^{0.125}$
		${ }^{\text {pSS } 225] ~}$	In(25-250) for RKF. selectivit(males, preve.1997)	1		${ }^{2} 2785$	0.684	${ }_{\substack{2,788 \\ 2815}}$	0	${ }^{2} 2799$	0.650 0.976	${ }^{2} 2714$	0	${ }^{2} 2701$	0.620 1.025	$\substack{2.746 \\ 2817}$	0.656	2.788 287	0.608 1.018	2.694	(0.611
		${ }_{\substack{\text { pes } \\ \text { pS2 [2] } 27]}}$		1	${ }_{\text {AR }}^{\text {ARTHMMEIC }}$	2849 2991	0.920	${ }_{3}^{2.073}$	0.000	2814 3.072	${ }_{0.219}^{0.976}$	2880 3.070	${ }_{0}^{0.000}$	2.868 3.087	${ }_{0}^{1.218}$	${ }_{3.073}^{2.81}$	${ }_{0}^{0.219}$	${ }_{3.069}^{2.87}$	${ }_{0.217}$	${ }_{3.082}^{2.866}$	${ }_{0.217}^{1027}$
			slope for TCF retention (2005-2099)	1	ARITHME	0.894	0.725	0.923	0.000	0.919	0.793	0.880	0.000	0.999	0.918	0.916	078	0.804	0.463	0.910	0.770
		${ }^{\text {p } 5229]}$	slope for TCF retention (2013-2015)	1	ARITHMETIC	0.576	0.126	0.561	0.000	0.580	0.127	0.575	0.000	0.595	0.134	0.580	0.128	0.565	0.121	0.590	0.132
		$\left.{ }^{\text {pS } 23] ~}\right]$	295.250 for NMF S suney selecturvy (females, pre.	1	ARITHMETIC	39982	5.871	69.430	0.000	${ }^{69.627}$	3.336	69.535	0.000	43.747	0.000	${ }^{69.026}$	3.771	69.568	3.834	43.44	0.000
		${ }^{\text {pS } 244] ~}$	$295-250$ for NMFS sunee selectuvit (females, 1982+)	1	ARITHMETIC	100.000	0.002	6.752	0.000	9.885	8370.900	0.034	0.000	5.123	28873.000	0.065	915.220	0.104	1291200	${ }^{0.013}$	${ }^{125.660}$
		ps2[5]	slope for TCF retention (pre-1991)	1	ARTHMETIC	0.690	0.126	0.749	0.000	0.749	0.127	0.735	0.000	0.667	0.122	0.745	0.126	0.717	0.124	0.655	0.117
		${ }^{\text {pS } 2[6] ~}$	Slope for TCF retention (1997+)	1	ARITHMETIC	0.956	0.192	1.027	0.000	${ }^{1.027}$	0.283	${ }^{1.025}$	${ }^{0.0000}$	0.961	0.233	1.029	0.288	0.966	0.237	${ }^{0.966}$	${ }^{0.240}$
			siop for TCF selectivit (males, pre-1997)	1		0.118	0.006 0.008	${ }^{0.121}$	0	${ }^{0.121}$	0.006	${ }^{0.114}$	${ }^{0.0000}$	${ }^{0.0931}$	0.004	${ }^{0.121}$	${ }^{0.0066}$	${ }^{0.092}$	0.004	${ }^{0.092}$	${ }^{0.004}$
		${ }_{\text {p }}^{\text {p } 218]}$	slope for TCF Selectivity (males, 1977) sope for Cef selectuvit (females)	1	${ }_{\text {ARem }}^{\text {ARTMMETIC }}$	0.155	0.008 0.019	${ }^{0.154} \begin{aligned} & 0.192 \\ & 0.3\end{aligned}$	0	0.164 0.192	0.008 0.019	${ }_{0}^{0.166}$	0	${ }_{0}^{0.164} 0$	0.009 0.020	(0.193	0.008 0.019	${ }_{0}^{0.163}$	0.008 0.019	${ }_{0}^{0.164} 0$	0.008 0.020
		${ }_{\text {pSS3 }}^{\text {pSI] }}$ [1	ARITHMETTC	${ }_{3.956}^{0.187}$	${ }_{0}^{0.040}$	${ }_{3.674}^{0.192}$	${ }_{0}^{0.0000}$	${ }_{3.674}^{0.192}$	${ }_{0} 0.141$	${ }_{3.535}$	${ }_{0}^{0.000}$	${ }_{3} .598$	${ }_{0} 0.140$	${ }_{3}^{0.683}$	${ }_{0.142}^{0.019}$	${ }_{3.54}^{0.152}$	0.182	${ }_{3.603}^{0.19}$	${ }_{0}^{0.144}$
		[3]	In(dL50-2350) for SCF Selectiviry (males, 1997-2004)	1	ARITHMETIC	3.730	0.210	3.67	0.000	3.668	0.240	3.804	0.000	3.866	0.137	3.619	0.303	3.812	0.158	3.842	0.144
		${ }_{\text {pS3 } 313}$	1 Im (c250.a250) for SCF selectiviv (males, 2005+)	1	ARTHME	3.466	0.082	3.344	0.000	3.342	0.094	3.344	0.000	3.393	0.082	${ }^{3} 332$	0.098	3.347	0.096	${ }^{3.378}$	0.086
		${ }^{\text {p } 5411]}$	dessending slope for ScF selectuvit (males, pre-.	1	ARITHMETIC	0.500	${ }^{0.001}$	0.100	0.000	0.100	0.000	0.100	0.000	0.100	0.000	${ }^{0.100}$	0.000	${ }^{0} 0.100$	0.000	${ }^{0.100}$	${ }^{0.000}$
				1	ARrTHMEITC	- 0.185	${ }_{0}^{0.024}$	- 0	0.000	0.149	${ }_{0}^{0.096}$	(0.189	${ }_{0}^{0.000}$	0.199 0.196	${ }_{0}^{0.125}$	${ }_{0}^{0.188}$	-0.026	${ }_{0}^{0.189}$	${ }_{0}^{0.1122}$	${ }_{0.193}^{0.191}$	${ }_{0}^{0.1188} 0$

Table B.10. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the F and G model scenarios.

	process	name	label	index	$\underset{\substack{\text { parameter } \\ \text { sale }}}{\text { a }}$	Scenatios		$\begin{gathered} \text { peram. } \\ \text { papam. } \end{gathered}$	sta. dev.	$\begin{gathered} \text { foram. } \\ \text { param. } \\ \text { value } \end{gathered}$	sta. dev.	$\begin{gathered} \text { pooc } \\ \text { papa. } \end{gathered}$	stad dev.	parem.	stad dev.	$\begin{gathered} \text { paoam. } \end{gathered}$	stad dev.	$\begin{gathered} \text { corab. } \\ \text { param. } \\ \text { avalue } \end{gathered}$	stad dev.	$\begin{gathered} \text { pobad } \\ \text { param } \end{gathered} .$	sto. dev.	$\begin{gathered} \text { coode } \\ \substack{\text { param. } \\ \text { vave }} \end{gathered}$	stad dev.	GObde-Fr param value	stad dev.	$\begin{aligned} & \text { Gobde-Mcl } \\ & \text { param. } \\ & \text { value } \end{aligned}$	stad dev.
						bo	sta. dev.																				
	selectivity	poessil]	In([50 dees) for TCF Selectivit (males, 1991+)	1	ARITHMETIC	0.029	0.018	0.076	0.016	0.076	0.016	0.104	0.035	0.084	0.016	0.072	0.015	0.500	0.000	0.500	0.000	0.500	0.000	-0.500	0.000	0.500	0.000
				2	ARITMMETIC	0.116	0.012	0.115	0.011	0.115	0.011	0.178	0.017	0.087	0.010	0.073	0.009	0.059	0.014	0.062	0.014	0.062	0.014	0.131	0.033	0.063	${ }_{0}^{0.015}$
				3	Arithmetic	0.097	0.014	0.063	0.010	0.063	0.010	0.137	0.034	0.072	0.010	0.057	0.010	0.068	0.016	${ }^{0.065}$	0.017	0.069	0.017	0.252	0.030	0.074	0.019
				4	ARITMMETC	0.07	0.021	0.009	0.017	0.009	0.017	0.500	0.000	0.032	0.013	0.016	0.014	0.038	0.023	${ }^{0.026}$	0.023	0.037	0.024	0.381	0.038	0.072	0.36
				5	ARITMMETC	-0.010	0.027	-0.052	0.025	${ }^{-0.052}$	0.024	-0.051	0.029	-0.057	0.016	-0.075	0.018	0.500	0.000	0.500	0.000	0.500	0.000	0.500	0.000	0.500	0.000
				6	Aritumetic	0.120	0.040	0.086	0.036	0.086	0.036	0.104	0.043	0.123	0.014	${ }^{0.124}$	0.015	0.089	0.018	0.088	0.019	0.089	0.019	0.072	0.035	0.083	0.20
				7	ARITHMETIC	-0.096	0.017	${ }^{-0.063}$	0.014	-0.063	0.014	-0.148	0.015	-0.047	0.010	${ }^{-0.036}$	0.010	-0.177	0.010	${ }^{-0.157}$	0.010	-0.157	${ }^{0.0010}$	${ }^{0.033}$	${ }^{0.018}$	-0.161	${ }^{0.0010}$
				${ }^{8}$	ARITMMEITC	-0.095	0.018	${ }^{-0.066}$	0.014	-0.066	0.014	${ }^{-0.152}$	0.015	-0.068	0.011	-0.056	0.010	${ }_{-0.176}^{-0.07}$	0.010	${ }^{-0.1766}$	0.010	${ }^{-0.180}$	0.010	${ }^{0.031}$	${ }^{0.018}$	-0.180	${ }_{0}^{0.011}$
				9	ARITMMETIC	-0.131	0.016	-0.101	0.013	-0.101	0.013	${ }^{-0.186}$	0.014	-0.119	0.011	${ }^{-0.105}$	${ }^{0.0010}$	-0.227	0.010	-0.226	0.010	${ }^{-0.226}$	0.010	0.006	${ }_{0}^{0.018}$	${ }^{-0.230}$	0.011
				10	ARTHMETC	-0.010	0.014 0.015	${ }_{0}^{0.015}$	${ }_{0}^{0.012}$	${ }^{0.015}$	${ }^{0.012}$	${ }_{0}^{0.0 .71} 0$	${ }^{0.013} 0.013$	0.025 0.108	0.0.099	-	(0.099	-0.091 -0.012	0.009 0.010	- 0.089	0.009 0.010	-	0.009 0.010	${ }_{0}^{0.097} 0$	${ }_{\substack{0.017 \\ 0.018}}^{0.0}$	-0.097	0.009 0.000
				12	ARrithemic	-0.188	${ }_{0}^{0.017}$	${ }_{-0.023}^{0.393}$	${ }_{0.013}^{0.012}$	-0.023	${ }_{0}^{0.013}$	${ }_{0}^{0.0108}$	${ }_{0.014}^{0.013}$	${ }^{-0.038}$	0.011	${ }_{0}^{0.029}$	${ }_{0.011}^{0.011}$	${ }_{\text {- }}^{\text {-0.153 }}$	0.011	${ }^{-0.150}$	0.011	${ }^{-0.153}$	0.012	${ }_{0}^{0.130}$	${ }_{0}^{0.048}$	${ }^{-0.158}$	${ }_{0}^{0.012}$
				13	ARITMMEIC	${ }^{-0.109}$	0.014	-0.082	0.011	${ }^{-0.082}$	0.011	${ }^{-0.165}$	0.012	-0.084	0.010	${ }^{-0.077}$	0.010	-0.202	0.010	-0.199	0.010	-0.200	0.010	${ }^{-0.497}$	${ }_{0} 0.101$	-0.205	0.011
				14	ARITMMEIC	${ }^{-0.199}$	0.016	-0.117	0.012	${ }^{-0.117}$	0.012	-0.198	0.013	-0.120	0.011	${ }^{0.110}$	${ }_{0}^{0.011}$	-0.237	0.011	${ }_{-0.235}$	0.011	-0.237	0.011	${ }^{-0.500}$	0.001	-0.241	0.012
		${ }^{\text {psilil }}$	Tor MMF s surey selectivity (males, pre-1982)	1	ARITMMETIC	52306	2.15	${ }_{\substack{\text { 90.000 } \\ 90.160}}$	0.000 2433	90.000 90.202	0.000 2043	52.689 89.605			(0.000	90.000 85222	${ }_{\substack{0 \\ 0.000 \\ 1.163}}$	${ }_{89,375}^{90.000}$	${ }_{\text {den }}^{0.000}$	90.000 105052	0.000 2631	90.000 104312	0000	90.000 100000	$c00010000$	90000 10671	${ }^{0.000}$
		${ }_{\substack{\text { pSSII10] } \\ \text { pSII1] }}}$		1		${ }^{87704}$	${ }_{3}^{1.564}$	${ }^{90.160} 10.185$	${ }_{3.665}^{2.433}$	90.202 100.183	${ }_{\text {2.666 }}^{2.43}$	89.605 97.417	${ }_{2.959}^{2.876}$	89,451 100351	${ }_{3.384}^{2.304}$	85.222 100.54	(1.103	${ }_{\text {848,375 }}$	${ }_{2}^{1.754}$	105.052 106.893	${ }_{3.945}^{2.631}$	104312 108238	${ }_{3}^{2.595}$	190.000 129855	${ }^{0.0000} 17.988$	106.771 114302	${ }_{1.507}^{1.502}$
		PSS112]	ascendinge 50 for ScF selectiviry (males, 2005+1	1	ARITMEITC	105.606	1.419	${ }_{110.278}$	${ }_{1} .325$	110.273	${ }_{1} .324$	109.798	1.342	110.005	1.327	110.540	1.241	110.313	1.201	111.093	1.394	111.119	1.439	190.000	0.001	110.558	${ }_{0} 0.730$
		psil13]	ascending 550 tor SCF selectiviv((temales, pre-1997)	1	ArITMMEIC	70.265	5.030	69.181	4.864	69.196	${ }_{4.856}$	69.332	4.863	67.354	4.634	65.308	2.728	64.810	2.426	${ }_{7} 4.491$	${ }_{5}^{5.362}$	${ }^{12.761}$	${ }_{5.183}$	${ }_{99.158}$	${ }_{21}^{21.345}$	${ }_{71.334}$	${ }_{1} 1.357$
		psil14]	ascending 25 foro SCF sfelectivy f females, 1997 -	1	ARITMMETC	${ }^{76.295}$	4.524	75.708	4.533	75.03	4.534	${ }_{75.606}$	4.525	77.046	3.27	7, 7135	${ }_{3.248}$	76.269	${ }_{3.009}$	${ }_{72013}$	${ }_{3.676}$	${ }_{7} 72289$	${ }_{3,762}$	50.000	${ }_{0.003}^{21035}$	76.466	1.290
		${ }^{\text {pSI } 115]}$	ascending 550 fors SCF sfelectiviy (females, 2055+)	1	ARITMMETC	85.218	5.649	${ }^{83,756}$	${ }^{5.365}$	${ }^{83,733}$	${ }_{5}^{5357}$	${ }^{81.194}$	4.412	120.000	${ }^{0.018}$	118.317	5.111	120.000	0.005	106.897	5.738	${ }^{105.558}$	5.656	86.020	${ }^{8.595}$	${ }^{89.185}$	${ }^{2359}$
		${ }^{\text {PSIIII6] }}$	250 Tor GF.All 6 ears selectivity (males, pre. 1987)	1	ARrItMM	55.023	1.859	${ }^{66.656}$	2.895	${ }^{66.334}$	${ }_{2}^{2.893}$		${ }_{2}^{2.198}$	66.980	2887	${ }^{75.084}$		74.085	${ }^{3.792}$	${ }^{68.689}$	${ }^{3.566}$	67.233	${ }^{3.528}$	97.560	${ }^{10.758}$	${ }^{72.106}$	${ }^{3.608}$
		$\xrightarrow{\text { psilil] }}$		1		(ent $\begin{aligned} & 59.073 \\ & 80.841\end{aligned}$	${ }_{2}^{4.849}$	89.238 10236	5.266 2.145	89.17 10238 1	5.264 2.128	${ }_{\substack{81.972 \\ 99298}}$	5.257	${ }^{89.237} 10263$	5.273 2.164	115.363 106730	9.310 2.069	1200000 108908	${ }_{2}^{0.001}$	120.000 10868	0.001 2.230	120.000 10897	${ }_{2}^{0.031}$	120.000 120000	0	(120.000	(0.000
		${ }_{\text {psil1 }}$ psil		1	ARITHMETIC	41.200	${ }_{1} .650$	${ }_{40.857}$	${ }_{1.437}$	40.71	${ }_{1} 1.37$	40.000	0.000	41.080	1.429	43.74	1.765	43.411	1.804	43.007	1.784	42894	1.689	120.000	${ }_{0}^{0.005}$	45.065	
		${ }_{\text {pS } 1212]}$	250 for NMFS suners selectivity (males, $1982+$)	1	ARITMMEIC	34.918	${ }_{4.1288}$	68.596	3.072	68.591	3.078	60.336	2.972	69.000	0.001	69.000	0.000	69.000	0.000	69.000	0.000	69.000	0.000	69.000	0.000	69.000	0.000
		${ }^{\text {pS } 120]}$	250 Oor GF.All cears seletivity (males, 1987. 1996)	1	ARITMMETC	40.000	0.000	45.282	3.076	45.217	3.066	${ }^{43.988}$	2.821	44.167	2.666	65.457	${ }^{8.937}$	66.283	6.324	76.786	7.04	75.548	6.923	115.253	10.211	77.433	5.82
		${ }^{\text {p5 } 121]}$	250 tor GF.Allgear selectivit (males, 1977)	1	ARITMMETC	76.113	2.531	85.913	3.251	85.970	3.254	${ }^{86.321}$	3.061	85.73	3.254	${ }_{22} 834$	2.935	${ }^{84,439}$	3.207	90.515	3.904	90.488	3.04	109.945	6.648	${ }^{91.855}$	2921
		${ }^{\text {pS } 122]}$	295 for RKF selectuvity (males, pre-1997)	1	Arithmetic	158.210	6.552	160.734	6.503	160.74	6.501	188.000	0.000	154.103	5.611	155.028	5.936	180.000	0.000	180.000	0.001	188.000	0.000	137.289	43.713	188000	0.001
		${ }^{\text {p51 123] }}$	2955 to RkF selectivit (males, 1997-2044)	1	Artumetic	188.000	0.005	169.077	13.750	169.137	13.762	161.648	14.504	155.116	9.169	155.619	8.713	1599910	12.532	158.960	12.56	160.418	12.732	95.000	0.012	166594	6.109
		${ }^{\text {pS } 124]}$	295 for Ref selectiviry (males, 2055+)	1	Artumetic	188.000	0.000	17.909	7.794	17.948	${ }^{7} 8.80$	166.998	6.956	188.000	0.001	188.000	0.001	170.329	6.635	168.954	${ }^{6.567}$	170.852	6.758	143.617	13.851	173.672	3.17
		${ }_{\text {p51 } 125]}$	295 for Rkf selectivit (femles, pre-1997)	1	ARTHMETC	121572	37.65	117.250	26.030	117.276	26.079	115.304	22.32	108.855	4.256	111.176	11.067	120.973	16.115	119.203	15.417	119.421	15.251	100.000	0.005	123.090	3.966
		${ }^{\text {p } 5126]}$	295 for RTF seleetivity (temales, 1997-2004)	1	Aritmmetic	121.215	53.480	${ }^{117.665}$	46.346	117.650	${ }^{46.434}$	${ }^{120.118}$	54.721	140.000	0.006	140.000	0.013	140000	0.068	${ }^{190.000}$	0.043	140.000	${ }^{0.038}$	${ }^{100.000}$	0.005	119.061	4.363
		${ }^{\text {pS } 1227]}$	295 for RRFs selectivity (females, 205 + +	1	Aritumetic	180.000	0.034	140000	0.130	100.000	0.128	140.000	0.990	1400000	${ }^{0.193}$	${ }^{140.000}$	${ }^{0.025}$	${ }^{133.191}$	${ }_{2}^{23,794}$	${ }^{130.856}$	${ }_{2}^{22910}$	129029	${ }_{21} 13.32$	${ }^{119.271}$	${ }^{27.186}$	${ }^{128.788}$	${ }_{3}^{3.250}$
		${ }^{\text {pS } 128]}$	250 for CCF retention (2005-2009)	1	Aritumetic	138.717	1.632	${ }^{138.372}$	2.241	${ }^{1383.374}$	2.234	${ }^{138.265}$	2.880	${ }^{120.758}$	0.531	${ }^{120.6465}$	${ }^{0.532}$	${ }^{1025641}$	0.524	${ }^{120.651}$	0.526	${ }^{1200567}$	${ }_{0}^{0.524}$	${ }^{139.558}$	${ }_{1}^{1.763}$	${ }^{120.605}$	0.558
		${ }^{\text {p } 51212] ~}$	${ }^{20} 50$ of TCF Petention (2013-2015)	1	ARTHMETIC	${ }_{\text {125037 }}^{1203}$	${ }_{0}^{0.758}$	${ }^{125.122}$	${ }_{0}^{0.758}$	${ }^{125.122}$	${ }_{\substack{0}}^{0.758}$	124.91 57880	-0.759	124.826 100000	${ }_{0}^{0.0006}$	124.675 100.000	0.613 0.000	125.016 10000	0.591 0.000	124.928 10000	0.596 0.000	124973 100000	${ }_{0}^{0.591}$	85.000 9.1806	(0.022		${ }^{0.708} 0$
		${ }_{\substack{\text { pSili] } \\ \text { psil4] }}}$		1		-29,135	${ }_{26,960}^{2.856}$	100.000 4.72	${ }_{63336.000}^{0.000}$	${ }_{\text {10, }}^{10.000}$	${ }_{2736.100}^{0.000}$	57.880 32890	${ }_{\text {226010.000 }}^{\text {2.000 }}$	${ }^{100.000}$	780990000	1720000	${ }_{\substack{0}}^{\substack{0.000 \\ i .21}}$	100.000 1623	${ }_{9}^{0.388}$	${ }_{17237}^{10.000}$	${ }^{0.000} 1$	${ }_{8.786}^{100.000}$	${ }_{7}^{0.090}$	91.806 69.000	${ }_{0}^{1.006}$	100.000 32500	
		pS1[5]	250 for TCC retention (pre- 1991)	1	Arithmetic	137986	0.416	137,306	0.341	137300	0.341	13.4 .746	0.634	137.457	0.331	137.295	${ }_{0} 0.318$	136.992	0.418	136.456	${ }_{0.426}$	136.484	0.420	85.000	0.001	133.270	0.689
		${ }_{\text {pSil16] }}$	250 for TCF Fetention (1991-1996)		ARITHMETC	137.998	0.249	137.842	0.263	137.841	0.263	137.627	0.250	133.548	0.389	138.996	0.394	138.434	0.363	138.224	${ }_{0} .364$	138.423	0.362	85.000	0.001	138322	0.454
		pS1[7]	marvalue		ARITHMEIC	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.884	0.000	4.500	0.000	4.500	0.000	4.500	0.000	4.500	0.000	4.500	0.000	4.500	0.000
		${ }^{\text {pSi } 18]}$	In(25) for TCF selectivit (mates)	1	Aritumetic	4.865	0.008	4.864	0.006	4.864	0.006	4.942	0.008	4.856	0.005	4.855	0.005	4.987	0.006	4.981	0.006	4.986	0.006	${ }^{4.803}$	0.017	4.997	0.007
		${ }^{\text {pSisil] }}$]	${ }^{250}$ Oor TCF selectivity (females)	1	ARITHMETIC	${ }^{965851}$	2.222	94.792	${ }^{2.009}$	${ }^{94.800}$	2.012	94.247	1.955	95.000	${ }_{2}^{2086}$	${ }^{948881}$	1.1904	94,764	2.012	94.779	${ }^{2} 2004$	${ }^{94.850}$	2.202	88.000	${ }^{0.0001}$	${ }^{97267}$	1.048
		${ }^{\text {P S } 212]}$	$295-250$ tor M MFS s sure s selectivy (males, pre-		ARritmm	${ }^{23.936}$	${ }^{3.992}$					24.042												${ }^{312.215}$	${ }^{3.303}$		${ }^{3.771}$
				1	${ }_{\text {ARITHM }}$	0.328	${ }_{0}^{0.063}$	${ }_{0.181}^{0.2661}$	${ }_{0}^{0.092}$	- 0.2 .850	${ }_{0}^{0.042}$	${ }_{0}^{0.209}$	${ }_{0}^{0.050}$	${ }_{0}^{0.179}$	${ }_{0}^{0.039}$	${ }^{0.383}$	${ }_{0}^{0.0938}$	-	-0.044	${ }_{0}^{0.151}$	0.025	${ }_{0}^{0.125}$	${ }_{0}^{0.023}$	0.37 0.100	${ }_{0}^{0.000}$	${ }_{0}^{0.126}$	${ }_{0}^{0.011}$
			ascendinges sipe for SCFs selectivity males, 2005+1	1	ARIT	0.175	0.015	.10	0.011	0.167	0.011	0.166	0.011	0.166	0.010	0.170	0.010	0.170	0.010	0.167	0.010	0.166	0.010	0.134	0.041	0.171	0.006
		p52[13]	slope for SCF selectivity females, pre-1997)	1	Aritumetic	0.220	0.128	0.261	0.179	0.261	0.178	${ }^{0.257}$	0.175	0.366	0.005	0.500	${ }^{0.001}$	0.550	0.001	0.189	0.097	0.200	0.103	0.050	0.000	0.262	0.045
		p52[14]	Slope for Scf selectuviry (females, 1977-2004)	1	ARITMME	0.264	0.129	0.274	0.139	0.274	0.139	${ }^{0.278}$	${ }^{0.141}$	0.252	0.113	0.270	0.108	0.292	0.120	${ }^{0.411}$	0.260	0.397	0.246	${ }^{0.050}$	0.000	0.288	0.041
		${ }^{\text {p2 } 215] ~}$	slope for SCF selectiviry (females, 2005+)	1	ARITMME	0.156	0.049	0.161	0.053	0.161	0.053	${ }^{0.183}$	0.059	0.074	0.006	0.082	0.012	0.081	0.005	0.090	0.015	0.092	0.016	${ }^{0.273}$	${ }_{0} 0.33$	0.140	0.014
		P52216]	slope for GF.All ear selectivit (males, pre-1987)	1	ARITMMETC	0.104	0.010	0.074	0.007	0.074	0.007	0.087	0.009	0.074	0.007	0.063	0.005	0.061	0.006	0.067	0.007	0.067	0.007	0.059	0.008	0.061	0.005
		p52[17]	slope for 6 F. All eara seletetivy (males, 1977-1996)	1	ARITMMETC	0.057	0.012	0.043	0.004	0.043	0.004	0.043	0.004	0.042	0.004	0.039	0.003	0.035	0.002	0.036	0.002	0.035	0.002	0.065	0.004	0.037	0.001
		p5218]	slope for GF.All ears selectivity (males, 1997+)	1	Arithmetic	0.074	0.004	0.060	0.002	0.060	0.002	0.059	0.002	0.059	0.002	0.061	0.002	0.058	0.002	0.059	0.002	0.057	0.002	${ }^{0.066}$	0.003	0.057	0.002
		${ }_{\text {P2 } 2191]}$	Stope for 6 F All 6 ear selectuity (temales, pre-1987)	1	ARTHMETC	0.137	0.022	0.147	0.021	0.147	0.021	0.154	0.021	0.147	0.021	0.123	0.018	0.122	0.018	0.123	0.018	0.127	0.018	0.040	0.005	0.113	0.013
		p522]	295 -50 oro NMFS Suner selectivity males, 1982+)	1	ARITMMETC	75.073	10.254	88.352	5.364	88.435	5.375	87.540	5.77	88.335	4.104	7.994	4.168	85.913	5.270	85.839	5.256	1000000	0.007	28.073	1.872	92.864	5.849
		p5220]	slope for GF.Allicear selectivit (females, 1987-196)	1	ARITMMETC	0.185	0.038	0.110	0.035	0.110	0.035	0.115	0.039	0.118	0.035	0.055	0.013	0.049	0.009	0.040	0.006	0.043	0.006	${ }^{0.064}$	0.009	0.043	0.005
		$\left.{ }^{\text {p } 2[21] ~}\right]$	slope for GFFAll ear selectivit (temaes, 1997)	1	Aritumetic	0.072	0.006	0.062	0.005	${ }^{0.062}$	0.005	${ }^{0.062}$	0.004	0.062	0.005	${ }^{0.075}$	0.005	0.072	0.005	0.066	0.004	0.066	0.004	${ }^{0.082}$	0.008	0.067	0.004
		${ }_{\text {ps2 }}$		${ }_{1}^{1}$			${ }_{0}^{0.0 .162}$	${ }_{\substack{3.097 \\ 3.022}}^{\substack{\text { a }}}$	${ }_{0}^{0.150}$	${ }_{\substack{3.097 \\ 3.03 \\ \hline}}$	0.150 0.199	(3.154 3.322	(0.060	2929 3.218	${ }_{0}^{0.156}$ 0.201		${ }_{0}^{0.159} 0$	${ }_{3.256}^{3.202}$	${ }_{0}^{0.059}$	${ }_{3}^{3.243}$	(0.060	3.204 3.260	${ }_{0}^{0.060}$		${ }_{0.864}^{1.170}$	3.3.331	${ }_{0}^{0.0028}$
				1	ARrITMMITC	${ }^{3.582}$	${ }_{0}^{0.045}$	${ }_{3}^{3.422}$	${ }_{0.104}^{0.199}$	${ }_{3}^{3.423}$	${ }_{0}^{0.104}$	${ }_{\text {3,312 }}^{3.322}$	${ }^{0.2129}$	${ }_{3}^{3.428}$	${ }_{0.036}^{0.021}$	${ }_{\text {3, }}^{3.320}$	${ }_{0}^{0.095}$	${ }_{3}^{3.323}$	${ }_{0}^{0.101}$	${ }_{3}^{3.312}$	${ }_{0.103}^{0.214}$	${ }^{3.260}$ 3,31	${ }_{0}^{0.102}$	${ }^{3.438}$	${ }_{0}^{0.804}$	${ }_{3}^{3.331}$	${ }_{0}^{0.0087}$
		p52[2]	In(295-250) for Rxf selectivis (males, pre-1997)	1	ARITMEIC	2.785	0.684	2.73	0.633	2743	0.633	2.706	0.605	2500	0.011	2.544	0.421	2725	0.373	2.696	0.386	2.702	0.332	4.000	0.000	2773	0.070
		P522[6]	In(295-250) for Reks selectivity (males, 1997.204)	1	ARITMMEIC	2849	0.903	2.818	0.961	2819	0.962	${ }_{2}^{2864}$	1.003	3.455	0.133	${ }_{3}^{3} 379$	${ }_{0} 0.151$	3.517	0.324	3.554	0.313	${ }^{3.544}$	0.309	4.000	0.000	2790	0.096
		2	In(295-250) for RRF selectivity (males, 2005+)		ARITHME	2991	0.220	3.055	0.215	3.055	0.215	${ }^{3.066}$	0.215	3.217	0.103	${ }^{3.137}$	${ }^{0.122}$	3.182	0.393	3.167	0.406	3.111	0.399	${ }^{3.151}$	0.653	2.228	0.049
			Sloe for TCF retentio (2005-2099)	1	ARRITMM	-0.894	${ }_{0}^{0.725}$	${ }_{1}^{1.595}$	${ }^{1.1 .688}$	${ }^{1.095}$	${ }_{1}^{1.1781}$	1.170 0.54 0.	${ }^{2} 2383$	${ }^{0.598}$	${ }_{0}^{0.114}$	${ }^{0.611}$	${ }_{0}^{0.117}$	${ }_{0}^{0.618}$	${ }_{0}^{0.117}$	${ }_{0}^{0.615}$		${ }^{0.626}$	${ }_{0}^{0.119}$	${ }_{2}^{2.000}$	O.0.04	O.668	0.155 0.154 2,
		${ }_{\text {p } p 223]}^{\text {p2] }}$	${ }_{2} 95.5550$ for NMES Sunverselectivity	1	ARITHM	${ }^{\text {39,982 }}$	5.811	${ }_{7} 7.244$	3.972	70.509	4.001	${ }_{4}^{43.747}$	0.000	${ }^{6} 6.239$	${ }_{3.853}$	${ }_{66.428}$	${ }_{3.117}$	${ }_{68,788}$	${ }_{4}^{4.254}$	${ }_{6}^{67.388}$	4.031	66.027	${ }_{3.630}$	${ }_{35.078}^{2000}$	${ }_{2} .295$	54.342	${ }_{2} 2.958$
		ps2[4]	1982+)			100.20	0.002	54	${ }^{82864.000}$	9.667	7266.500	0.194	2742000	7.719	33288.000	100.000	0.000	100.000	0.000	100.000	0	100.000	0.000	54.00	3.441	100.000	000
		ps2[5]	slope for TCF retention (pre	1	ARthm	0.690	0.126	0.772	0.127	0.772	0.127	0.727	0.160	0.782	0.128	0.825	${ }^{0.131}$	0.833	0.132	${ }^{0.825}$	0.132	${ }^{0.823}$	0.131	1.000	0.007	1.000	0.015
		${ }^{\text {p2 } 266] ~}$	slope for TCC Fetention (1997+)	1	ARITHM	${ }^{0.956}$	0.192	1.025	0.277	${ }^{1.024}$	0.27	0.959	0.235	0.891	0.208	${ }^{0.738}$	0.124	0.817	0.175	${ }^{0.818}$	0.172	0.816	0.175	2.000	0.010	0.820	0.240
		${ }_{\text {pre }}^{\text {p } 27]}$	Slope of traf selectivit (\%ales pre-197)	1	ARITMM	0.118	0.006	${ }_{0}^{0.127} 0$	0.006 0.008	0.127 0.169	${ }_{0}^{0.0008}$	0.099 0.171	0.004 0.008	${ }^{0.127}$	0.008	0.133	${ }^{0.0006}$	${ }_{0}^{0.175}$	0.003 0.007	${ }_{0}^{0.085}$	${ }_{0}^{0.008}$	${ }^{0.088}$	${ }_{0}^{0.0003}$	-	0.004 0.000	${ }_{0}^{0.083}$	${ }_{0}^{0.003}$
		${ }_{\text {prem }}$	Slope for Tef se	1	ARITMMEIC	${ }_{0}^{0.187}$	0.019	${ }_{0} 0.192$	${ }_{0.019}$	0.192	0.019	0.194	0.020	0.188	0.019	0.197	${ }_{0}^{0.019}$	0.197	0.019	0.197	0.019	0.196	0.019	${ }^{0.050}$	${ }_{0} 0.000$	0.192	${ }_{0}^{0.007}$
		ps3[1]	Inl(de50-250) for SCF selectivity (maes, pre-1997)	1	ARITHM	${ }^{3.956}$	0.040	${ }^{3.581}$	0.170	${ }^{3.578}$	0.171	${ }^{3.398}$	0.235	3.670	0.148	3.652	0.077	3.676	0.078	2.000	0.000	2000	0.000	2.000	0.008	2000	0.000
		${ }^{\text {pS532] }}$	In(des50-2350) for SCFF selectivity (males, 1997-2044)	1	ARITHM	${ }^{3.730}$	${ }^{0.210}$	${ }_{3}^{3.738}$	0.190	3.778	0.190		${ }^{0.146}$	${ }_{3}^{3} 3715$	0.172	- 3.748	${ }^{0} 0.155$	${ }^{3.886}$	${ }^{0.145}$	${ }_{3}^{3.278}$	${ }^{0.320}$	${ }^{3.133}$	${ }_{0}^{0.352}$	${ }_{2}^{2000}$	- 0.121	2000	${ }_{0}^{0.001}$
		[3]	50.	1	ARTHMEETC	3.466	${ }^{0.082}$	${ }^{3.333}$	${ }^{0.090}$	${ }^{3.334} 0$	0.090 0.000	${ }^{3.344}$	(0.088	3.329 0.100	${ }_{0}^{0.091}$	(3.348 0.138	0	3.378 0.139	${ }^{0.0080}$	3.317 0.100	(0.01	3.315 0.100	(0.105	4.416 0.100	cose	3.367 0.100	${ }_{0}^{0.0051}$
		(42]	dessendins siope forscrs siectuvit (males, pre-	1		O.500	${ }_{0}^{0.081}$	${ }_{0.163}^{0.100}$	${ }_{0.107}^{0.000}$	0.100 0.163	${ }_{0}^{0.1007}$	${ }_{\text {cose }}$	-	${ }_{0} 0.162$	${ }_{0}^{0.000}$	${ }_{\substack{0.138 \\ 0.17}}^{0.0}$	-	${ }_{0} 0.210$	0.156	${ }_{0}^{0.100}$	0.000	0.100	${ }_{0}^{0.000}$	${ }_{0}^{0.100}$	${ }_{0}^{0.001}$	${ }_{0}^{0.100}$	0.000
		${ }^{\text {PS4 [3] }}$	essending siope for SCF selectivity (mates, 2005+1	1	ARTMMETC	0.185	0.024	0.191	0.026	0.191	0.026	0.195	0.026	0.188	0.026	0.193	0.027	0.192	0.028	0.184	0.028	0.182	0.028	0.350	${ }^{62.038}$	0.190	0.016

Table B.11. Estimated fishery and survey-related model parameter values and standard deviations for the B model scenarios.

	process	name	label	Scenarios				$\begin{aligned} & \text { porfr } \\ & \text { para. } \\ & \text { ave } \end{aligned}$	stad dev.		sta. dev.	$\begin{gathered} \text { Boa } \\ \text { param. } \\ \text { palue } \end{gathered}$	sta. dev.	$\begin{gathered} \text { Bob } \\ \text { param. } \\ \text { value } \end{gathered}$	sta. dev.	$\begin{gathered} \text { boc } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { Boam } \\ \text { param. } \\ \text { value } \end{gathered}$	sta d	$\begin{gathered} \text { B1 } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	sta. dev.	$\begin{gathered} \text { B1b } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std	$\begin{gathered} \text { Bicic. } \\ \text { para., } \\ \text { value } \end{gathered}$	stad dev.
tegory				index	$\underset{\substack{\text { parameter } \\ \text { scale }}}{\text { a }}$	$\begin{gathered} \text { Bo } \\ \text { param. } \end{gathered}$	stad dev.																		
fisheries	fisheries	pDCC[1]	TCF: female offiset	1	ARTHMEETIC	${ }^{\text {2, } 2323}$	0.304	${ }^{-1.193}$	0.580	-2.110	0.230	${ }^{-2} 307$	${ }_{0} 0.000$	${ }^{-3.585}$	0.492	${ }^{-3.592}$	${ }_{0}^{0.493}$	-2029	0.292	-2.445	${ }^{0.320}$	${ }^{-3.687}$	0.531	${ }^{-3.653}$	${ }_{0} 0.000$
		pOCC[2]	sCF: female offiset	1	Arithmetic	-1.759	0.151	${ }^{1.843}$	0.301	-1.940	0.116	-1.734	0.000	-1.721	0.152	-1.722	0.151	-1.499	0.156	${ }_{-1.773}$	0.155	-1.716	0.153	-1.712	0.000
		${ }^{\text {pOCL } 23]}$	GTF: female offset	1	ARITMMETIC	-0.956	0.072	-0.447	0.341	-0.881	0.060	-0.990	0.000	-0.931	0.073	-0.931	0.070	-0.704	0.061	-1.025	0.081	-0.926	0.074	-0.922	0.000
		pOC2[4]	RKF: female offiset	1	Arithmetic	-0.335	2.864	4.084	${ }^{3.438}$	- 1.575	1.038	-0.779	0.000	-2.854	2304	-2.857	2.310	-0.414	4.626	-0.958	2.728	-2.866	2.323	-2.855	0.000
		pHM[1]	handing mortality for pot fisheries	1	ARITMETIC	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	${ }^{0.321}$	0.000
		${ }^{\text {PHMM[2] }}$	handling moralility for groundifish traw fisheries	1	ARTHMETIC	0.880	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.880	0.000	0.800	0.000	0.880	0.000	0.800	0.000
		plitret[1]	TCF: Iogitscale max retention (pre-1997)	1	ARTHMETIC	14.999	2.251	${ }^{14.986}$	54.419	15.000	1.650	${ }^{14.999}$	${ }^{0.0000}$	${ }^{14.999}$	${ }_{2}^{2.457}$	14.999	2.455	14.999	2.309	14.999	${ }_{2}^{2.319}$	${ }^{14.999}$	${ }_{2}^{2.433}$	14.999	${ }^{0.0000}$
		pletret[2]	TCF: logitscale max retention (2005-2009)	1	ArITMMETIC	2.011	1.197	14.147	3419.700	1.559	${ }_{1}^{1.104}$	2.017	${ }^{0.000}$	2.695	2317	2.697	${ }_{2}^{2} 320$	1.966	1.178	1.982	${ }^{1.193}$	2.660	2.232	2.659	${ }^{0.000}$
		pletret[[3]	TCF: logitscale max retention (2013-2015)	1	ARITHMETIC	4.159	2.554	14.407	3667.800	5.076	5.520	4.003	0.000	4.485	3.547	4.474 .2996	3.506 0.000	4.219	2.735 0.000	(4.887	5.410	4.338	3.227 0.000	4.389 -2996	0.000 0.000
		${ }_{\substack{\text { plncli] } \\ \text { phncl2] }}}$	TCF: base capure ate, pre-1965 $(=0.05)$ TCF: base eapure	1	ARITHMETIC ARITHMETIC	- ${ }_{\text {- }}^{\text {- } 2.396}$	${ }_{0}^{0.000} 0$	${ }_{-1.036}^{-2.96}$	${ }_{0}^{0.000}$	- ${ }_{-}^{2.496}$	${ }_{0}^{0.000}$	- ${ }_{\text {- }}^{\text {- } 1.396}$	${ }_{0}^{0.0000} 0$	- ${ }^{-2.996}$	${ }_{0.131}^{0.000}$	-	- ${ }_{0}^{0.000}$	-	${ }_{0}^{0.000}$	${ }_{-1.389}$	${ }_{0}^{0.086}$	${ }^{2}$	${ }_{0}^{0.000}$	-	${ }_{0}^{0.0000}$
		plncl3]	SCFF: base capture ate, pre- $1978(=0.01)$	1	ARTHMETIC	-4.605	0.000	${ }^{-4.605}$	0.000	-4.605	0.000	${ }^{-4.605}$	0.000	${ }^{-4.605}$	0.000	-4.605	0.000	-4.605	0.000	${ }^{-4.605}$	0.000	${ }^{-4.605}$	0.000	${ }^{-4.605}$	0.000
		PLnc[4]	SCF: base capure rate, 1922+	1	ARITHMETIC	-2.834	0.102	-1.200	${ }^{0.233}$	-2910	0.087	-2.829	0.000	-3.082	0.189	${ }^{-3.076}$	0.189	${ }^{-3.121}$	0.135	${ }^{-3.3035}$	${ }^{0.123}$	-3.144	0.186	${ }^{-3.150}$	0.000
		plnct ${ }^{\text {a }}$	dummy Capture rate	1	Arthmetic	4.181	0.000	-4.181	0.000	-4.181	0.000	${ }^{-4.181}$	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	${ }^{-4.181}$	0.000
		plncla]	GTF: base capture ate, All YEARS	1	Arithmetic	-4.331	0.065	-3.597	0.108	-4.461	0.065	-4.333	0.000	-4.412	0.075	-4.408	0.075	-4.616	0.072	-4.504	0.072	-4.469	0.077	-4.471	0.000
		plncr]	RKFF : base capture ate, pre-. 1953 ($=0.02$)	1	Arithmetic	-3.912	0.000	-. 3.912	0.000	-3.912	0.000	-3.912	0.000	- 3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	- 3.912	0.000	-3.912	0.000
		plncle]	RKF: base capture ate, $1992+$	1	ARITMETIC	-3.958	0.162	${ }^{-3.326}$	0.486	-3.935	0.149	-3.968	0.000	.5.261	2.880	-5.267	${ }^{32.962}$	-4.248	0.166	-4.060	0.165	-5.362	140.070	-5.34	0.000
suneys	sunees	pol1]	NMES traw surex. males, 1975 -1981	1		-0.693	0.000	-0.644	0.166	-0.693	0.000	-0.691	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000
		pal2]	NMFS Strwi sunere: males, $1982+$	1	106	-0.443	0.054	-0.108	0.049	-0.580	0.056	-0.443	0.000	-0.474	0.053	-0.469	0.053	-0.780	0.067	-0.614	0.066	-0.337	0.057	-0.540	0.000
		pal3]	NMFS traw s surey. females, 1975.1981	1	106	-0.693	0.000	0.001	0.004	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	${ }^{-0.693}$	0.000	${ }^{0.693}$	0.000	${ }^{-0.693}$	0.000
		pal4]	NMFS traw s suree: females, 1982+	1	106	-0.911	0.073	-0.131	0.055	-0.999	0.07	-0.882	0.000	-0.899	0.074	-0.896	0.070	-0.911	0.000	${ }_{-1.182}$	0.092	-0.965	0.079	-0.958	0.000

Table B.12. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the C model scenarios.

tegory	process	name	label	index	parameter	Scenarios		$\begin{gathered} \text { co } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { coa } \\ \begin{array}{c} \text { param. } \\ \text { value } \end{array} \end{gathered}$	std. dev.	$\begin{gathered} \text { cob } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { coc } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { C1 } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.	$\begin{gathered} \text { clb } \\ \begin{array}{c} \text { param. } \\ \text { value } \end{array} \end{gathered}$	std. dev.	$\begin{gathered} \text { cle } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.
						$\begin{gathered} \text { Bo } \\ \hline \begin{array}{c} \text { param. } \\ \text { value } \end{array} \end{gathered}$	std. dev.														
fisheries	fisheries	pDC2[1]	TCF: female offset	1	ARITHMETIC	-2.323	0.304	-2.773	0.329	${ }^{-2.774}$	0.332	-4.362	0.574	${ }_{-4.026}$	0.000	${ }^{-2.723}$	0.328	-4.822	0.539	-4.228	0.743
		pDC2[2]	SCF: female offset	1	ARITHMETIC	-1.759	0.151	-1.907	0.159	-1.910	0.160	-1.907	0.156	-1.864	0.000	-1.900	0.160	-2.293	0.239	-1.855	0.154
		pDC2[3]	GTF: female offset	1	ARITHMETIC	-0.956	0.072	-1.279	0.087	-1.276	0.089	-1.247	0.090	-1.111	0.000	-1.269	0.084	-1.266	0.092	-1.112	0.075
		pDC2[4]	RKF: female offset	1	ARITHMETIC	-0.835	2.864	-1.245	2.770	-1.246	2.790	-3.476	2.439	-3.252	0.000	-1.232	2.769	-3.543	2.449	-.3.315	2.327
		PHM[1]	handling mortaility for pot fisheries	1	ARITHMETIC	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000
		PHM[2]	handing mortality for groundifish trawl fisheries	1	ARITHMETIC	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000
		plgtret[1]	TCF: logit-scale max retention (pre-1997)	1	ARITHMETIC	14.999	2.251	14.999	2.245	14.999	2.272	14.999	2.503	14.999	0.000	14.999	2.203	14.999	2.404	14.999	2.327
		plgtRet[2]	TCF: logit-scale max retention (2005-2009)	1	ARITHMETIC	2.011	1.197	1.956	1.176	1.956	1.177	2.823	2.687	2.457	0.000	1.904	1.125	2.895	2.895	2.852	2.726
		plgtret[3]	TCF: logit-scale max retention (2013-2015)	1	ARITHMETIC	4.159	2.554	14.925	278.860	14.199	541.770	14.971	114.320	4.746	0.000	14.897	380.770	14.973	104.660	4.816	5.303
		plnc[1]	TCF: base capture rate, pre-1965 ($=0.05$)	1	ARITHMETIC	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000
		plnc[2]	TCF: base capture rate, $1965+$	1	ARITHMETIC	-1.355	0.085	-1.495	0.086	-1.511	0.086	-1.039	0.231	-0.951	0.000	-1.439	0.077	-0.734	0.156	-0.831	0.125
		plnc[3]	SCF: base capture rate, pre-1978 $(=0.01)$	1	ARITHMETIC	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000
		${ }^{\text {pLnc[4] }}$	SCF: base capture rate, 1992+	1	ARITHMETIC	-2.834	0.102	${ }^{-3.122}$	0.114	-3.150	0.116	-3.308	${ }^{0.188}$	-3.129	0.000	-3.199	0.115	${ }^{-3.316}$	0.187	-3.207	${ }^{0.184}$
		plnc[5]	dummy Capture rate	1	ARITHMETIC	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000
		${ }^{\text {p Lnc[6] }}$	GTF: base capture rate, ALL YEARS	1	ARITHMETIC	-4.331	0.065	-4.508	0.075	-4.531	0.075	-4.531	0.081	-4.417	0.000	-4.573	0.067	-4.618	0.078	-4.480	0.079
		plnc[7]	RKF: base capture rate, pre-1953 ($=0.02$)	1	ARITHMETIC	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000
		plncl8]	RKF: base capture rate, 1992+	1	ARITHMETIC	-3.958	0.162	-4.037	0.169	-4.057	0.169	-5.375	21.687	-5.439	0.000	-4.120	0.162	-5.410	79.171	-5.367	1.224
sureys	surveys	pQ[1]	NMFS traw survey: males, 1975-1981	1	LOG	-0.693	0.000	${ }^{-0.693}$	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000
		pQ[2]	NMFS trawl survey: males, 1982+	1	LOG	-0.443	0.054	-0.709	0.066	-0.733	0.068	-0.683	0.061	-0.532	0.000	-0.792	0.052	-0.797	0.051	-0.604	0.059
		pQ[3]	NMFS trawl surve: females, 1975-1981	1	${ }^{106}$	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	${ }^{-0.693}$	0.000	-0.693	0.000	${ }^{-0.693}$	${ }^{0.000}$
		pa[4]	NMFS trawl surver: females, 1982+	1	Log	-0.911	0.073	-1.533	0.078	-1.565	0.087	-1.479	0.074	-1.206	0.000	-1.609	0.000	-1.609	0.002	-1.278	0.075

Table B.13. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the D model scenarios.

category	process	name	label	index	$\begin{gathered} \text { parameter } \\ \text { scale } \end{gathered}$	Scenarios		$\begin{gathered} \text { Do } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { Doa } \\ \begin{array}{c} \text { param. } \\ \text { value } \end{array} \end{gathered}$	std. dev.	$\begin{gathered} \text { Dob } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { Doc } \\ \begin{array}{c} \text { param. } \\ \text { value } \end{array} \end{gathered}$	std. dev.	$\begin{gathered} \text { D1 } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.	$\begin{gathered} \text { D1b } \\ \begin{array}{c} \text { param. } \\ \text { value } \end{array} \\ \hline \end{gathered}$	std. dev.	$\begin{gathered} \text { Dic } \\ \text { param. } \\ \text { value } \end{gathered}$	std. dev.
						$\begin{gathered} \text { Bo } \\ \substack{\text { param. } \\ \text { value }} \end{gathered}$	std. dev.														
fisheries	fisheries	pDC2[1]	TCF: female offset	1	ARITHMETIC	-2.323	0.304	${ }^{-3.099}$	${ }^{0.277}$	-3.097	0.277	${ }^{-4.679}$	0.284	-4.592	0.000	${ }^{-3.049}$	0.275	-4.619	0.281	${ }^{4.561}$	0.274
		pDC2[2]	SCF: female offset	,	ARITHMETIC	-1.759	0.151	-2.252	${ }^{0.188}$	-2.251	0.189	-2.439	0.267	-2.444	0.000	-2.235	0.190	-2.391	0.245	-2.391	0.239
		pDC2[3]	GTF: female offset	1	ARITHMETIC	-0.956	0.072	-1.094	0.072	-1.089	0.072	-1.057	0.074	-0.904	0.000	-1.077	0.072	-1.065	0.075	-0.980	0.069
		pDC2[4]	RKF: female offset	1	ARITHMETIC	-0.835	2.864	-1.842	2.006	-1.838	2.012	-3.659	1.763	-3.553	0.000	-1.813	2.013	-3.617	1.774	-3.561	1.698
		PHM[1]	handling mortality for pot fisheries	1	ARITHMETIC	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000	0.321	0.000
		pHM[2]	handling mortailit for groundifis trawl fisheries	1	ARITHMETIC	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000	0.800	0.000
		plgtret[1]	TCF: logit-scale max retention (pre-1997)	1	ARITHMETIC	14.999	2.251	14.999	2.119	14.999	2.116	14.999	2.455	14.999	0.000	15.000	1.940	14.999	2.496	14.999	2.269
		plgtret[2]	TCF: logit-scale max retention (2005-2009)	1	ARITHMETIC	2.011	1.197	2.289	1.558	2.285	1.553	4.286	10.871	3.494	0.000	2.222	1.465	4.232	10.357	3.543	5.169
		plgtet[3]	TCF: logit-scale max retention (2013-2015)	1	ARITHMETIC	4.159	2.554	14.923	387.370	14.203	1683.800	14.961	148.070	4.846	0.000	7.932	117.570	14.965	133.180	5.693	12.271
		plnc[1]	TCF: base capture rate, pre-1965 ($=0.05$)	1	ARITHMETIC	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000	-2.996	0.000
		plnc[2]	TCF: base capture rate, $1965+$	1	ARITHMETIC	-1.355	0.085	-1.557	0.074	-1.560	0.074	-0.780	0.145	-0.744	0.000	-1.487	0.069	-0.764	0.096	-0.776	0.087
		pLnc[3]	SCF: base capture rate, pre-1978 ($=0.01$)	1	ARITHMETIC	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000	-4.605	0.000
		plnc[4]	SCF: base capture rate, 1992+	1	ARITHMETIC	-2.834	0.102	-3.100	0.154	-3.105	0.154	-3.188	0.204	-2.982	0.000	-3.112	0.168	-3.267	0.199	-3.117	0.199
		plnc[5]	dummy Capture rate	1	ARITHMETIC	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	-4.181	0.000	${ }^{-4.181}$	0.000
		pLnc[6]	GTF: base capture rate, ALL YEARS	1	ARITHMETIC	-4.331	0.065	-4.604	0.059	-4.607	0.059	-4.573	0.075	-4.419	0.000	-4.621	0.059	-4.629	0.077	-4.519	0.074
		plnc[7]	RKF: base capture rate, pre-1953 ($=0.02$)	1	ARITHMETIC	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000	-3.912	0.000
		plnc[8]	RKF: base capture rate, 1992+	1	ARITHMETIC	-3.958	0.162	-4.114	0.164	-4.119	0.163	-5.468	23.119	-5.653	0.000	-4.150	0.163	-5.560	103.420	-5.909	25.466
surveys	surveys	pa[1]	NMFS traw surey: males, 1975-1981	1	LOG	-0.693	0.000	${ }^{-0.693}$	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000	-0.693	0.000
		pQ[2]	NMFS traw survey: males, 1982+	1	Log	-0.443	0.054	-0.829	0.042	-0.834	0.042	-0.736	0.053	-0.574	0.000	-0.859	0.043	-0.809	0.057	-0.682	0.051
		pQ[3]	NMFS Srawl surver: females, 1975-1981	1	Log	-0.693	0.000	-0.564	0.076	-0.559	0.076	-0.526	0.080	-0.693	0.000	-0.535	0.076	-0.538	0.080	-0.693	0.000
		pal4]	NMFS trawl surver: females, 1982+	1	Log	-0.911	0.073	${ }^{-1.609}$	0.000	-1.609	0.000	-1.498	0.060	-1.197	0.000	-1.609	0.000	-1.576	0.064	${ }^{-1.361}$	${ }^{0.057}$

Table B.14. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the E model scenarios.

Table B.15. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the F and G model scenarios.

ateen						80																cobe				coneemi	
	moxess	name	babel	matex	parameet	mam.	dev.	$\substack{\text { param. } \\ \text { vale }}$	stadev.		stadeu		stadev	diam.	stad dex	coin	stad dev.	mamm	stadev.	mame	staden	param.	stad dev.	comat	stadev.	come	stad dev.
		poclil				${ }^{2323}$	${ }^{0.34}$	${ }^{3.369}$	${ }^{0.261}$	${ }^{3} 3012$	${ }^{0227}$	${ }^{4.485}$	${ }^{027}$	2.358	0.173	. 2355	0.164	2881	0.176	2388	0.175	2813	0.17	3997	${ }^{0.107}$	2207	${ }^{0.127}$
		(pocliz	GTF: Emale		Aatrimelc		(0.151	${ }_{1}^{2} 12085$	${ }_{\substack{0 \\ 0.188 \\ 0.076}}$	- 2.2068	(1289	${ }_{\text {- }}^{21283}$	${ }_{\substack{0 \\ 0.022 \\ 0.05}}$	- 1.1398	${ }_{0}^{0.157}$		$\underbrace{0}_{\substack{0.199 \\ 0.094}}$. 1.1382			${ }_{\substack{0 \\ 0.209 \\ 0.09}}$	${ }_{21236}^{2318}$				(3050	
		pociel	Rex: timane ofster		Aartumer	0.835	${ }^{2864}$	${ }_{\text {- } 18588}$	${ }_{2}^{2002}$	${ }^{2} 1.1850$	${ }^{2006}$	${ }_{\text {- }}$	-	-1289	0.as1	${ }_{1}^{12458}$	0.593	${ }_{2} 2081$	${ }^{1126}$	${ }^{2237}$	2039	${ }_{2123}$	${ }^{1018}$	2850	037	${ }_{1}$	0.208
			handirem			-	-0,000	-	(o.000	(ise	-	0,300	-	-	-0.000	O.500	-0,	O.500	-0.000	${ }_{0} 0.50$	-0,	${ }^{0.50}$	-0,000	cosom	-0.000	¢	-0,
		cteretil				${ }^{19019}$	${ }_{\substack{231 \\ 1 \\ 1.98}}$	${ }_{\substack{15000 \\ 1.83}}$	${ }_{\substack{1.298 \\ 0978}}$	${ }_{1}^{15000}$		${ }_{2 \text { 2030 }}^{15000}$	${ }_{\substack{1.838 \\ 1.65}}^{\text {a }}$	${ }_{12885}^{1999}$	$\underset{\substack{3106 \\ 25192}}{\substack{\text { a }}}$	${ }_{\text {la }}^{12.999}$	${ }_{2}^{202150}$	${ }_{1}^{12970} 1$	${ }_{\substack{\text { Rassas } \\ \text { 18sao }}}$		${ }_{\substack{12798 \\ 4496}}^{\substack{\text { a }}}$	${ }_{1}^{199997}$	${ }_{\text {len }}^{109012}$	${ }_{0}^{0.935} 1$	${ }_{\text {2Sasa }}^{0.060}$		
		ctiole			${ }_{\text {Aarr }}$		2000	${ }_{\text {cher }}^{4.129}$	${ }_{\substack{2524 \\ 0.000}}$	${ }_{.2117}^{4.178}$		(.2989	${ }_{\substack{12482 \\ 0.000}}$	${ }_{2}^{12998}$	(14.988 0.008	90085	$\substack{14.69 \\ 0.000}$	comb	${ }_{0}^{12990}$	${ }_{\substack{27.186 \\ 0.000}}$	${ }^{12993}$	$\substack{26173 \\ 0.00}$	${ }_{\substack{1372}}^{\substack{000}}$	(0,	${ }_{\substack{11993 \\ 0.00}}$	come
						- 1.1358	${ }^{\text {ooses }}$	${ }^{1.13975}$	${ }^{0.067}$	${ }_{\text {- }} .12385$	边	${ }^{0.0999}$	${ }^{0.105}$	${ }^{-1} 4098$	${ }^{0.002}$	1739	-073	${ }_{\text {- }}^{\text {.1812 }}$	0	${ }^{\text {a }}$	-1.03	${ }^{\text {-20888 }}$	${ }^{0.183}$	${ }^{0} 0.458$	-1.133	${ }^{0.880}$	${ }_{\substack{0 \\ 0.203 \\ \\ 0200}}$
		puccas	Scibisece		Antran	${ }^{212384}$	-	${ }_{-2035}$	${ }^{0.101}$	${ }^{2936}$	(001	,	-	ci.cers	-0006	${ }^{3} 3238$	-		-0,	${ }^{2} 2819$	-0,03	${ }^{2} 283$	${ }^{0.107}$	${ }^{\text {-0,888 }}$	${ }^{0.238}$	${ }^{2736}$	${ }^{0.009}$
						4.431	${ }^{\text {cous }}$	${ }_{.}^{4.438}$	coios	${ }^{\text {4.3814 }}$	${ }^{\text {dosp }}$	4,183	${ }_{\text {a }}^{0.0067}$	${ }_{4}^{4} 4.381$	Oos	238	O.05	- 430	${ }^{0.009}$	4293	${ }^{\text {a,0as }}$	4.300	Oen	${ }^{303080}$	0.096	4364	0.09
					${ }^{\text {ARerther }}$ ARm	-3912	cose	${ }^{.31212}$	${ }^{0.005}$	912	(oics	,	${ }_{20}^{0.000}$	(.3128	-0.002	000	${ }^{0.005}$	-51909	-	coses	${ }_{\substack{0 \\ 0.000 \\ 0.35}}$	-	${ }^{\text {doas }}$	${ }_{\text {ckis }}$	-0,49	${ }_{5}$	${ }^{\text {a }}$
unes	suner	poll			${ }^{106}$	${ }^{\text {O.0.43 }}$	${ }_{0}^{0.000}$	${ }_{0}^{-0.633}$		$\stackrel{.063}{-0.684}$	${ }^{\text {a }}$		(0,008	-0.033	${ }_{0}^{0.000}$	${ }_{-0.083}^{0.085}$	-0.000	-0.093	${ }_{0}^{0.000}$	${ }^{\text {-0,033 }}$	${ }^{0.000}$	${ }_{\text {- }}^{\text {-0.738 }}$	-0,006	${ }_{0}^{0.025}$	0	${ }_{0}^{0.093}$	-0.004
			St taw smex. Emantes, 195 [1981			0.093	0.000	${ }_{\text {l }}^{1.0582}$	0.063	.0332			0.000	-0.991			0.000				0.064			0.001			

Appendix C: Model Parameters At Bounds

This appendix includes tables of model parameters, by model scenario, that were estimated at their bounds. These tables are also provided as an Excel spreadsheet ("ParamsAtBounds.xlsx") in the supplementary online material.

Table C.1. Model parameters at bounds for model scenarios ("case") B0, B0-Fr, B0-McI, B0a, B0b, B0c, B1, B1b, B1c, C0, C0a, C0b, C0c, C1, C1b, C1c, D0, D0a, D0b, D0c, D1, D1b, and D1c. Blue highlighting (value=1) indicates the parameter was at or near the upper bound; red highlighting (value=-1) indicates the parameter was at or near the lower bound. The final row gives the total number of parameters at one of their bounds for each model scenario.

Sum of test_val category fisheries	process	name	label	index	parameter_scale	min_param	max_param	$\begin{aligned} & \text { case } \\ & \text { BO } \end{aligned}$		Bo-Mcl B				9 B_{1}											OC D1 D1b Dic		
	- fisheries	- plgtret[1]	TCF: logit-scale max retention (pre-1997)		1 - ARITHMETIC	\bigcirc	15	1		1	1	1	1	1	1	1	11	1	1	11		1	1	1	1	1	1
- population processes	-growth	- pGrBeta [1]	- both sexes	-1	- ARITHMETIC	$\bigcirc 0.5$	1		-1								1		1	1		1	11	1	1	1	$1 \quad 1$
	maturity	- pletprM2M[1]	- males (entire model period)	-32	- ARITHMETIC	-15	15	1	1	1	1	1	1	1	1	1	11	1	1	1	1	1	11	1	1	1	1
		- plgtPrM2M[2]	- females (entire model period)		1- ARITHMETIC	--15	15	-1	1	-1	1	-1	-1	-1	-1	-1	-1	-1	-	-1	-1	-1	-1-1	-1	-1	-1	1
- selectivity	- selectivity	- pDevss1[1]	- $\ln (250$ devs) for TCF selectivity (males, 1991+)	-4	4 - ARITHMETIC	$\bigcirc-0.5$	0.5																				1
		opS1[1]	-250 for NMFS survey selectivity (males, pre-1982)		1- ARITHMETIC	$\bigcirc 0$	90		1						1		1	1	1	1	1		11	1		1	1
		-pS1[12]	-ascending 250 for SCF selectivity (males, 2005+)		1. ARITHMETIC	-40	140		1																		
		-pS1[19]	-250 for GF.AllGear selectivity (males, pre-1987)		1- ARITHMETIC	. 40	120				-1							-1	-1	-1-1		-1			-1		
		-pS1[20]	-250 for GF.All Gear selectivity (males, 1987-1996)		1. ARITHMETIC	-40	250	-1		-1	-1	-1	-1	-1	-1	-1	-1-1	-1	1	-1-1	-1	-1	$1-1$	-1	-1	-1	-1 1 -1
		-pS1[22]	- 295 for RKF selectivity (males, pre-1997)		1- ARITHMETIC	-95	180		-1			1	1			1	1		1	1	1	1		1	1		11
		-pS1[23]	- 295 for RKF selectivity (males, 1997-2004)	1	1. ARITHMETIC	-95	180	1	1	1	1	1	1	1	1	1	1			1			$1 \quad 1$			1	
		-pS1[24]	- $\quad 295$ for RKF selectivity (males, $2005+$)		1- ARITHMETIC	-95	180		11	1	1	1	1	1	1	1	11	1		1			11	1		1	1
		-pSS[27]	- 295 for RKF selectivity (females, 2005+)		1. ARITHMETIC	-100	140	1	1	1	1	1	1	1	1	1	11	1	1	11	1	1	11	1	1	1	1
		opS1[3]	- 250 for NMFS survey selectivity (females, pre-1982)		1- ARITHMETIC	-. 200	100																11	1		1	1
		- PS 14]	$\bigcirc 250$ for NMFS survey selectivity (females, 1982+)		1. ARITHMETIC	-. 50	69										-1	-1	-1	1	-1		-1 1	-1		-1	- 1
		- pS1[5]	-250 for TCF retention (pre-1991)		1- ARITHMETIC	-85	160		-1																		
		-pS2[11]	ascending slope for SCF selectivity (males, 1997-2004)		1. ARITHMETIC	0.1	0.5		-1																		
		-pS2[13]	- slope for SCF selectivity (females, pre-1997)		1- ARITHMETIC	-0.05	0.5		1																		
		- p $52[2]$	- $295-250$ for NMFS survey selectivity (males, 1982+)	1	1 - ARITHMETIC	\bigcirc	100							1			1	1	1	1	1	1	1	1		1	11
		-pS2[25]	- In(295-250) for RKF selectivity (males, pre-1997)		1- ARITHMETIC	-2.5	4		-1																		
		-pS2[26]	- In(295-25) for RKF selectivity (males, 1997-2004)		1. ARITHMETIC	-2.5	4		-1																		
		-pS2[27]	- In(295-250) for RKF selectivity (males, 2005+)		1- ARITHMETIC	-2.5	4		-1																		
		-pS2[4]	-295-250 for NMFS survey selectivity (females, 1982+)	1	1. ARITHMETIC	\bigcirc	100	1	1	1	1	1	1	1	1	1	11	1	1	11	1	1	11	1	-1	1	11
		-ps2[6]	- slope for TCF retention (1997+)		1- ARITHMETIC	-0.2	2		1																		
		- pS3[2]	-In(dz50-a250) for SCF selectivity (males, 1997-2004)		1. ARITHMETIC	\bigcirc	4.5		-1																		
		- pS4[1]	-descending slope for SCF selectivity (males, pre-1997)		1- ARITHMETIC	-0.1	0.5	1	1	-1	1	1	1		1	1	11	1	1	1	-1	1	-1-1	-1	-1	-1	-1
		-ps4[2]	descending slope for SCF selectivity (males, 1997-200	1	1. ARITHMETIC	0.1	0.5		1																		
osurveys	esurveys	-pal1]	- NMFS trawl survey: males, 1975-1981		1-LOG	-0.0.6931472	0.0009995	-1		-1		-1	-1	-1	-1	-1		-1	-1	-1-1	-1	-1	-1-1	-1	-1	-1	-1 1
		-pQ[3]	- NMFS trawl surve: females, 1975-1981	1	1. LOG	-0.6931472	0.0009995	-1	1	-1	-1	-1	-1	-1	-1	-1	-1-1	-1	-1	-1-1	-1	-1			-1		
		-pQ[4]	-NMFS trawl survey: females, 1982+	-1	- Log	-1.6094379	0													-1	-1		$1{ }^{-1}$			-1	
total number of parameters								11	18	11	11	12	12	1112	12	12	1214	14	15	1315	14	1316	1616	15	12	16	1614

Table C.2. Model parameters at bounds for model scenarios ("case") B0, E0, E0a, E0b, E0c, E1, E1b, E1c, F0, F0a, F0c, G0, G0a, G0b, G0bd, G0bde, G0bde-Fr, G0bde-McI. Blue highlighting (value=1) indicates the parameter was at or near the upper bound; red highlighting (value=-1) indicates the parameter was at or near the lower bound. The final row gives the total number of parameters at one of their bounds for each model scenario.

Sum of test_val category	process	name	label	index	parameter_scale	min_param	max_param	$\begin{aligned} & \text { case } \\ & \text { B0 } \end{aligned}$		Ea	EOb											Gobde	GObde-Fr
fisheries	. fisheries	- plgtRet[1]	- TCF: logit-scale max retention (pre-1997)		- ARITHMETIC	0	15		11	1	1	1	1	1	11	1	1	1	1				
		-pLgtRet[3]	- TCF: logit-scale max retention (2013-2015)		- ARITHMETIC	$\bigcirc 0$	15											1					
population processes	growth	-pGrBeta[1]	both sexes		1 ARITHMETIC	0.5	1		1	1	1	11	11	11	1	1	1	1	1	1	1	1	-1
	- maturity	- plgtPrM2M[1]	- males (entire model period)	- 24	- ARITHMETIC	--15	15															1	1
				-32	- ARITHMETIC	-15	15		11	1	1	11	11	11	11	1	1	1	1	1	1		
		- pLgtPrM2M[2]	- females (entire model period)		- ARITHMETIC	-15	15		$1-1$	-1	-1	-1	-1-1	-1	1 -1	-1	-1	-1	-1	-1	-1		
- selectivity	- selectivity	- pDevs 1 [1]	In(250 devs) for TCF selectivity (males, 1991+)	1	- ARITHMETIC	0.0 .5	0.5													1	1	1	-1
				-4	- ARITHMETIC	-0.0.5	0.5					1		11			1						
				- 5	- ARITHMETIC	-0.5	0.5													1	1	1	1
				-14	- ARITHMETIC	-.0.5	0.5																-1
		-pS1[1]	- 250 for NMFS survey selectivity (males, pre-1982)		- ARITHMETIC	0	90		1	1	1				1	1		1	1	1	1	1	1
		-pS1[10]	- ascending 250 for SCF selectivity (males, pre-1997)		1 - ARIthmetic	-40	140																1
		-pS1[12]	ascending 250 for SCF selectivity (males, 2005+)		1 - ARITHMETIC	-40	140																1
		opS1[14]	- ascending 250 for SCF selectivity (females, 1997-2004]	$\bullet 1$	1 - ARIthmetic	- 50	120																1
		-pS1[15]	ascending 250 for SCF selectivity (females, 2005+)		1 - ARITHMETIC	-50	120											1		1			
		-pS1[17]	O250 for GF.AllGear selectivity (males, 1987-1996)	-1	1 - ARITHMETIC	-40	120													1	1	1	1
		-pS1[18]	$\bigcirc 250$ for GF.AllGear selectivity (males, 1997+)		1 ARITHMETIC	-40	120																1
		opS1[19]	- 250 for GF.AllGear selectivity (males, pre-1987)	-1	1 - ARITHMETIC	-40	120		-1	-1	-1	-1-1	-1 -1	-1			- 1						1
		- -SS1[2]	- 250 for NMFS survey selectivity (males, 1982+)		1 ARITHMETIC	0	69											1	1	1	1	1	1
		opS1[20]	- 250 for GF.AllGear selectivity (males, 1987-1996)		1 - ARITHMETIC	-40	250	-1	1														
		-pS1[22]	${ }^{\circ} 995$ for RKF selectivity (males, pre-1997)		1 - ARITHMETIC	-95	180				1	1		11	1		1			1	1	1	
		opS1[23]	-295 for RKF selectivity (males, 1997-2004)		1- ARITHMETIC	-95	180		1														-1
		-pS124]	- 295 for RKF selectivity (males, 2005+)		1 - ARITHMETIC	-95	180		1	1			1					1	1				
		-pS1[25]	-295 for RKF selectivity (females, pre-1997)		1- ARITHMETIC	-100	140																-1
		-pS1[26]	- 295 for RKF selectivity (females, 1997-2004)		1 - ARITHMETIC	-100	140											1	1	1	1	1	-1
		opS1[27]	- 295 for RKF selectivity (females, 2005+)		1 - ARITHMETIC	-100	140		1	1	1	11			1	1	1	1	1				
		-pS1[29]	$\bigcirc 250$ for TCF retention (2013-2015)		1 - ARITHMETIC	-85	160																-1
		- pS 13]	- 250 for NMFS survey selectivity (females, pre-1982)		1 - ARITHMETIC	-. 200	100		1	1	1		11	1	1	1		1	1	1	1	1	
		- pS14]	- 250 for NMFS survey selectivity (females, 1982+)		1 ARITHMETIC	-. 50	69																1
		- ${ }^{\text {pS }}$ [$[5]$	Q250 for TCF retention (pre-1991)		1 - ARITHMETIC	-85	160																-1
		- pS $^{\text {P }}$ [6]	-250 for TCF retention (1991-1996)	1	1 ARITHMETIC	-85	160																-1
		- pS 1[9]	- 250 for TCF selectivity (females)		1- ARITHMETIC	-80	150																-1
		-pS2[11]	-ascending slope for SCF selectivity (males, 1997-2004)		1 - ARITHMETIC	0.1	0.5																-1
		opS2[13]	- slope for SCF selectivity (females, pre-1997)		1 - ARITHMETIC	$\bigcirc 0.05$	0.5												1	1			-1
		-pS2[14]	- slope for SCF selectivity (females, 1997-2004)		1 - ARITHMETIC	0.05	0.5																-1
		- pS2[2]	- 295 -250 for NMFS survey selectivity (males, 1982+)		1 - ARITHMETIC	\bigcirc	100															1	
		-pS224]	- $\ln (295-250)$ for RKF selectivity (males, 2005+)		1 - ARITHMETIC	-2.5	4																-1
		-pS2[25]	- $\ln (295-250)$ for RKF selectivity (males, pre-1997)		1- ARITHMETIC	-2.5	4											-1					1
		-pS2[26]	- $\ln (295-250)$ for RKF selectivity (males, 1997-2004)	1	1. ARITHMETIC	- 2.5	4																1
		-p p 2[28]	- slope for TCF retention (2005-2009)		1 - ARITHMETIC	$\bigcirc 0.2$	2																1
		-pS2[29]	- slope for TCF retention (2013-2015)		1 - ARITHMETIC	0.2	2																1
		- pS2[4]	-295-250 for NMFS survey selectivity (females, 1982+)	-1	1 - ARITHMETIC	\bigcirc	100		1										1	1	1	1	
		- pS2[5]	- slope for TCF retention (pre-1991)		$1-$ ARITHMETIC	0.2	1																1
		-pS2[6]	- slope for TCF retention (1997+)	-1	1- ARITHMETIC	$\bigcirc 0.2$	2																1
		-pS2[8]	- slope for TCF selectivity (males, 1997+)	1	1 - ARITHMETIC	0.1	0.4																1
		-pS2[9]	- slope for TCF selectivity (females)	$\bullet 1$	1 - ARITHMETIC	-0.05	0.75																-1
		-pS3[1]	- $\ln ($ d250-a250) for SCF selectivity (males, pre-1997)	1	1 ARITHMETIC	\bigcirc	4.5														-1	-1	-1
		- pS3[2]	- $\ln ($ d250-a250) for SCF selectivity (males, 1997-2004)		1 - ARITHMETIC	$\bullet 2$	4.5																-1
		- - $544[1]^{\text {a }}$	-descending slope for SCF selectivity (males, pre-1997)		1 - ARITHMETIC	0.1	0.5		$1-1$	-1	-1	-1	$1-1$	1 -1	1.1	-1	-1	-1			-1	-1	-1
		- pS4[2]	- descending slope for SCF selectivity (males, 1997-200	$\bullet 1$	1 - ARITHMETIC	-0.1	0.5														-1	-1	-1
surveys	- surveys	- $\mathrm{pa[1]}$	NMFS trawl survey: males, 1975-1981		1. LOG	-0.0.6931472	0.0009995		$1-1$	-1	-1	-1-1	-1-1	-1	1.1	-1	-1	-1	-1	-1	-1	-1	1
		-pQ[3]	- NMFS trawl survey: females, 1975-1981		1-LOG	-0.0.6931472	0.0009995					-1		-1			-1		-1				1
		-pQ[4]	- NMFS trawl survey: females, 1982+	1	1. LOG	--1.6094379	0								-1	-1		-1	-1	-1	-1	-1	
total number of parameters									111	11	11		$11 \quad 12$	11		10	11	16	15	16	17	17	39

Appendix D: Objective function components

This appendix contains tables related to values of various components in the model objective function, by scenario.
$\int_{\text {Sumotall }}^{\text {Table }}$ D.1. Contributions from data components to the model objective function for B and C scenarios.

Sum of nll category	fleet	catch.type	data.type	fittype	nll.type	\times	m	s	$\begin{aligned} & \text { case } \\ & \text { Bo } \end{aligned}$	Bo-Fr	Bo-Ma	воa	80b	boc	809	${ }^{81}$	81b	B1c	co	cas	cob	coc	C1	c1b	${ }^{\text {cic }}$
fisheries data	GIF	stotal catch	abundance	BY_Total	none	all sexes	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			- Bomus	:by_total	mmma	sall seres	- mukrity	all stellconitiors	007	0.08	007	007	0.0	003	007	007	0.03	003	006	006	002	002	006	001	
			natz	:BYXE	multinomial	ofemale	all maturity	y all shell conditions	25159	56.56	40282	252.88	24875	247.59	243.67	251.13	247.72	249.42	252.80	252.42	252.23	248.47	25117	250.89	249.15
						omale	- ${ }^{\text {atumity }}$	all stell conditias	28880	74.37	4787	289.46	27.39	27231	z895	2880.30	${ }^{27168}$	27449	31336	31353	31039	31159	31161	38871	31154
	RKF	stotal catch	abundance	8Y_X	none	ffemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omale		all stell conditias	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
			biomass	-BY_X	nom2	ofemale	all maturity	y ll shell conditions	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omale	- \quad nutrity	tal stell conditios	039	010	072	039	001	001	037	039	001	001	0.38	038	001	001	0.38	001	001
			natz	br_X	multinomial	ofemale	all maturity	all shell conditions	2.75	0.00	141.14	2.76	274	274	278	274	2.73	2.73	2.71	2.71	2.69	271	270	270	270
						smale	-	all stell condtions	499	000	16278	4614	3354	3856	4548	4587	3881	3871	4382	4368	3771	3803	4333	3823	3805
	scr	stotal catch	abundance	By_X	none	ofemale	all maturity	y all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omale	- ${ }^{\text {numbry }}$, al stell conititas	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	
			biomass	BY_X $^{\text {P }}$	nom2	ofemale	all maturity	all shell conditions	1.27	0.11	1.24	129	1.29	1.29	1.41	1.29	1.30	1.30	1.23	1.23	1.24	124	1.24	1.20	1.24
						omale	\pm nutrity	tal stell conditions	009	006	009	009	003	003	008	009	003	003	009	009	002	002	009	ас2	
			nat.z	By_X	multinomial	sfemale	all maturity	y all shell conditions	12.34	0.03	11829	12.41	12.15	12.16	1232	12.36	1216	12.15	1278	1276	1247	12.42	1281	1182	1242
						smale	- mutrity	all stellemitios	¢32	0ד	19900	[73		5582	5505	5413	5542	5543	5440	5426	5497	5627	5390	5318	
	TFF	setained cat	abundance	8Y_X	none	ofemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omale	- ${ }^{\text {anumity }}$	all stell conitions	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
			biomass	8Y_X	nom2	sfemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omale	- ${ }^{\text {numbity }}$	all dell conitions	as6	व10	152	087	099	099	075	0.81	095	096	074	073	110	104	070	104	100
			natz	BY-X	multinomial	male	all maturity	all shell conditions	65.46	5.19	103.64	66.35	65.23	65.01	62.35	60.84	64.80	64.86	83.93	8298	85.20	96.37	83.24	84.99	96.59
		total coth	biomus	bry	nmm	ofende	- mutrity	all stell coxitions	200	031	203	202	154	154	206	208	155	156	218	219	159	156	218	180	157
						male	all maturity	all shell conditions	0.26	0.02	0.45	0.27	0.26	0.26	0.27	0.27	0.26	0.27	0.25	0.25	0.26	0.24	0.25	0.27	0.24
			nuts	${ }_{\text {Brex }}$	mutínmia	sfenate	- ${ }^{\text {anumity }}$	all stell conditias	974	0.4	756	9.69	952	951	985	974	950	952	971	971	9.45	9.49	9.6	9.44	947
						male	all maturity	all shell conditions	87.59	6.19	136.15	88.25	84.15	84.11	84.39	8291	84.27	84.32	93.98	93.46	91.01	10144	93.72	90.12	100.80
suethdu	(14*)	(blank	ms	(blank		-fende	inmutur	new stell	17694	11665	1786	12975	17632	12668	12758	12076	12578	12487	13025	129.60	1797	13970	13013	127.64	13002
						male	immature	new shell	190.60	162.50	192.00	19282	19133	19185	181.42	178.67	189.33	189.20	179.77	179.13	180.47	190.36	179.76	177.39	188.27
			Kodet	(blati)	smme	ofenate	simmutur	new dell	2,48094	2,3449	2,41986	256880	2,4\#72	2.488988	2,8491	2,3809	2,5133	2,440902	2.80043	2,88692	2.581842	258485	2,61336	258810	2,56212
						male	immature	new shell	4.820 .40	4.268 .51	4,919.39	4.761 .52	4,84144	4,843.68	4.580 .72	4,596.06	4,808.27	4,811.14	4,189.73	4,176.14	4,180.48	4,468.25	4,179.10	4,107.13	4,41234
nutrity dita	(1ヵm)	-(blata)	miubity	(blam	tinamial	omale	(HEW)	new stell	2,00532	30717	205887	2030.63	2,05045	2,05114	1.98456	1.81201	2,03374	208810	${ }^{2929}$	9378	9805	61872	59391	6008	61810
survers data	NMFS traw survey (BC)	sindex catch	abundance	BY_XM	lognomal	ofemale	immature	all shell conditions	23153	5,140.60	23930	234.43	21434	21.78	210.93	22.56	210.55	204.77	220.16	21.75	216.35	226.12	21193	21247	212.99
							mutre	all stell conditions	14453	91.38	13795	15073	14337	14305	14875	14202	14423	14545	14364	14478	14332	15370	14493	1450	15596
						omale	immature	all shell conditions	281.87	1,733.33	286.08	276.16	271.77	273.28	298.60	279.06	266.07	262.78	266.54	260.98	270.27	27.01	257.30	264.03	26497
							mutre	all stell conditias	13696	55206	15171	14139	13197	13165	19451	117.62	13299	13396	10851	11020	10553	14547	1096	11015	14753
			biomass	BY_X_MATONLY	Iognomal	sfemale	mature	all shell conditions	11134	65.81	108.40	114.65	112.49	11212	117.68	${ }^{113.36}$	114.70	115172	113.56	115.01	114.67	120.56	${ }^{11633}$	119.06	${ }^{124.30}$
						smale	tnutre	all stell coxitions	10271	3498	17187	10273	109.19	10912	12674	10523	11218	11218	10072	10136	10595	11496	10224	11004	117.13
			nat.z	BY_XME	muitinomial	ofemale	immature	all shell conditions	249.61	0.84	240.28	246.47	246.57	24.57	18994	243.80	243.13	244.00	280.25	27.20	26.85	260.93	27.28	259.88	265.82
							mutre	all dell conitias	19400	agr	18435	17684	18664	18851	11081	19778	19161	18407	27150	23395	27287	20899	27403	2319	20433
						omale	immature	all shell conditions	201.12	0.67	171.93	24898	207.87	207.09	34180	243.37	202.53	208.57	375.00	373.54	379.19	34871	37198	369.52	347.51
							mulue	all stell conitioxs	31524	001	289.43	32104	31118	31499	33773	28563	31379	309.43	14369	14266	15026	194.38	14486	14832	18708
	NMFS traw surve (females only)	index catch	abundance	BY_xMs	lognormal	ofemale	immature	new shell	23153	5,140.60	239.30	234.43	214.34	216.78	210.93	22.56	210.55	204.77	220.16	215.75	216.35	226.12	21193	21247	212.99
								odd trell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	
							mature	new shell	144.40	549.40	149.98	135.57	151.56	15199	147.40	172.87	157.04	155.54	153.36	154.52	162.66	13151	156.72	171.24	135.23
								odistell	21351	14014	20853	22379	21336	21798	21493	20728	21605	21737	21517	21673	21428	23884	217.46	219.4	24268
						omale	immature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								odd trell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
							mature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								odldell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
			biomass	BY_XMS	Iognomal	ofemale	immature	new shell	19129	2,122.56	195.75	199.45	188.19	184.66	195.34	190.52	186.33	181.27	190.43	188.05	193.61	202.95	189.72	19831	199.06
								odd stell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
							mature	new shell	136.14	410.85	14184	126.97	144.37	144.66	144.02	165.64	151.42	150.01	147.30	148.64	157.36	125.41	151.25	167.21	130.57
								oddstell	16661	11164	16330	17314	16.81	16.45	169.14	15019	17113	17219	17076	17238	17057	189.42	17378	17663	19402
						omale	immature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								obl stell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	
							mature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								obldell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
			nat.2	BY_XMS	multinomial	ofemale	immature	new shell	359.15	0.01	245.99	491.59	357.30	358.16	385.20	355.16	355.67	355.84	368.70	364.69	363.24	364.15	36151	360.40	36136
							mulure	new stell	44400	001	20087	44279	43938	439.41	43369	44372	43753	439.40	44619	4444	44078	43623	44101	43879	
								old shell	297.21	0.34	219.21	314.66	292.10	29208	311.76	273.73	288.69	290.05	27.61	273.80	271.54	295.36	27271	268.16	291.60
	News trual surey (muts ont)	mexatath	cundince	Br_xs	Stenamad	ofenate	\pm numity	new stell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
								old shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						smale	\pm nuluit	new stell	307.51	1,1ז37	31246	3087	30872	30480	3306	317.69	30136	28836	28277	7816	2143	28517	27678	28936	77982
								old shell	456.79	1,563.42	447.21	473.15	446.81	445.08	494.05	386.78	450.46	454.70	505.07	507.55	50.67	60146	503.17	507.24	
			bionus	Br_xs	henumad	sfencie	\pm nutrity	new stell	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
													0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2000	0.00	0.00	0.000	0.00
								old shell	${ }_{3}^{2058.69}$	${ }^{294488}$	353.72	376.53	${ }_{36101}^{21863}$	359.26	379.89	320.52	365.24	36976	${ }^{211.78}$	${ }_{313.63}^{2428}$	${ }_{31256}^{2021}$	${ }_{363.54}^{188}$	310928	${ }_{310.06}$	${ }_{366.98}^{18.92}$
			nute	-BY_xs	-mutifomial	male	$\square{ }^{4}$ nutrit	new stell	4π (19	159	44031	4869	4 \# 01	46934	4/589	46517	46850	47113	45227	45139	${ }_{5} 566$	457.07	44597	44416	46.659
								old shell	731.29		561.47	712.44		797.89	719.15	638.10	79285	785.79	771.92	770.40	861.42	953.85	775.02	858.28	946.09

Table D．2．Contributions from data components to the model objective function for B0 and the D and E scenarios．

Sum of nll category	fleet	catch．type	data．type	fittype	nll．type	\times	m	¢	$\begin{aligned} & \text { case } \\ & \text { B0 } \end{aligned}$	do	DOa	Dob	doc	01	D1b	Dic	E0	E0a	Eob	E0c	E1	E1b	E1c
－fisheries data	GTF	ototal catch	abundance	BY＿Total	none	all sexes	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			tionus		：nama	－allsens	al matritr	all stell contitios	0.07	0.06	006	002	0.03	006	002	002	0.09	009	0.04	0.07	009	004	0.06
			nat．z	BY＿XE	multinomial	female	all maturity	all shell conditions	251.59	234.46	234.18	234.34	235.62	232.50	23215	233.19	247.46	244.83	24.55	242.46	245.22	244.95	24.26
						smak	all mumitr	all stell contitios	28880	377	3Z13	32061	339.18	33746	31755	31914	33078	31988	31576	36． 68	31828	3137	31860
	RKF	total catch	abundance	Br＿x	none	female	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						smak	－ll mumitr	all stell contitios	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
			biomass	：By＿X	norm2	sfemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						－mak	al maturit	all stell contitios	0.3	0.33	0.33	001	0.02	033	001	001	0.32	032	000	0.01	031	001	001
			natz	$B^{8 r}$ X	multinomial	female	all maturity	all shell conditions	2.75	2.65	265	264	2.65	2.65	264	263	2.66	266	265	2.66	266	265	265
						some	all mumrit	all stell contitios	559	40.6	4066	3683	37.17	4048	3662	3694	39．00	38.55	3431	36.19	37.28	781	3606
	scF	total catch	abundance	BY＿X	none	sfemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						smak	－11 matritr	all stell contitios	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
			biomass	BY＿X	norm2	sfemale	all maturity	all shell conditions	1.27	1.16	117	115	1.14	1.18	117	1.14	1.09	109	106	1.08	1.11	109	1.06
						smak	－ll mumitr	all stell contitios	0.99	0.08	008	acz	0.02	0.08	002	0×2	0.99	0.9	003	0.02	0.9	002	0×2
			natz	8Y＿X	multinomial	ofemale	all maturity	all shell conditions	12.34	13.03	13.01	1262	12.79	13.03	1268	1267	13.05	13.05	1286	12.95	13.10	1275	1286
						smat	－ll mukrity	all stell contitios	m37	5400	5421	5670	53.30	5407	5546	5678	¢\％	¢ 70	5698	58．6	דת96	5.45	5871
	TCF	setained cat	abundance	By＿x	none	ffemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omat	oul mutrity	all stell contitios	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
			biomass	8Y＿X	norm2	ofemale	all maturity	all shell conditions	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						smak	－ll matrity	all stell contitios	0.96	0.88	068	124	121	0.	172	118	0.6	0.1	055	139	064	138	136
			nat．z	BY＿X	multinomial	male	all maturity	all shell conditions	65.46	72.98	72.86	80.05	93.83	74.19	8100	9115	91.50	91.10	90.23	131.56	9132	10985	128.69
		total cath	Bomus	br＿x	nemp	－fermak	all matrity	all stell contitics	200	232	232	164	163	231	165	163	232	232	243	180	231	180	188
						male	all maturity	all shell conditions	0.26	0.25	0.25	0.33	0.30	0.25	0.34	0.31	0.26	0.26	0.19	0.31	0.26	0.36	0.32
			nutu	［r＿x	mutionmia	－fermak	－ul mukritr	all stell contitios	9.74	973	972	9×2	9.0	921	901	90	9.6	966	9.63	9.48	9 96	938	9.43
						male	all maturity	all shell conditions	87.59	90.79	90.78	93.48	102.19	9147	93.55	100.07	105.35	105.22	104.72	123.44	104.97	109.64	12171
southat	（bank）	（blata）	（BS	（black	smma	ofermak	iminutre	new stell	13659	139.63	13973	13856	143.08	1396	13779	13894	14854	14862	14847	15278	14886	14840	15031
						male	immature	new shell	190.60	192.57	193.00	194.32	207.22	192.71	19177	200.22	216.85	217.03	216.44	238.33	216.26	219.84	233.27
			Kost	¢（black	smme	stemate	immutre	new sell	2,48094	2，06．c2	2.714942	2.882012	2.5472	2,78818	2.68836		2889.6	2，888 3	2,88606	2.958	289892	2，89282	2，88285
						male	immature	new shell	4，820．40	4，429．65	4，438．91	4，465．29	4，78．51	4，432．40	4，398．81	4，619．18	5，052．31	5，054．26	5，037．63	5，547．79	5，034．04	5，099．68	5，43132
Survers data	（bamic）	－blat	melurity	（tack	Linmial	omak	（bam）	new stell	2，0632	63050	64146	maso	68653	64368	¢6072	61672	68.73	68102	${ }^{88417}$	743.10	68081	69876	7338
	NMES traw suvey（BC）	index catch	abundance	BY＿xM	lognormal	female	immature	all shell conditions	231.53	192.54	190.85	193.28	194.71	189.44	19103	188.20	136.94	136.18	134.72	139.60	134.53	137.18	135.92
							matur	all stell contitios	14453	180.71	17153	1206	138.38	17209	17795	179.41	9754	98.30	9885	10192	9878	9830	9954
						－male	immature	all shell conditions	281.87	231.42	230.17	24239	237.56	229.94	23880	23.58	149.31	148.61	148.42	150.61	145.85	155.85	145.81
							－matire	all stell contitios	13696	144.01	14404	13479	16150	14116	13609	17560	92x9	9827	9331	9637	9578	9062	10107
			biomass	BY＿X＿MATONLY	lognomal	sfemale	mature	all shell conditions	111.34	104.91	105.74	104.65	117.46	106.56	107.69	112.65	92.89	93.69	94.54	93.56	95.62	93.41	93.49
						omak	omatre	all stell contitios	10071	11281	11790	11103	105.89	11116	11795	1193	8674	8645	${ }_{8886}$	7 m	8853	8907	8314
			natz	BY＿XME	multinomial	female	immature	all shell conditions	249.61	335.74	333.60	313.34	281.77	321.75	306.23	380.80	336.10	336.28	33161	327.65	336.04	329.18	38499
							mature	all stellcontitios	194.00	23694	28414	2999	27188	27.87	287.68	2995	37268	33342	31932	27．84	3369	31405	31880
						male	immature	all shell conditions	201.12	391.69	394.89	415.72	400.19	400.11	407.07	337.40	218.24	216.48	214.60	188.75	209.49	22190	153.71
							matur	all stell contitios	31524	109．5	10989	11388	179.83	13994	11601	14509	27892	27859	23455	29672	279.96	23361	265538
	NMES traw surve（females only）	index catch	abundance	BY＿XMS	lognomal	ofemale	immature	new shell	231.53	192.54	190.85	193.28	194.71	189.44	19103	188.20	136.94	136.18	134.72	139.60	134.53	137.18	135.92
								odidslll	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
							mature	new shell	144.40	127.65	128.32	134.24	110.39	128.82	137.48	123.75	105.41	106.14	10771	98.38	106.99	110.51	104.98
								oddstell	21351	17123	17193	17041	2559	1732	17291	1897	133.19	13391	13456	1990	13 3 31	13393	${ }^{14058}$
						male	immature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								oddstell	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
							mature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								odidsell	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
			biomass	BY＿XMS	lognomal	female	immature	new shell	191.29	150.84	150.14	154.26	154.60	151.21	156.40	151.94	109.74	10971	10987	112.59	110.46	113.51	
								odd tell	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
							mature	new shell	136.14	${ }^{111.61}$	${ }^{11236}$	${ }_{11813}^{11850}$	${ }^{97745}$	11318	12162	10914 1638	1101.93	110259	110443	97772	10368	110672	10282
								ond stell	1166.61	14796	1486	14680	${ }^{174.54}$	14978	14976	1636	118.48	11921	11991	1778			12324
						male	immature	dew shell	－0．00	0.00	0.00	0.00	0．00	0.00	0.00	0.00	0.00	0.00	0.00	0．00	0.00	0.00	0.00 000
							mature	new shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								odidsll	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
			nat．z	BY＿XMS	multinomial	female	immature	new shell	359.15	354.70	353.74	352.49	353.70	352.03	348.49	362.11	389.13	387.79	386.45	390.99	385.40	384.66	396．46
							muture	new stell	444.00	423.42	47352	42098	${ }^{4} 7138$	47390	41839	${ }^{41458}$	45.44	44472	44405	42307	44388	4431	43532
								old shell	297.21	230.48	230.65	229.64	259.22	230.77	22825	235.22	237.85	237.77	237.47	267.79	236.88	236.03	248.25
		indercath	cundince	Br＿x	Menmad	sterate	all muturit	new stell	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
								old shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						omak	al muturit	new stell	30751	24266	24237	37.18	246. ．	24423	3655	24460	1528	1527	15476	15184	15153	16376	14751
								old shell	456.79	451.71	450.81	44106	511.59	440.70	437.84	526.20	252.40	25280	245.36	289.79	250.53	245.78	295.34
			Lionus	－br＿xs	Mgnmmad	－fermat	al muluit	new stell	0.00	0.00	000	000	0.00	000	000	000	0.00	000	000	0.00	000	000	000
								old shell	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						mak	al muntrit	new stell	207.68	14273	14376	1533	137.68	14697	15773	14193	15．89	${ }^{13668}$	13108	11787	17864	13648	1185
								old shell	358.69	290.60	290.44	284.83	321.15	284.05	28237	327.32	158.10	158.53	155.29	178.22	156.43	154.44	177.45
			－nut		－multanial	mak	－ll mulurit	new shell old shell	${ }_{731.29}^{40.9}$	420．70 567.09	43075 566.30	41877 577.74	${ }_{641.39}^{417.1}$	47009 5695	41706 577.34	${ }_{64693}^{41790}$	${ }_{6}^{439.88}$	4734 638.50	${ }_{648881}$	47119 727.26	4＊⿴囗十3 64187	46734 645.38	${ }^{470728}$
																	639.47		648.15		641.87		731.88

Table D.3. Contributions from data components to the model objective function for B 0 and the F and G scenarios.

