Status and catch specifications (million lb.)

Year	MSST	Biomass (MMB)	GHL	Retained Commercial Catch	Total Retained Catch	Retained OFL	Retained ABC
$2014 / 15$	2.11^{A}	3.71	0.38	0.39	0.39	0.46^{B}	0.42
2015	2.41^{B}	5.13	0.39	0.40	0.52	0.72^{C}	0.58
2016	2.26^{C}	5.87	0.52	0.51	0.52	0.71^{D}	0.57
2017	2.31^{D}	5.14	0.50	0.49	0.50	0.67^{E}	0.54
2018	TBD						

10 MSST was calculated as $\mathrm{B}_{\mathrm{MSY}} / 2$
11 A-Calculated from the assessment reviewed by the Crab Plan Team in May 2014
12 B-Calculated from the assessment reviewed by the Crab Plan Team in May 2015

Biomass in millions of pounds

Year	Tier	BMSY	Current MMB	B/BMSY (MMB)	FofL	Years to define BMSY	M	$\mathbf{1 -}$ Buffer	Retained ABC
$2014 / 15$	4 b	4.19	3.71	0.9	0.16	$1980-2014$	0.18	0.9	0.42
2015	4 a	4.81	5.13	1.1	0.18	$1980-2015$	0.18	0.8	0.58
2016	4 a	4.53	5.87	1.3	0.18	$1980-2016$	0.18	0.8	0.57
2017	4 a	4.62	5.14	1.1	0.18	$1980-2017$	0.18	0.8	0.54
2018	TBD	TBD	TBD	TBD	0.18	$1980-2017$	0.18	0.8	TBD

Biomass in 1000t

Year	Tier	BMSY	Current MMB	B/BMSY (MMB)	FofL	Years to define BMSY	M	1- Buffer	Retained ABC
$2014 / 15$	4 b	1.90	1.68	0.9	0.16	$1980-2014$	0.18	0.9	0.19
2015	4 a	2.18	2.33	1.1	0.18	$1980-2015$	0.18	0.8	0.26
2016	4 a	2.06	2.66	1.3	0.18	$1980-2016$	0.18	0.8	0.26
2017	4 a	2.10	2.33	1.1	0.18	$1980-2017$	0.18	0.8	0.24
2018	TBD	TBD	TBD	TBD	0.18	$1980-2017$	0.18	0.8	TBD

6. Probability Density Function of the OFL, OFL profile, and mcmc estimates.

TBD
7. The basis for the ABC recommendation

For Tier 4 stocks, the default maximum ABC is based on $\mathrm{P}^{*}=49 \%$ that is essentially identical to the OFL. Accounting for uncertainties in assessment and model results, the SSC chose to use 90% OFL (10% Buffer) for the Norton Sound red king crab stock from 2011 to 2014. In 2015, the buffer was increased to 20% (ABC $=80 \%$ OFL).
8. A summary of the results of any rebuilding analyses.

N/A

A. Summary of Major Changes in 2017

1. Changes to the management of the fishery:

Winter commercial GHL went into effect
2. Changes to the input data
a. 2017 summer commercial fishery (total catch, catch length comp, discards length comp), 2016/2017 winter commercial and subsistence catch
b. 2017 summer trawl survey abundance by ADFG and NOAA.
c. Data update: 1977-2017 standardized commercial catch CPUE and CV. No changes in standardization methodology (SAFE 2013).
d. Recalculation and standardization of 1996-2017ADFG trawl survey abundance. Re-tow data were removed from abundance calculation, unless the first trawl failed. Estimates of abundance are based on core, tier 1, and tier 3 area only. Abundance of untrawled stations within the standard station was considered zero crabs.

Gray shaded area is standard stations.
3. Changes to the assessment methodology:

None
4. Changes to the assessment results.

None

B. Response to SSC and CPT Comments

Crab Plan Team - January 17, 2017

- The CPT recommends breaking out natural mortality by size class for future model evaluation.

Authors' reply:
OFL calculation will change from
$O F L=\operatorname{Legal}_{-} B_{w}\left(1-e^{-\left(F_{\text {OFL }}+0.42 M\right)}-\left(1-e^{-0.42 M}\right)\left(\frac{1-p\left(1-e^{-\left(F_{\text {OFL }}+0.42 M\right)}\right)}{1-p\left(1-e^{-0.42 M}\right)}\right)\right)$
to

- Assess which (2017 NOAA vs. ADFG survey) data inputs are most influential for the assessment.

Author reply: the 2017 NOAA data are not available at the time of draft report submission. Results may be presented at the September CPT meeting if the data become available.

- Assess which (discard length data, survey data, etc.) data inputs are most influential for the assessment.

Author reply:
Likelihood was calculated as follows

Model	Model 3*	-TSA	-CPUE	-TLP	-WLP	-CLP	-OBS	-TAG
Total	260.0	244.8	283.6	159.2	215.8	193.9	222.3	182.7
TSA	8.5	ND	8.1	9.4	9.7	8.7	8.7	9.1
St.CPUE	-30.4	-31.8	ND	-33.7	-30.8	-29.3	-30.3	-29.8
TLP	84.0	83.0	81.6	ND	84.0	67.0	80.4	79.0
WLP	38.7	38.7	37.9	41.5	ND	38.2	39.4	22.0
CLP	50.2	49.0	49.0	39.2	46.5	ND	49.7	48.0
OBS	22.9	23.0	22.6	26.2	22.8	24.0	ND	22.0
REC	14.1	12.8	13.8	12.4	12.3	14.7	15.2	13.8
TAG	71.9	69.6	70.5	67.1	71.5	71.5	59.1	ND
MMB(mil.lb)	3.52	10.9	3.33	3.41	3.58	3.89	3.43	3.42
Legal (mil.lb)	3.05	9.1	2.80	2.87	3.03	3.39	2.87	2.88
Diff		-6.8	-6.8	-12.2	-5.7	-16.1	-12.7	+0.7

*: Model 3 is 2017 final model with commercial fishery selectivity changed to 2 parameters logistic function. (See alternative model section)
TSA: Trawl Survey Abundance
St. CPUE: Summer commercial catch standardized CPUE
TLP: Trawl survey length composition:
WLP: Winter pot survey length composition
CLP: Summer commercial catch length composition
REC: Recruitment deviation
OBS: Summer commercial catch observer discards length composition
TAG: Tagging recovery data composition
Legal: Exploitable legal male crab

See Appendix C6-C13 for standard output figures. Estimates of parameters for each model are available by request.

The most influential data for the assessment is trawl survey abundance data that determined biomass. For length proportion data, model seems to resolve conflicts among various data, so that removing one data would increase fit to other data.

- Explore bycatch data to see if it is possible to determine the OFL as total catch.

Author reply:
Only discard length data were collected during the summer observer surveys. The author appreciates CPT's guidance for estimating the number and biomass of discarded crab from the length data.

SSC - January 30

- SSC suggests that the author examine available evidence for higher mortality rates at larger sizes and perhaps an alternative way to parameterizing higher mortality at age rather than a step change at the largest size class.

Author's reply:
Because NSRKC has only 8 size classes, we examined step change for each length classes in the following scenario:

1. One mortality for the last 2 length classes (default: $\mathrm{ms}=1$)
2. Two separate mortalities for the last 2 length classes $(\mathrm{ms}=2)$
3. Three separate mortalities for the last 3 length classes $(\mathrm{ms}=3)$

The results showed that estimating mortality of the last 3 length classes seem to improve model fit, especially when fishery selectivity was converted from 1 parameter logistic to 2 parameters logistic model (See alternative models).

C. Introduction

1. Species: red king crab (Paralithodes camtschaticus) in Norton Sound, Alaska.
2. General Distribution: Norton Sound red king crab is one of the northernmost red king crab populations that can support a commercial fishery (Powell et al. 1983). It is distributed throughout Norton Sound with a westward limit of $167-168^{\circ} \mathrm{W}$. longitude, depths less than 30 m , and summer bottom temperatures above $4^{\circ} \mathrm{C}$. The Norton Sound red king crab management area consists of two units: Norton Sound Section (Q3) and Kotzebue Section (Q4) (Menard et al. 2011). The Norton Sound Section (Q3) consists of all waters in Registration Area Q north of the latitude of Cape Romanzof, east of the International Dateline, and south of $66^{\circ} \mathrm{N}$ latitude (Figure 1). The Kotzebue Section (Q4) lies immediately north of the Norton Sound Section and includes Kotzebue Sound. Commercial fisheries have not occurred regularly in the Kotzebue Section. This report deals with the Norton Sound Section of the Norton Sound red king crab management area.
3. Evidence of stock structure: Thus far, no studies have investigated possible stock separation within the putative Norton Sound red king crab stock.
4. Life history characteristics relevant to management: One of the unique life-history traits of Norton Sound red king crab is that they spend their entire lives in shallow water since Norton Sound is generally less than 40 m in depth. Distribution and migration patterns of Norton Sound red king crab have not been well studied. Based on the 1976-2006 trawl surveys, red king crab in Norton Sound are found in areas with a mean depth range of 19 ± 6 (SD) m and bottom temperatures of $7.4 \pm 2.5(\mathrm{SD})^{\circ} \mathrm{C}$ during summer. Norton Sound red king crab are consistently abundant offshore of Nome.
Norton Sound red king crab migrate between deeper offshore and inshore shallow waters. Timing of the inshore mating migration is unknown, but is assumed to be during late fall to winter (Powell et al. 1983). Offshore migration occurs in late May - July (Jennifer Bell, ADF\&G, personal communication). The results from a study funded by North Pacific Research Board (NPRB) during 2012-2014 suggest that older/large crab (> 104mm CL) stay offshore in winter, based on findings that large crab are not found nearshore during spring offshore migration periods (Jennifer Bell, ADF\&G, personal communication). Timing of molting is unknown but likely occurs in late August - September, based on increase catches of newly-molted crab late in the fishing season (August- September) (Joyce Soong, ADF\&G personal communication) and evaluation of molting hormone profiles in the hemolymph (Jennifer Bell, ADF\&G, personal communication). Recent observations also indicate that mating may be biennial (Robert Foy, NOAA, personal communication). Trawl surveys show that crab distribution is dynamic with recent surveys showing high abundance on the southeast side of Norton Sound, offshore of Stebbins and Saint Michael.
5. Brief management history: Norton Sound red king crab fisheries consist of commercial and subsistence fisheries. The commercial red king crab fishery started in 1977 and occurs in summer (June - August) and winter (December - May). The majority of red king crab harvest occurs offshore during the summer commercial fishery, whereas the winter commercial and subsistence fisheries occur nearshore through ice.

Summer Commercial Fishery

A large-vessel summer commercial crab fishery started in 1977 in the Norton Sound Section (Table 1) and continued from 1977 through 1990. No summer commercial fishery occurred in 1991 because there were no staff to manage the fishery. In March 1993, the Alaska Board of Fisheries (BOF) limited participation in the fishery to small boats. Then on June 27, 1994, a super-exclusive designation went into effect for the fishery. This designation stated that a vessel registered for the Norton Sound crab fishery may not be used to take king crabs in any other registration areas during that registration year. A vessel moratorium was put into place before the 1996 season. This was intended to precede a license limitation program. In 1998, Community Development Quota (CDQ) groups were allocated a portion of the summer harvest; however, no CDQ harvest occurred until the 2000 season. On January 1, 2000 the North Pacific License Limitation Program (LLP) went into effect for the Norton Sound crab fishery. The program dictates that a vessel which exceeds 32 feet in length overall must hold
a valid crab license issued under the LLP by the National Marine Fisheries Service. Changes in regulations and the location of buyers resulted in eastward movement of the harvest distribution in Norton Sound in the mid-1990s. In Norton Sound, a legal crab is defined as \geq $4-3 / 4$ inch carapace width (CW, Menard et al. 2011), which is approximately equivalent to \geq 104 mm carapace length mm CL. Since 2005, commercial buyers started accepting only legal crab of ≥ 5 inch CW.

Portions of Norton Sound area are closed to commercial fishing for red king crab. Since the beginning of the commercial fisheries in 1977, waters approximately 5-10 miles offshore of southern Seward Peninsula from Port Clarence to St. Michael have been closed to protect crab nursery grounds during the summer commercial crab fishery (Figure 2). The spatial extent of closed waters has varied historically.

CDQ Fishery

The Norton Sound and Lower Yukon CDQ groups divide the CDQ allocation. Only fishers designated by the Norton Sound and Lower Yukon CDQ groups are allowed to participate in this portion of the king crab fishery. Fishers are required to have a CDQ fishing permit from the Commercial Fisheries Entry Commission (CFEC) and register their vessel with the Alaska Department of Fish and Game (ADF\&G) before begin fishing. Fishers operate under the authority of each CDQ group who decides how their crab quota is to be harvested. During the March 2002 BOF meeting, new regulations for the CDQ crab fishery were adopted that affected; closed-water boundaries were relaxed in eastern Norton Sound and waters west of Sledge Island. In March 2008, the BOF changed the start date of the Norton Sound open-access portion of the fishery to be opened by emergency order as early as June 15. The CDQ fishery may open at any time (as soon as ice is out), by emergency order. CDQ harvest share is 7.5% of total projected harvest.

Winter Commercial Fishery

The winter commercial crab fishery is a small fishery using hand lines and pots through the nearshore ice. On average 10 permit holders harvested 2,500 crabs during 1978-2009. From 2007 to 2015 the winter commercial catch increased from 3,000 crabs to over 40,000 (Table 2). In 2015 winter commercial catch reached 20% of total crab catch. The BOF responded in May 2015 by amending regulations to allocate 8% of the total commercial guideline harvest level (GHL) to the winter commercial fishery, which became in effect since 2017 season. The winter red king crab commercial fishing season was also set from January 15 to April 30, unless changed by emergency order. The new regulation became in effect since the 2016 season.

Subsistence Fishery

While the winter subsistence fishery has a long history, harvest information is available only since the 1977/78 season. The majority of the subsistence crab fishery harvest occurs using hand lines and pots through nearshore ice. Average annual winter subsistence harvest was 5,400 crab (1977-2010). Subsistence harvesters need to obtain a permit before fishing and
record daily effort and catch. There are no size or sex specific harvest limits; however, the majority of retained catches are males of near legal size. The subsistence fishery catch is influenced not only by crab abundance, but also by changes in distribution, changes in gear (e.g., more use of pots instead of hand lines since 1980s), and ice conditions (e.g., reduced catch due to unstable ice conditions: 1987-88, 1988-89, 1992-93, 2000-01, 2003-04, 2004-05, and 2006-07).

The summer subsistence crab fishery harvest has been monitored since 2004 with an average harvest of 712 crab per year. Since this harvest is very small, the summer subsistence fishery was not included in the assessment model.
6. Brief description of the annual ADF\&G harvest strategy

Since 1997 Norton Sound red king crab has been managed based on a guideline harvest level (GHL). From 1999 to 2011 the GHL for the summer commercial fishery was determined by a prediction model and the model estimated predicted biomass: (1) 0% harvest rate of legal crab when estimated legal biomass <1.5 million lb ; (2) $\leq 5 \%$ of legal male abundance when the estimated legal biomass falls within the range $1.5-2.5$ million lb ; and (3) $\leq 10 \%$ of legal male when estimated legal biomass >2.5 million lb .

In 2012 a revised GHL for the summer commercial fishery was implemented: (1) 0% harvest rate of legal crab when estimated legal biomass <1.25 million lb ; $(2) \leq 7 \%$ of legal male abundance when the estimated legal biomass falls within the range $1.25-2.0$ million lb ; (3) \leq 13% of legal male abundance when the estimated legal biomass falls within the range 2.0-3.0 million lb ; and $(3) \leq 15 \%$ of legal male biomass when estimated legal biomass >3.0 million lb.

In 2015 the Alaska Board of Fisheries passed the following regulations regarding winter commercial fisheries:

1. Revised GHL to include summer and winter commercial fisheries.
2. Set guideline harvest level for winter commercial fishery $\left(\mathrm{GHL}_{\mathrm{w}}\right)$ at 8% of the total GHL
3. Dates of the winter red king crab commercial fishing season are from January 15 to April 30.

Year	Notable historical management changes
1976	The abundance survey started
1977	Large vessel commercial fisheries began
1991	Fishery closed due to staff constraints
1994	Super exclusive designation went into effect. The end of large vessel commercial fishery operation. The majority of commercial fishery subsequently shifted to east of $164^{\circ} \mathrm{W}$ longitude.
1998	Community Development Quota (CDQ) allocation went into effect
1999	Guideline Harvest Level (GHL) went into effect
2000	North Pacific License Limitation Program (LLP) went into effect.
2002	Change in closed water boundaries (Figure 2)
2005	Commercially accepted legal crab size changed from $\geq 4-3 / 4$ inch CW to ≥ 5 inch CW
2006	The Statistical area Q3 section expanded (Figure 1)
2008	Start date of the open access fishery changed from July 1 to after June 15 by emergency order. Pot configuration requirement: at least 4 escape rings ($>41 / 2$ inch diameter) per pot located within one mesh of the bottom of the pot, or at least $1 / 2$ of the vertical surface of a square pot or sloping

	side-wall surface of a conical or pyramid pot with mesh size $>61 / 2$ inches.
2012	The Board of Fisheries adopted a revised GHL for summer fishery.
2016	Winter GHL for commercial fisheries was established and modified winter fishing season dates were implemented.

7. Summary of the history of the $B_{\text {MSY }}$.

NSRKC is a Tier 4 crab stock. Direct estimation of the $B_{\text {MSY }}$ is not possible. The $B_{\text {MSY }}$ proxy is calculated as mean model estimated mature male biomass (MMB) from 1980 to present. Choice of this period was based on a hypothesized shift in stock productivity a due to a climatic regime shift indexed by the Pacific Decadal Oscillation (PDO) in 1976-77. Stock status of the NSRKC was Tier 4a until 2013. In 2014 the stock fell to Tier 4b, but came back to Tier 4a for the 2015-2016 seasons.

D. Data

1. Summary of new information:

Winter commercial and subsistence fishery:
Winter commercial fishery catch in 2017 was 26,008 crab (77,843 lb.), declined slightly from 2016. Subsistence retained crab catch was 6,039 and unretained was 1,146 or 16% of total catch (Table 2).

Summer commercial fishery:
The summer commercial fishery opened on June 26 and closed on July 25. Total of 135,322 crab ($411,736 \mathrm{lb}$.) were harvested (Table 1).

Total retained harvest for 2017 season was 167,369 crab (501,637 lb.) and did not exceed the 2017 ABC of 0.54 million lb.
2. Available survey, catch, and tagging data

	Years	Data Types	Tables
Summer trawl survey	$76,79,82,85,88,91,96,99$,	Abundance	3
Winter pot survey	$02,06,08,10,11,14.17$	Length proportion	5, Figure 3
Summer commercial	$76-97,89-91,93,95-00,02-12$	Length proportion	6, Figure 3
fishery		Retained catch	1
		Standardized CPUE,	1
Summer commercial	$87-90,92,94,2012-2017$	Length proportion	4, Figure 3
Discards	Length proportion	7, Figure 3	
Winter subsistence fishery	$76-17$	Total catch	2

Winter commercial fishery 78-17
Tag recovery
80-17

Retained catch 2
Retained catch 2
Recovered tagged crab 8

3 Data available but not used for assessment

Data	Years	Data Types	Reason for not used
Summer pot survey	80-82,85	Abundance Length proportion	Uncertainties on how estimates were made.
Summer preseason survey	95	Length proportion	Just one year of data
Summer subsistence fishery	2005-2013	retained catch	Too few catches compared to commercial
Winter Pot survey	$\begin{aligned} & \text { 87, 89-91,93,95- } \\ & 00,02-12 \end{aligned}$	CPUE, Length	Not reliable due to ice conditions
Winter Commercial	2015-17	Length proportion	Years of data too short
Preseason Spring pot survey	2011-15	CPUE, Length proportion	Years of data too short
Postseason Fall pot survey	2013-15	CPUE, Length proportion	Years of data too short

4
5 Time series of available data

	Survey		Harvests			Tag	Data Not Used ${ }^{3}$				
	S. Trawl	W. Pot	S.Com	S.Com Discards	W. Com, Sub		$\begin{aligned} & \text { S. } \\ & \text { Pot } \end{aligned}$	Pre fish	$\begin{aligned} & \text { Sp. } \\ & \text { Tag } \end{aligned}$	$\begin{gathered} \text { F. } \\ \text { Tag, } \end{gathered}$	W. Com
N^{1}	N		H, CPUE		H						
Length ${ }^{2}$	X	X	X	X		X	X	X	X	X	X
1976											
1977											
1978											
1979											
1980											
1981											
1982											
1983											
1984											
1985											
1986											
1987											
1988											
1989											
1990											
1991											
1992											
1993											
1994											
1995											
1996											
1997											
1998											
1999											
2000											

1: Index of abundance data: N: Abundance, H: Harvest, CPUE: Catch cpue
Length data available
3: Data were not used for the assessment model because of short term data.

4: Different colors indicate changes in fishery characteristics or survey methodologies.

Catches in other fisheries
In Norton Sound, no other crab, groundfish, or shellfish fisheries exist.

	Fishery	Data availability
Bycatch in other crab fisheries	Does not exist	NA
Bycatch in groundfish pot	Does not exist	NA
Bycatch in groundfish trawl	Does not exist	NA
Bycatch in the scallop fishery	Does not exist	NA

3. Other miscellaneous data:

Satellite tag migration tracking (NOAA 2016)
Spring offshore migration distance and direction (2013-2015)
Monthly blood hormone level (indication of molting timing) (2014-2015)
Data aggregated:
Proportion of legal size crab, estimated from trawl survey and observer data. (Table 11)
Data estimated outside the model:
Summer commercial catch standardized CPUE (Table 1, Appendix A2)

E. Analytic Approach

1. History of the modeling approach.

The Norton Sound red king crab stock was assessed using a length-based synthesis model (Zheng et al. 1998). Since adoption of the model, the major challenge is a conflict between model projection and data, specifically the model projects higher abundanceproportion of the largest size class of crab than observed. This problem was further exasperated when natural mortality M was set as 0.18 from previous $M=0.3$ in 2011 (SAFE 2011). This problem was examined and resolved by increasing M of the largest length crabs to $3.6 \times M$ or $M=0.648$ (SAFE 2012). Profile likelihood analyses have been conducted several times, which resulted in the lowest likelihood at $M=0.34$ (SAFE 2012, 2013). However, even at this higher M, the model was not able to resolve poor fits to the commercial catch. Profile likelihood of commercial catch was lowest around $M=0.5$ or greater. From 2013 to 2014, the NSRKC model was thoroughly examined by the CPT modeling workshop. The workshop improved the model fit thorough excluding some data (summer pot survey), revising trawl survey abundance estimates, standardizing commercial catch CPUE, including tag recovery data to estimate the growth transition matrix within the model, and changing weights in the likelihood. However, the issue of M was not addressed in this workshop. In 2016, this assumption was examined more fully. Model estimated M constant across all length groups was around 0.4 , and M assuming the higher rate for the largest length group was 0.21 for all and 0.62 for the largest length group (SAFE 2016). The 2016 SAFE also examined the effect of changing length interval (10 mm vs. 5 mm) as well as the range of length categories $(74 \mathrm{~mm}-124 \mathrm{~mm}$ above, vs. $64 \mathrm{~mm}-134 \mathrm{~mm}$ above). After examining data, the CPT chose extended length categories ($64 \mathrm{~mm}-134 \mathrm{~mm}$ above) with a 10 mm interval. Further, multipliers for the last length class are now estimated. Despite all those efforts, model estimates of higher natural mortality of $>123 \mathrm{~mm}$ crab remain the greatest unknown for Norton Sound red king crab and the assessment model. The 2017 SAFE examined alternative models for constant M that resulted in 1) higher natural mortality ($M=0.44$) than assumed ($M=0.18$), and 2) large crab consisting of 50% of MMB move out of Norton Sound fishery and survey area and never been seen. For the 2018 assessment, we explored length dependent natural mortality.

Historical Model configuration progression:
2011 (SAFE 2011)

1. $M=0.18$
2. M of the last length class $=0.288$
3. Include summer commercial discards mortality $=0.2$
4. Weight of fishing effort $=20$,
5. The maximum effective sample size for commercial catch and winter surveys $=100$,

2012 (SAFE 2012)

1. M of the last length class $=3.6 \times M$
2. The maximum effective sample size for commercial catch and winter surveys $=50$,
3. Weight of fishing effort $=50$.

2013 (SAFE 2013)

1. Standardize commercial catch cpue and replace likelihood of commercial catch efforts to standardized commercial catch cpue with weight $=1.0$
2. Eliminate summer pot survey data from likelihood
3. Estimate survey q of 1976 -1991 NMFS survey with maximum of 1.0
4. The maximum effective sample size for commercial catch and winter surveys $=20$.

2014 (SAFE 2014)

1. Modify functional form of selectivity and molting probability to improve parameter estimates (2 parameter logistic to 1 parameter logistic)
2. Include additional variance for the standardized cpue.
3. Include winter pot survey cpue (But was removed from the final model due to lack of fit)
4. Estimate growth transition matrix from tagged recovery data.

2015 (SAFE 2015)

1. Winter pot survey selectivity is an inverse logistic, estimating selectivity of the smallest length group independently
2. Reduce Weight of tag-recovery: $\mathrm{W}=0.5$
3. Model parsimony: one trawl survey selectivity and one commercial pot selectivity

2016 (SAFE 2016)

1. Length range extended from $74 \mathrm{~mm}-124 \mathrm{~mm}$ above to $64 \mathrm{~mm}-134 \mathrm{~mm}$ above.
2. Estimate multiplier for the largest ($>123 \mathrm{~mm}$) length classes.

2017 (SAFE 2017)

1. Change molting probability function form 1 to 2 parameter logistic. Assume <1.0 molting probability for the smallest length class.

2. Model Description

a. Description of overall modeling approach:

The model is a male-only size structured model that combines multiple sources of survey, catch, and mark-recovery data using a maximum likelihood approach to estimate abundance, recruitment, catchability of the commercial pot gear, and parameters for selectivity and molting probabilities (See Appendix A for full model description).
b-f. See Appendix A.
g. Critical assumptions of the model:
i. Male crab mature at CL length 94 mm .

Size at maturity of NSRKC (CL 94 mm) was determined by adjusting that of BBRKC (CL 120 mm) reflect the slower growth and smaller size of NSRKC.
ii. Molting occurs in the fall after the fishery
iii. Instantaneous natural mortality M is 0.18 for all length classes, except for the last length group (> 123mm).
iv. Trawl survey selectivity is a logistic function with 1.0 for length classes 5-6. . Selectivity is constant over time.
v. Winter pot survey selectivity is a dome shaped function: Reverse logistic function of 1.0 for length class CL 84 mm , and model estimate for CL $<84 \mathrm{~mm}$ length classes. Selectivity is constant over time.

This assumption is based on the fact that a low proportion of large crab are caught in the nearshore area where winter surveys occur. Causes of this pattern may be that (1) large crab do not migrate into nearshore waters in winter or (2) large crab are fished out by winter fisheries where the survey occurs (i.e., local depletion). Recent studies suggest that the first explanation is more likely than second (Jennifer Bell, ADFG, personal communication).
vi. Summer commercial fisheries selectivity is an asymptotic logistic function of 1.0 at the length class CL 124 mm . While the fishery changed greatly between the periods (1977-1992 and 1993-present) in terms of fishing vessel composition and pot configuration, the selectivity of each period was assumed to be identical. Model fits of separating and combining the two periods were examined in 2015, and showed no difference between the two models (SAFE 2015). For model parsimony, the two were combined.
vii. Summer trawl survey selectivity is an asymptotic logistic function of 1.0 at the length of CL 124mm. While the survey changed greatly between NOAA (19761991) and ADF\&G (1996-present) in terms of survey vessel and trawl net structure, selectivity of both periods was assumed to be identical. Model fits separating and combining the two surveys were examined in 2015. No differences between the two models were observed (SAFE 2015) and for model parsimony the two were combined.
viii. Winter commercial and subsistence fishery selectivity and length-shell conditions are the same as those of the winter pot survey. All winter commercial and subsistence harvests occur February $1^{\text {st }}$.

Winter commercial king crab pots can be any dimension (5AAC 34.925(d)). No length composition data exists for crab harvested in the winter commercial or subsistence fisheries. However, because commercial fishers are also subsistence fishers, it is reasonable to assume that the commercial fishers used crab pots that they use for subsistence harvest, and hence both fisheries have the same selectivity.
ix. Growth increments are a function of length, are constant over time, estimated from tag recovery data.
x. Molting probability is an inverse logistic function of length for males.
xi. A summer fishing season for the directed fishery is short. All summer commercial harvests occur July $1^{\text {st }}$.
xii. Discards handling mortality rate for all fisheries is 20%. No empirical estimate is available.
xiii. Annual retained catch is measured without error.
xiv. All legal size crab ($\geq 4-3 / 4$ inch CW) are retained.

Since 2005, buyers announced that only legal crab with ≥ 5 inch CW are acceptable for purchase. Since samples are taken at a commercial dock, it was anticipated that this change would lower the proportion of legal crab for length class 4. However, the model was not sensitive to this change (SAFE 2013).
xv. All sublegal size crab or commercially unacceptable size crab (<5 inch CW, since 2005) are discarded.
xvi. Length compositions have a multinomial error structure and abundance has a lognormal error structure.
h. Changes of assumptions since last assessment:

None.

3. Model Selection and Evaluation

a. Description of alternative model configurations.

The final 2017 model modified molting probability from one parameter inverse logistic two parameters logistic function. Following this success, we examined effects of changing fishery selectivity from one parameter to two parameters logistic function. Also taking the recommendation of SSC, we examined gradual step increase of length specific mortality for the last 3 ($>104 \mathrm{~mm},>114 \mathrm{~mm},>124 \mathrm{~mm}$) length classes.

List of model scenarios explored

Scenario	M	ms	Fishery Selectivity	Estimated Mortality

0	0.18	1	1 p	0.558
1	0.18	2	1 p	$0.52,0.63$
2	0.18	3	1 p	$0.23,0.52,0.62$
3	0.18	1	2 p	0.571
4	0.18	2	2 p	$0.55,0.61$
5	0.18	3	2 p	$0.34,0.55,0.58$

b. Evaluation of negative loglikelihood alternative models results:

Model	Model 0	Model 1	Model 2	Model 3	Model 4	Model 5
No.	67	68	69	68	69	70
Parameters						
Total	272.5	272.1	271.7	260.0	259.9	256.5
TSA	8.4	8.4	8.6	8.5	8.4	9.0
St.CPUE	-30.4	-30.4	-30.3	-30.4	-30.4	-30.0
TLP	88.6	88.5	87.2	84.0	84.0	82.7
WLP	38.5	38.5	38.3	38.7	38.8	38.3
CLP	50.0	49.6	49.8	50.2	50.0	48.3
OBS	25.1	25.1	25.1	22.9	23.0	22.9
REC	13.6	13.7	13.7	14.1	14.1	14.5
TAG	78.6	78.7	78.6	71.9	72.0	70.8
MMB(mil.lb)	3.66	3.67	3.68	3.52	3.52	3.56
Legal	3.21	3.21	3.21	3.05	3.06	3.03
(mil.lb)						

TSA: Trawl Survey Abundance
St. CPUE: Summer commercial catch standardized CPUE
TLP: Trawl survey length composition:
WLP: Winter pot survey length composition
CLP: Summer commercial catch length composition
REC: Recruitment deviation
OBS: Summer commercial catch observer discards length composition
TAG: Tagging recovery data composition
Legal: Exploitable legal male crab

See Appendix C1-C6 for standard output figures. Estimate of parameters for each model is available by request to the author.

a. Search for balance:

Changing to 2 parameter logistic model and stepwise length specific mortality increased model fit. As expected, natural mortality increased gradually as length class increased. We propose alternative model 5 as potential model for Jan 18 assessment model.

4. Results :

1. List of effective sample sizes and weighting factors (Figure 4)
"Implied" effective sample sizes were calculated as

$$
n=\sum_{l} \hat{P}_{y, l}\left(1-\hat{P}_{y, l}\right) / \sum_{l}\left(P_{y, l}-\hat{P}_{y, l}\right)^{2}
$$

Where $P_{y, l}$ and $\hat{P}_{y, l}$ are observed and estimated length compositions in year y and length group l, respectively. Estimated effective sample sizes vary greatly over time.

Maximum sample sizes for length proportions:

Survey data	Sample size
Summer commercial, winter pot, and summer observer	minimum of 0.1× actual sample size or 10
Summer trawl and pot survey	minimum of $0.5 \times$ actual sample size or 20

2. Tables of estimates.
a. Model parameter estimates (Tables 10, 11, 12, 13).
b. Abundance and biomass time series (Table 13)
c. Recruitment time series (Table 13).
d. Time series of catch/biomass (Tables 13 and 14)
3. Graphs of estimates.
a. Molting probability and trawl/pot selectivity (Figure 5)
b. Trawl survey and model estimated trawl survey abundance (Figure 6)
c. Estimated male abundances (recruits, legal, and total) (Figure 7)
d. Estimated mature male biomass (Figure 8)
e. Time series of standardized cpue for the summer commercial fishery (Figure 9).
f. Time series of catch and estimated harvest rate (Figure 10).
4. Evaluation of the fit to the data.
a. Fits to observed and model predicted catches.

Not applicable. Catch is assumed to be measured without error; however fits of cpue are available (Figures 9, 11).
b. Model fits to survey numbers (Figures 6, 11).

All model estimated abundances of total crab were within the 95\% confidence interval of the survey observed abundance, except for 1976 and 1979, where model estimates were higher than the observed abundances.
c. Fits of catch proportions by lengths (Figures 12, 13).
d. Model fits to catch and survey proportions by length (Figures 12, 14, 15, 16).
e. Marginal distribution for the fits to the composition data
f. Plots of implied versus input effective sample sizes and time-series of implied effective sample size (Figure 4).
g. Tables of RMSEs for the indices:

Trawl survey:
Summer commercial standardized CPUE: (Table 1)
h. QQ plots and histograms of residuals (Figure 11).
5. Retrospective analyses (Figure 17).
6. Uncertainty and sensitivity analyses.

See Sections 2 and 5.

F. Calculation of the OFL

1. Specification of the Tier level and stock status.

The Norton Sound red king crab stock is placed in Tier 4. It is not possible to estimate the spawner-recruit relationship, but some abundance and harvest estimates are available to build a
computer simulation model that captures the essential population dynamics. Tier 4 stocks are assumed to have reliable estimates of current survey biomass and instantaneous M; however, the estimates for the Norton Sound red king crab stock are uncertain.

Tire 4 level and the OFL are determined by the $F_{\text {MSY }}$ proxy, $B_{M S Y}$ proxy, and estimated legal male abundance and biomass:

level	Criteria	$F_{\text {OFL }}$
a	$B / B_{\text {MSY }}{ }^{\text {prox }}$ >1	$F_{\text {OFL }}=\gamma M$
b		$F_{\text {OFL }}=\gamma M\left(B / B_{\text {MSY }}{ }^{\text {prox }}-\alpha\right) /(1-\alpha)$
c	$B / B_{\text {MSY }}{ }^{\text {prox }}$ $\leq \beta$	$F_{\text {OFL }}=$ bycatch mortality \& directed fishery F $=0$

where B is a mature male biomass (MMB), $B_{M S Y}$ proxy is average mature male biomass over a specified time period, $M=0.18, \gamma=1, \alpha=0.1$, and $\beta=0.25$

For Norton Sound red king crab, MMB is defined as the biomass of males $>94 \mathrm{~mm}$ CL on February 01 (Appendix A). $B_{M S Y}$ proxy is
$B_{\text {MSY }}$ proxy = average model estimated MMB from 1980-2018

Predicted mature male biomass in 2018 on February 01 is:

Mature male biomass : million lb.

Estimated $B_{M S Y}$ proxy is:
million lb.

Since projected MMB is greater than $B_{M S Y}$ proxy, Norton Sound red king crab stock status is

2. Calculation of OFL.

OFL was calculated for retained ($O F L_{r}$), un-retained ($O F L_{u r}$), and total $\left(O F L_{T}\right)$ for legal sized crab, Legal_B, by applying FoFL.

Legal_B is a biomass of legal crab subject to fisheries and is calculated as: Projected abundance by length crab \times fishing selectivity by length class \times Proportion of legal crab per length class \times Average lb per length class.

The Norton Sound red king crab fishery consists of two distinct fisheries: winter and summer. The two fisheries are discontinuous with 5 months between the two fisheries during which natural mortalities occur. To incorporate this fishery, the CPT in 2016 recommended the following formula:

$$
\begin{aligned}
& \text { Legal_ }_{s}=\text { Legal }_{-} B_{w}\left(1-\exp \left(-x \cdot F_{\text {OFL }}\right)\right) e^{-0.42 M} \\
& \text { OFL }_{r}=\left(1-\exp \left(-(1-x) \cdot F_{\text {OFL }}\right)\right) \text { Legal }_{_} B_{s}
\end{aligned}
$$

And $\quad p=\frac{\text { Legal }_{-} B_{w}\left(1-\exp \left(-x \cdot F_{\text {OFL }}\right)\right)}{O F L_{r}}$
Where p is a specific proportion of winter crab harvest to total (winter + summer) harvest.
For calculation of the OFL 2017, we specified $p=0.16$. This was a proportion of winter harvest in 2016.

Solving x of the above, a revised retained OFL is

$$
O F L=\text { Legal }_{-} B_{w}\left(1-e^{-\left(F_{\text {OFL }}+0.42 M\right)}-\left(1-e^{-0.42 M}\right)\left(\frac{1-p\left(1-e^{-\left(F_{\text {OFL }}+0.42 M\right)}\right)}{1-p\left(1-e^{-0.42 M}\right)}\right)\right)
$$

Accounting for length specific natural mortality

$$
O F L_{r}=\sum_{l}\left[\text { Legal }_{-} B_{w, l}\left(1-e^{-\left(F_{\text {OFL }}+0.42 M_{l}\right)}-\left(1-e^{-0.42 M_{l}}\right)\left(\frac{1-p\left(1-e^{-\left(F_{\text {oFL }}+0.42 M_{l}\right)}\right)}{1-p\left(1-e^{-0.42 M_{l}}\right)}\right)\right)\right]
$$

Unretained OFL ($O F L_{u r}$) is a sub-legal crab biomass catchable to summer commercial pot fisheries calculated as: Projected legal abundance (Feb 1st) \times Commercial pot selectivity \times Proportion of sub-legal crab per length class \times Average lb per length class \times handling mortality ($\mathrm{hm}=0.2$)

$$
O F L_{r}=\sum_{l}\left[S u b_{-} \text {legal } _B_{w, l}\left(1-e^{-\left(F_{\text {OFL }}+0.42 M_{l}\right)}-\left(1-e^{-0.42 M_{l}}\right)\left(\frac{1-p\left(1-e^{-\left(F_{\text {oFL }}+0.42 M_{l}\right)}\right)}{1-p\left(1-e^{-0.42 M_{l}}\right)}\right)\right)\right] \cdot h m
$$

The total male OFL is

$$
O F L_{T}=O F L_{r}+O F L_{u r}
$$

For calculation of the OFL 2018

Legal male biomass (Feb 01): million lb
$\mathrm{OFL}_{\mathrm{r}}=$ million lb .
$\mathrm{OFL}_{\mathrm{nr}}=$ million lb .
$\mathrm{OFL}_{\mathrm{T}}=$ million lb .

G. Calculation of the ABC

1. Specification of the probability distribution of the OFL.

Probability distribution of the OFL was determined based on the CPT recommendation in January 2015 of 20\% buffer:
Retained ABC for legal male crab is 80% of OFL
$\mathrm{ABC}=$ million lb or 1000 t.

H. Rebuilding Analyses

Not applicable

I. Data Gaps and Research Priorities

The major data gap is the fate of crab greater than 123 mm .

Acknowledgments

We thank all CPT members for all review of the assessment model and suggestions for improvements and diagnoses.

References

Fournier, D., and C.P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39:1195-1207.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J.

Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Menard, J., J. Soong, and S. Kent 2011. 2009 Annual Management Report Norton Sound, Port Clarence, and Kotzebue. Fishery Management Report No. 11-46.

Methot, R.D. 1989. Synthetic estimates of historical abundance and mortality for northern anchovy. Amer. Fish. Soc. Sym. 6:66-82.

Mohn, R. 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES Journal of Marine Science, 56:473-488.

Powell, G.C., R. Peterson, and L. Schwarz. 1983. The red king crab, Paralithodes camtschatica (Tilesius), in Norton Sound, Alaska: History of biological research and resource utilization through 1982. Alaska Dept. Fish and Game, Inf. Leafl. 222. 103 pp.

Zheng, J., G.H. Kruse, and L. Fair. 1998. Use of multiple data sets to assess red king crab, Paralithodes camtschaticus, in Norton Sound, Alaska: A length-based stock synthesis approach. Pages 591-612 In Fishery Stock Assessment Models, edited by F. Funk, T.J. Quinn II, J. Heifetz, J.N. Ianelli, J.E. Powers, J.F. Schweigert, P.J. Sullivan, and C.-I. Zhang, Alaska Sea Grant College Program Report No. AK-SG-98-01, University of Alaska Fairbanks

Table 1. Historical summer commercial red king crab fishery economic performance, Norton Sound Section, eastern Bering Sea, 1977-2017. Bold type shows data that are used for the assessment model.

Year	Guideline Harvest Level (lb) ${ }^{\text {b }}$	Commercial Harvest (lb) ${ }^{\text {a, }}$ b		Number Harvest	Total Number (Open Access)			Total Pots		ST CPUE		Season Length		Midday from July
		Open												
		Access	CDQ		Vessels	Permits	Landings	Registered	Pulls	CPUE	SD	Days	Dates	
1977	c	517.787		195,877	7	7	13		5,457	3.43	0.34	60	c	0.049
1978	3,000.000	2,091.961		660,829	8	8	54		10,817	2.83	0.23	60	6/07-8/15	0.142
1979	3,000.000	2,931.672		970,962	34	34	76		34,773	2.59	0.17	16	7/15-7/31	0.088
1980	1,000.000	1,186.596		329,778	9	9	50		11,199	2.43	0.25	16	7/15-7/31	0.066
1981	2,500.000	1,379.014		376,313	36	36	108		33,745	0.74	0.17	38	7/15-8/22	0.096
1982	500.000	228.921		63,949	11	11	33		11,230	0.13	0.25	23	8/09-9/01	0.151
1983	300.000	368.032		132,205	23	23	26	3,583	11,195	0.90	0.22	3.8	8/01-8/05	0.096
$\backslash 1984$	400.000	387.427		139,759	8	8	21	1,245	9,706	1.09	0.23	13.6	8/01-8/15	0.110
1985	450.000	427.011		146,669	6	6	72	1,116	13,209	0.37	0.21	21.7	8/01-8/23	0.118
1986	420.000	479.463		162,438	3	3		578	4,284	1.00	0.43	13	8/01-8/25	0.153
1987	400.000	327.121		103,338	9	9		1,430	10,258	0.63	0.32	11	8/01-8/12	0.107
1988	200.000	236.688		76,148	2	2		360	2,350	1.51	0.71	9.9	8/01-8/11	0.110
1989	200.000	246.487		79,116	10	10		2,555	5,149	1.61	0.33	3	8/01-8/04	0.096
1990	200.000	192.831		59,132	4	4		1,388	3,172	1.18	0.42	4	8/01-8/05	0.099
1991	340.000			0		mmer F	hery							
1992	340.000	74.029		24,902	27	27		2,635	5,746	0.26	0.31	2	8/01-8/03	0.093
1993	340.000	335.790		115,913	14	20	208	560	7,063	0.91	0.10	52	7/01-8/28	0.093
1994	340.000	327.858		108,824	34	52	407	1,360	11,729	0.81	0.06	31	7/01-7/31	0.044
1995	340.000	322.676		105,967	48	81	665	1,900	18,782	0.42	0.05	67	7/01-9/05	0.093
1996	340.000	224.231		74,752	41	50	264	1,640	10,453	0.51	0.08	57	7/01-9/03	0.101
1997	80.000	92.988		32,606	13	15	100	520	2,982	0.85	0.10	44	7/01-8/13	0.074
1998	80.000	29.684	0.00	10,661	8	11	50	360	1,639	0.78	0.13	65	7/01-9/03	0.110
1999	80.000	23.553	0.00	8,734	10	9	53	360	1,630	0.92	0.13	66	7/01-9/04	0.104
2000	336.000	297.654	14.87	111,728	15	22	201	560	6,345	1.25	0.06	91	7/01-9/29	0.126
2001	303.000	288.199	0	98,321	30	37	319	1,200	11,918	0.65	0.05	97	7/01-9/09	0.104
2002	248.000	244.376	15.226	86,666	32	49	201	1,120	6,491	1.24	0.06	77	6/15-9/03	0.060
2003	253.000	253.284	13.923	93,638	25	43	236	960	8,494	0.86	0.05	68	6/15-8/24	0.058
2004	326.500	314.472	26.274	120,289	26	39	227	1,120	8,066	1.30	0.05	51	6/15-8/08	0.033
2005	370.000	370.744	30.06	138,926	31	42	255	1,320	8,867	1.22	0.05	73	6/15-8/27	0.058
2006	454.000	419.191	32.557	150,358	28	40	249	1,120	8,867	1.34	0.05	68	6/15-8/22	0.052
2007	315.000	289.264	23.611	110,344	38	30	251	1,200	9,118	1.03	0.05	52	6/15-8/17	0.036
2008	412.000	364.235	30.9	143,337	23	30	248	920	8,721	1.36	0.05	73	6/23-9/03	0.079
2009	375.000	369.462	28.125	143,485	22	27	359	920	11,934	0.86	0.04	98	6/15-9/20	0.090
2010	400.000	387.304	30	149,822	23	32	286	1,040	9,698	1.23	0.04	58	6/28-8/24	0.074
2011	358.000	373.990	26.851	141,626	24	25	173	1,040	6,808	1.59	0.05	33	6/28-7/30	0.038
2012	465.450	441.080	34.91	161,113	40	29	312	1,200	10,041	1.31	0.04	72	6/29-9/08	0.093
2013	495.600	373.278	18.585	130,603	37	33	460	1,420	15,058	0.68	0.04	74	7/3-9/14	0.110
2014	382.800	360.860	28.148	129,657	52	33	309	1,560	10,127	1.14	0.04	52	6/25-8/15	0.052
2015	394.600	371.520	29.595	144,255	42	36	251	1,480	8,356	1.49	0.05	26	6/29-7/24	0.033
2016	517.200	416.576	3,583	138,997	36	37	220	1,520	8,009	1.32	0.05	25	6/27-7/21	0.025
2017	496,800	411,736	0	135,322	36	36	270	1640	9,440	1.20	0.05	30	6/26-7/25	0.027

${ }^{\text {a }}$ Deadloss included in total. ${ }^{\text {b }}$ Millions of pounds. ${ }^{\text {c }}$ Information not available.

Table 2. Historical winter commercial and subsistence red king crab fisheries, Norton Sound Section, eastern Bering Sea, 1977-2016. Bold typed data are used for the assessment model.

Model Year	Year ${ }^{\text {a }}$	Commercial			Subsistence			Total Crab	
		$\begin{gathered} \hline \text { \# of } \\ \text { Fishers } \end{gathered}$	\# of Crab Harvested	Winter ${ }^{\text {b }}$					
					Issued	Returned	Fished	Caught ${ }^{\text {c }}$	Retained ${ }^{\text {d }}$
1978	1978	37	9,625	1977/78	290	206	149	NA	12,506
1979	1979	$1{ }^{\text {f }}$	$221{ }^{\text {f }}$	1978/79	48	43	38	NA	224
1980	1980	$1{ }^{\text {f }}$	$22^{\text {f }}$	1979/80	22	14	9	NA	213
1981	1981	0	0	1980/81	51	39	23	NA	360
1982	1982	$1{ }^{\text {f }}$	$17^{\text {f }}$	1981/82	101	76	54	NA	1,288
1983	1983	5	549	1982/83	172	106	85	NA	10,432
1984	1984	8	856	1983/84	222	183	143	15,923	11,220
1985	1985	9	1,168	1984/85	203	166	132	10,757	8,377
1986	1985/86	5	2,168	1985/86	136	133	107	10,751	7,052
1987	1986/87	7	1,040	1986/87	138	134	98	7,406	5,772
1988	1987/88	10	425	1987/88	71	58	40	3,573	2,724
1989	1988/89	5	403	1988/89	139	115	94	7,945	6,126
1990	1989/90	13	3,626	1989/90	136	118	107	16,635	12,152
1991	1990/91	11	3,800	1990/91	119	104	79	9,295	7,366
1992	1991/92	13	7,478	1991/92	158	105	105	15,051	11,736
1993	1992/93	8	1,788	1992/93	88	79	37	1,193	1,097
1994	1993/94	25	5,753	1993/94	118	95	71	4,894	4,113
1995	1994/95	42	7,538	1994/95	166	131	97	7,777	5,426
1996	1995/96	9	1,778	1995/96	84	44	35	2,936	1,679
1997	1996/97	$2^{\text {f }}$	$83^{\text {f }}$	1996/97	38	22	13	1,617	745
1998	1997/98	5	984	1997/98	94	73	64	20,327	8,622
1999	1998/99	5	2,714	1998/99	95	80	71	10,651	7,533
2000	1999/00	10	3,045	1999/00	98	64	52	9,816	5,723
2001	2000/01	3	1,098	2000/01	50	27	12	366	256
2002	2001/02	11	2,591	2001/02	114	61	45	5,119	2,177
2003	2002/03	13	6,853	2002/03	107	70	61	9,052	4,140
2004	2003/04	$2^{\text {f }}$	$522{ }^{\text {f }}$	2003/04 ${ }^{\text {g }}$	96	77	41	1,775	1,181
2005	2004/05		2,091	2004/05	170	98	58	6,484	3,973
2006	2005/06	$1{ }^{\text {f }}$	$75^{\text {f }}$	2005/06	98	97	67	2,083	1,239
2007	2006/07	8	3,313	2006/07	129	127	116	21,444	10,690
2008	2007/08	9	5,796	2007/08	139	137	108	18,621	9,485
2009	2008/09	7	4,951	2008/09	105	105	70	6,971	4,752
2010	2009/10	10	4,834	2009/10	125	123	85	9,004	7,044
2011	2010/11		3,365	2010/11	148	148	95	9,183	6,640
2012	2011/12	35	9,157	2011/12	204	204	138	11,341	7,311
2013	2012/13	26	22,639	2012/13	149	148	104	21,524	7,622
2014	2013/14	21	14,986	2013/14	103	103	75	5,421	3,252
2015	2014/15	44	41,062	2014/15	155	153	107	9,840	7,651
2016	2015/16	25	29,792	2015/16	139	97	64	6,468	5,340
2017	2016/17	43	26,008	2016/17	163	163	109	7,185	6,039

a Prior to 1985 the winter commercial fishery occurred from January 1 - April 30. As of March 1985, fishing may occur from November 15 - May 15.
b The winter subsistence fishery occurs during months of two calendar years (as early as December, through May).
c The number of crab actually caught; some may have been returned.
d The number of crab retained is the number of crab caught and kept.
f Confidentiality was waived by the fishers.
h Prior to 2005, permits were only given out of the Nome ADF\&G office. Starting with the 2004-5 season, permits were given out in Elim, Golovin, Shaktoolik, and White Mountain.

Table 3. Summary of triennial trawl survey Norton Sound male red king crab abundance estimates. Trawl survey abundance estimate is based on 10×10 nmil 2 grid, except for $2010(20 \times 20$ nmil ${ }^{2}$). Bold typed data are used for the assessment model.

Year	Dates	Survey Agency	Survey method		Survey coverage		Abundance $\geq 74 \mathrm{~mm}$	
				Total surveyed stations	Stations w/ NSRKC	n mile 2 covered		CV
1976	9/02-9/25	NMFS	Trawl	103	62	10260	4247.5	0.31
1979	7/26-8/05	NMFS	Trawl	85	22	8421	1417.2	0.20
1980	7/04-7/14	ADFG	Pots				2092.3	N/A
1981	6/28-7/14	ADFG	Pots				2153.4	N/A
1982	7/06-7/20	ADFG	Pots				1140.5	N/A
1982	9/05-9/11	NMFS	Trawl	58	37	5721	2791.7	0.29
1985	7/01-7/14	ADFG	Pots				2320.4	0.083
1985	9/16-10/01	NMFS	Trawl	78	49	7688	2306.3	0.25
1988	8/16-8/30	NMFS	Trawl	78	41	7721	2263.4	0.29
1991	8/22-8/30	NMFS	Trawl	52	38	5183	3132.5	0.43
1996	8/07-8/18	ADFG	Trawl	50	30	4938	985.5	0.23
1999	7/28-8/07	ADFG	Trawl	52	31	5221	2560.4	0.24
2002	7/27-8/06	ADFG	Trawl	57	37	5621	1820.2	0.38
2006	7/25-8/08	ADFG	Trawl	114	45	10008	2593.2	0.34
2008	7/24-8/11	ADFG	Trawl	86	44	7330	2485.5	0.34
$2010^{\text {a }}$	7/27-8/09	NOAA	Trawl	35	15	13749	2068.5	0.45
2011	7/18-8/15	ADFG	Trawl	65	34	6447	2799.1	0.29
2014	7/18-7/30	ADFG	Trawl	47	34	4700	5478.9	0.49
2017	7/28-8/08	ADFG	Trawl	60	41	6000	1503.8	0.23
2017		NOAA	Trawl					

Table 4. Summer commercial catch size/shell compositions. Sizes in this and Tables 5-10 and 12 are mm carapace length. Legal size (4.75 inch carapace width is approximately equal to $\mathbf{1 2 4} \mathbf{~ m m}$ carapace length.

		New Shell								Old Shell						
Year	Sample	$\begin{aligned} & \hline 64- \\ & 73 \end{aligned}$	74-83	84-93	$\begin{aligned} & \hline 94- \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 104- \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{aligned} & \hline 124- \\ & 133 \end{aligned}$	134+	$\begin{gathered} 64-7 \\ 738 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 74- \\ \hline 83 \\ \hline \end{array}$	$\begin{array}{cc} \hline 84- & 94- \\ 93 & 103 \end{array}$	$\begin{gathered} \hline 104- \\ 113 \end{gathered}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{gathered} \hline 124- \\ 133 \end{gathered}$	134
1977	1549	0	0	0	0.00	0.42	0.34	0.08	0.05	,	0	00.00	0.06	0.04	0.01	00
1978	389	0	0	0	0.01	0.19	0.47	0.26	0.04	0	0	00.00	0.01	0.01	0.01	0.00
1979	1660	0		0	0.03	0.23	0.38	0.26	0.07	0	0	00.00	0.03	0.00	0.00	0.01
1980	1068	0		0	0.00	0.10	0.31	0.37	0.18	0	0	00.00	0.00	0.01	0.02	0.01
19	1784	0	0	0	0.00	0.07	0.15	0.28	0.23	0	0	00.00	0.00	0.05	0.12	0.09
1982	1093	0		0	0.04	0.19	0.16	0.22	0.29	0	0	00.00	0.01	0.02	0.03	0.03
1983	802	0	0	0	0.04	0.41	0.36	0.06	0.03	0	0	00.00	0.04	0.01	0.02	0.02
1984	963	0	0	0	0.10	0.42	0.28	0.06	0.01	0	0	00.01	0.07	0.05	0.01	0.00
1985	2691	0	0	0.00	0.06	0.31	0.37	0.15	0.02	0	0	00.00	0.03	0.03	0.01	0.00
1986	1138	0	0	0	0.03	0.36	0.39	0.12	0.02	0	0	00.00	0.02	0.04	0.02	0.00
1987	1985	0		0	0.02	0.18	0.29	0.27	0.11	0	0	00.00	0.03	0.06	0.03	0.01
1988	1522	0	0.00	0	0.02	0.20	0.30	0.18	0.04	0	0	00.01	0.06	0.10	0.07	0.02
19	2595	0	0	0	0.01	0.16	0.32	0.17	0.05	0	0	00.00	0.06	0.12	0.09	0.02
1990	1289	0	0	0	0.01	0.14	0.35	0.26	0.07	0	0	00.00	0.04	0.07	0.05	0.01
1991																
1992	2566	0	0	0	0.02	0.20	0.27	0.14	0.09	0	0	00.00	0.08	0.1	0.06	0.02
19	17804	0	0	0	0.01	0.23	0.39	0.23	0.03	0	0	00.00	0.02	0.0	0.03	0.01
1994	404	0	0	0	0.02	0.09	. 08	0.07	0.02	0	0	00.02	0.19	0.25	0.20	0.05
1995	1167	0	0	0	0.04	0.26	0.29	0.15	0.05	0	0	00.01	0.05	0.07	0.06	0.01
1996	787	0	0	0	0.03	. 22	. 24	0.09	0.05	0	0	00.01	0.12	0.14	0.08	0.02
199	1198	0	0	0	0.03	0.37	0.34	0.10	0.03	0	0	00.00	0.06	0.04	0.03	0.01
1998	1055	0	0	0	0.03	0.23	0.24	0.08	0.03	0	0	00.02	0.11	0.14	0.08	0.03
19	562	0	0	0	0.06	0.29	0.24	0.18	0.09	0	0	00.00	0.02	0.05	0.04	0.00
20	17213	0	0	0	0.02	0.30	0.39	0.11	0.02	0	0	00.00	0.05	0.07	0.04	0.01
2001	20030	0	0	0	0.02	. 22	. 37	0.21	0.07	0	0	00.00	0.02	0.05	0.02	0.01
200	5219	0	0	0	0.04	0.23	0.28	0.25	0.07	0	0	00.00	0.03	0.04	0.03	0.01
2003	5226	0	0	0	0.02	0.37	. 32	0.12	0.03	0	0	00.00	0.02	0.05	0.05	0.01
200	9606	0	0	0	0.01	0.38	0.39	0.11	0.03	0	0	00.00	0.03	0.03	0.01	0.01
2005	5360	0	0	0	0.00	0.25	0.47	0.16	0.02	0	0	00.00	0.02	0.05	0.02	0.01
20	6707	0	0	0	0.00	0.18	. 35	0.17	0.02	0	0	00.00	0.05	0.14	0.07	0.01
20	6125	0	0	0	0.01	0.36	0.34	0.14	0.03	0	0	00.00	0.02	0.06	0.03	0.01
20	5766	0	0	0	0.00	0.35	0.35	0.06	0.01	0	0	00.00	0.09	0.09	0.04	0.01
200	6026	0	0	0	0.01	0.34	0.33	0.11	0.02	0	0	00.00	0.08	0.08	0.02	0.01
2010	5902	0	0	0	0.01	0.39	0.36	0.10	0.01	0	0	00.00	0.05	0.05	0.02	0.00
20	2552	0	0	0	0.00	0.32	0.40	0.12	0.02	0	0	00.00	0.06	0.06	0.02	0.00
2012	5056	0		0	0.00	0.24	0.46	0.18	0.02	0	0	00.00	0.03	0.04	0.02	0.00
2013	6072	0	0	0	0.00	0.24	0.37	0.24	0.06	0	0	00.00	0.01	0.04	0.02	0.00
201	4682	0	0	0	0.01	0.28	0.24	0.18	0.07	0	0	00.00	0.04	0.09	0.07	0.02
2015	4173	0	0	0	0.01	0.48	0.28	0.10	0.03	0	0	00.00	0.02	0.03	0.03	0.01
2016	1542	0	0	0	0.00	0.25	0.47	0.16	0.03	0	0	00.00	0.02	0.02	0.03	0.01
017	3972	0	0	0	0.0	0.18	0.3	0.20	0.	0	0	00.0	4	0.12	0.05	0.01

Table 5. Summer Trawl Survey size/shell compositions.

New Shell									Old Shell						
Year	mple	$64-$	$\begin{gathered} \hline 74- \\ 83 \end{gathered}$	$\begin{gathered} \hline 84- \\ 93 \end{gathered}$	$\begin{aligned} & \hline 94- \\ & 103 \end{aligned}$	$\begin{gathered} \hline 104- \\ 113 \end{gathered}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{array}{ll\|} \hline 124- \\ 133 & 134+ \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 64- \\ 73 \end{array}$	$\begin{aligned} & 74- \\ & 83 \end{aligned}$	$\begin{gathered} \hline 84- \\ 93 \end{gathered}$	$\begin{aligned} & \hline 94- \\ & 103 \end{aligned}$	$\begin{gathered} \hline 104- \\ 113 \end{gathered}$	$\begin{gathered} \hline 114- \\ 123 \end{gathered}$	$\begin{array}{ll} \hline 124- & 134+ \\ 133 & \end{array}$
1976	1326	0.01	0.02	0.10	0.19	0.34	0.18	0.020 .00	0.00	0.00	0.01	0.02	0.03	0.04	0.010 .01
1979	220	. 0	0.01	0.00	0.02	0.05	0.05	0.030 .01	0.01	0.00	0.01	0.04	0.14	0.40	0.190 .03
1982	327	0.22	0.07	0.16	0.23	0.17	0.03	0.000 .00	0.00	0.00	0.01	0.02	0.03	0.02	0.020 .03
1985	350	0.1	0.11	0.19	0.17	0.16	0.06	0.010 .00	0.00	0.00	0.00	0.02	0.05	0.08	0.050 .01
1988	366	0.16	0.19	0.12	0.13	0.11	0.06	0.030 .00	0.00	0.00	0.01	0.01	0.03	0.07	0.050 .03
1991	340	0.18	0.08	0.02	0.03	0.06	0.03	0.010 .01	0.03	0.06	0.02	0.08	0.16	0.14	0.090 .02
1996	269	0.29	0.21	0.13	0.09	0.05	0.00	0.000 .01	0.00	0.00	0.03	0.03	0.04	0.04	0.040 .03
1999	283	0.03	0.01	0.10	0.29	0.26	0.13	0.030 .01	0.00	0.00	0.00	0.03	0.05	0.04	0.020 .00
2002	24	0.09	0.12	0.14	0.11	0.02	0.03	0.020 .01	0.01	0.03	0.07	0.10	0.09	0.09	0.050 .02
2006	373	0.18	0.26	0.21	0.11	0.06	0.04	0.020 .00	0.00	0.00	0.00	0.02	0.04	0.04	0.010 .00
2008	275	12	0.15	0.21	0.11	0.10	0.03	0.020 .01	0.00	0.01	0.04	0.06	0.08	0.01	0.040 .00
2010	69	0.01	0.04	0.06	0.17	0.06	0.03	0.000 .00	0.00	0.03	0.09	0.20	0.19	0.07	0.030 .01
2011	315	0.13	0.11	0.09	0.11	0.18	0.14	0.030 .01	0.00	0.00	0.01	0.02	0.09	0.04	0.030 .00
2014	387	0.08	0.15	0.24	0.18	0.09	0.02	0.010 .01	0.00	0.00	0.03	0.10	0.05	0.04	0.010 .00
2017	116	0.1	0.12	0.05	0.09	0.10	0.04	0.000 .00	0.01	0.02	0.02	0.02	0.07	0.18	0.040 .00

Table 6. Winter pot survey size/shell compositions.

		New Shell									Old Shell							
Year	CPUE	Sample	64-73	74-83	$\begin{aligned} & \hline 84- \\ & 93 \end{aligned}$	$\begin{aligned} & 94- \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 104- \\ & 113 \end{aligned}$	$\begin{aligned} & 114- \\ & 123 \end{aligned}$	$\begin{aligned} & 124- \\ & 133 \end{aligned}$	134+	$\begin{aligned} & \hline 64- \\ & 73 \end{aligned}$	$\begin{aligned} & \hline 74- \\ & 83 \end{aligned}$	84-93	$\begin{aligned} & 94- \\ & 103 \end{aligned}$	$\begin{aligned} & 104- \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{aligned} & 124- \\ & 133 \end{aligned}$	134+
1981/82	NA	719	0.00	0.10	0.23	0.21	0.07	0.02	0.02	0.00	0.00	0.05	0.11	0.11	0.04	0.02	0.02	0.00
1982/83	24.2	2583	0.03	0.08	0.28	0.28	0.21	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.01	0.01
1983/84	24.0	1677	0.01	0.16	0.26	0.23	0.15	0.06	0.01	0.00	0.00	0.00	0.00	0.02	0.06	0.03	0.01	0.01
1984/85	24.5	789	0.02	0.09	0.25	0.35	0.16	0.06	0.01	0.00	0.00	0.00	0.00	0.01	0.03	0.02	0.00	0.00
1985/86	19.2	594	0.04	0.12	0.17	0.24	0.19	0.08	0.01	0.00	0.00	0.00	0.00	0.01	0.06	0.04	0.01	0.00
1986/87	5.8	144	0.00	0.06	0.15	0.19	0.07	0.04	0.00	0.00	0.00	0.00	0.01	0.04	0.30	0.11	0.03	0.00
1987/88																		
1988/89	13.0	500	0.02	0.13	0.15	0.13	0.19	0.17	0.03	0.00	0.00	0.00	0.00	0.00	0.05	0.08	0.03	0.00
1989/90	21.0	2076	0.00	0.05	0.21	0.26	0.18	0.12	0.06	0.01	0.00	0.00	0.00	0.00	0.03	0.06	0.02	0.00
1990/91	22.9	1283	0.00	0.01	0.09	0.29	0.27	0.10	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.12	0.07	0.02
1992/93	5.5	181	0.00	0.01	0.03	0.06	0.13	0.12	0.03	0.00	0.00	0.00	0.00	0.02	0.19	0.27	0.10	0.05
1993/94																		
1994/95	6.2	858	0.01	0.06	0.08	0.10	0.26	0.23	0.07	0.01	0.0	0.00	0.00	0.00	0.03	0.07	0.06	0.02
1995/96	9.9	1580	0.06	0.14	0.20	0.19	0.11	0.07	0.03	0.00	0.00	0.00	0.00	0.01	0.06	0.07	0.03	0.01
1996/97	2.9	398	0.07	0.21	0.22	0.11	0.15	0.11	0.05	0.01	0.00	0.00	0.00	0.00	0.02	0.03	0.01	0.01
1997/98	10.9	881	0.00	0.14	0.41	0.27	0.05	0.02	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.02	0.02	0.01
1998/99	10.7	1307	0.00	0.02	0.12	0.36	0.36	0.08	0.01	0.00	0.00	0.00	0.00	0.01	0.02	0.01	0.01	0.00
1999/00	6.2	575	0.02	0.09	0.10	0.16	0.33	0.18	0.03	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.01	0.00
2000/01	3.1	44																
2001/02	13.0	828	0.05	0.29	0.26	0.17	0.06	0.06	0.04	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.00
2002/03	9.6	824	0.02	0.10	0.22	0.28	0.18	0.06	0.02	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.01
2003/04	3.7	296	0.00	0.02	0.16	0.26	0.32	0.14	0.01	0.00	0.00	0.00	0.01	0.02	0.02	0.01	0.02	0.01
2004/05	4.4	405	0.00	0.07	0.14	0.18	0.22	0.19	0.07	0.00	0.00	0.00	0.00	0.00	0.04	0.06	0.01	0.00
2005/06	6.0	512	0.00	0.14	0.23	0.21	0.16	0.05	0.02	0.00	0.00	0.01	0.01	0.02	0.04	0.07	0.03	0.01
2006/07	7.3	159	0.07	0.14	0.19	0.35	0.13	0.04	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.04	0.00	0.00
2007/08	25.0	3552	0.01	0.14	0.25	0.17	0.14	0.07	0.01	0.00	0.01	0.04	0.07	0.03	0.03	0.01	0.01	0.00
2008/09	21.9	525	0.00	0.07	0.13	0.35	0.20	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.04	0.10	0.00	0.00
2009/10	25.3	578	0.01	0.05	0.13	0.21	0.24	0.11	0.02	0.00	0.00	0.00	0.01	0.06	0.10	0.05	0.01	0.00
2010/11	22.1	596	0.02	0.08	0.13	0.20	0.17	0.13	0.05	0.00	0.00	0.00	0.01	0.03	0.11	0.05	0.01	0.00
2011/12	29.4	675	0.03	0.11	0.23	0.19	0.12	0.13	0.04	0.00	0.00	0.00	0.00	0.01	0.05	0.05	0.03	0.00

Table 7. Summer commercial1987-1994, 2012-2017 observer discards size/shell compositions.

	New Shell								Old Shell						
Year	Samp	$\begin{aligned} & \hline 64- \\ & 73 \end{aligned}$	74-83	$\begin{gathered} \hline 84- \\ 93 \end{gathered}$	$\begin{aligned} & \hline 94- \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 104- \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{array}{ll} \hline 124- & 134+ \\ 133 & 134 \end{array}$	$\begin{aligned} & \hline 64- \\ & 73 \end{aligned}$	$74-$	$\begin{gathered} \hline 84- \\ 93 \end{gathered}$	$\begin{aligned} & \hline 94- \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 104- \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 114- \\ & 123 \end{aligned}$	$\begin{aligned} & 124- \\ & 133 \end{aligned}$
1987	1146	0.06	0.19	0.32	0.33	0.03	0.00	0.000 .00	0.00	0.00	0.02	0.04	0.00	0.00	0.000 .00
1988	722	0.01	0.04	0.15	0.48	0.14	0.00	0.000 .00	0.00		0.03	0.10	0.04	0.00	0.000 .00
1989	1000	0.07	0.19	0.24	0.22	0.03	0.00	0.000 .00	0.02	0.03	0.07	0.11	0.03	0.00	0.000 .00
1990	507	0.08	0.23	0.27	0.27	0.04	0.00	0.000 .00	0.02	0.02	0.02	0.05	0.01	0.00	0.000 .00
1992	580	0.11	0.17	0.30	0.29	0.03	0.00	0.000 .00	0.01	0.02	0.02	0.04	0.01	0.00	0.000 .00
1994		0.07	0.06	0.11	0.15	0.02	0.00	0.000 .00	0.07	0.07	0.15	0.24	0.05	0.00	0.000 .00
2012	939	0.21	0.11	0.19	0.32	0.10	0.01	0.000 .00	0.00	0.00	0.00	0.02	0.02	0.00	0.000 .00
2013	2617	0.34	0.29	0.16	0.16	0.04	0.00	0.000 .00	0.00	0.00	0.00	0.00	0.00	0.00	0.000 .00
2014	1755	0.05	0.10	0.26	0.41	0.12	0.01	0.000 .00	0.00	0.00	0.01	0.03	0.01	0.00	0.000 .00
2015	824	0.01	0.08	0.18	0.44	0.23	0.02	0.000 .00	0.00	0.00	0.00	0.02	0.02	0.00	0.000 .00
2016		0.04	0.05	0.17	0.50	0.17	0.02	0.000 .00	0.00	0.00	0.00	0.03	0.01	0.00	0.000 .00
2017	544	0.10	0.16	0.13	0.31	0.26	0.01	0.000 .00	0.00	0.00	0.01	0.00	0.01	0.00	0.000 .00

Table 8. The number of tagged data released and recovered after 1 year (Y1) - 3 year (Y3) during 1980-1992 and 1993-2017 periods.

Release Length Class	Recap Length Class	1980-1992			1993-2017		
		Y1	Y2	Y3	Y1	Y2	Y3
64-73	64-73						
64-73	74-83	1					
64-73	84-93	1	1		3	1	
64-73	94-103		1			5	
64-73	104-113		1			4	9
64-73	114-123						10
64-73	124-133						
64-73	134+						
74-83	74-83						
74-83	84-93	3			21		
74-83	94-103	7			22	12	
74-83	104-113		13		4	94	17
74-83	114-123		1	2		5	37
74-83	124-133						4
74-83	134+						
84-93	84-93						
84-93	94-103	15	1		42	5	2
84-93	104-113	19	5	1	81	34	14
84-93	114-123		5	2	7	69	23
84-93	124-133				1	3	6
84-93	134+						
94-103	94-103	4	1		7	2	
94-103	104-113	53	5	1	165	33	
94-103	114-123	31	5	7	82	38	24
94-103	124-133	2	2	2		19	11
94-103	134+				1		
104-113	$104-113$	18			59	7	
104-113	114-123	38	15	3	109	64	9
104-113	124-133	7	8	4	15	18	11
104-113							2
$114-123$	$114-123$	17	2		72	9	
114-123	124-133	27	10	2	72	38	9
114-123	134+	5	1		19	6	3
124-133	124-133	15			41	9	1
124-133	134+	10	4	2	15	12	7
134+	134+	15	6	1	11	2	

Table 9. Summary of initial input parameter values and bounds for a length-based population model of Norton Sound red king crab. Parameters with "log_" indicate log scaled parameters.

Parameter	Parameter description	Equation Number in Appendix A	Lower	Upper
$\log _{-} \mathrm{q}_{1}$	Commercial fishery catchability (1977-92)	(20)	-32.5	8.5
$\log _{-} \mathrm{q}_{2}$	Commercial fishery catchability (1993-2014)	(20)	-32.5	10.0
$\log _{-} \mathrm{N}_{76}$	Initial abundance	(1)	2.0	15.0
R_{0}	Mean Recruit	(13)	2.0	12.0
$\log _{\text {a }} \sigma^{2}$	Recruit standard deviation	(13)	-20.0	20.0
a_{1}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{2}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{3}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{4}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{5}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{6}	Parameter for intimal length proportion	(2)	-5.0	5.0
a_{7}	Parameter for intimal length proportion	(2)	-5.0	5.0
R	Proportion of length class 1 for recruit	(14)	0.5	0.9
$\log _{_} \alpha$	Inverse logistic molting parameter	(15)	-5.5	-2.0
$\log _{\perp} \beta$	Inverse logistic molting parameter	(15)	3.0	7.0
$\log \phi_{\text {st1 }}$	Logistic trawl selectivity parameter (NMFS)	(16)	-15.0	-1.0
$\log _{-} \phi_{w}$	Inverse logistic winter pot selectivity parameter	$(15,16)$	-10.0	10.0
SW_{1}	Winter pot selectivity of length class 1	$(15,16)$	0.1	1.0
SW_{2}	Winter pot selectivity of length class 2	$(15,16)$	0.1	1.0
$\log _{_} \phi_{1}$	Logistic commercial catch selectivity parameter	(16)	-5.0	-1.0
$\log _{-} \phi_{2}$	Logistic commercial catch selectivity parameter	(16)	3.0	7.0
$w^{2}{ }_{t}$	Additional variance for standard CPUE	(31)	0.0	6.0
q	Survey q for NMFS trawl 1976-91	(31)	0.1	1.0
σ	Growth transition sigma	(17)	0.0	30.0
β_{1}	Growth transition mean	(17)	0.0	20.0
β_{2}	Growth transition increment	(17)	0.0	20.0

Figure 1. King crab fishing districts and sections of Statistical Area Q.

Figure 2. Closed water regulations in effect for the Norton Sound commercial crab fishery. Line around the coastline delineates the 3 -mil3 state waters zone.

Winter Pot Survey
 Summter Trawl Survey
 Summer Observer Survey

\square	64	\square	74	\square	84	\square	94	\square	104	\square	114	\square	124	\square

Figure 3. Observed length compositions during 1976-2017.

Appendix A. Description of the Norton Sound Red King Crab Model

a. Model description.

The model is an extension of the length-based model developed by Zheng et al. (1998) for Norton Sound red king crab. The model has 8 male length classes with model parameters estimated by the maximum likelihood method. The model estimates abundances of crab with CL $\geq 64 \mathrm{~mm}$ and with $10-\mathrm{mm}$ length intervals (8 length classes, $\geq 134 \mathrm{~mm}$) because few crab measuring less than 64 mm CL were caught during surveys or fisheries and there were relatively small sample sizes for trawl and winter pot surveys. The model treats newshell and oldshell male crab separately but assumes they have the same molting probability and natural mortality.

Norton Sound Red King Crab Modeling Scheme

Timeline of calendar events and crab modeling events:

- Model year starts February $1^{\text {st }}$ to January $31^{\text {st }}$ of the following year.
- All winter fishery harvest occurs on February $1^{\text {st }}$
- Molting and recruitment occur on July $1^{\text {st }}$
- Initial Population Date: February $1^{\text {st }} 1976$

Abundance of the initial pre-fishery population was assumed to consist of newshell crab to reduce the number of parameters, and estimated as

$$
\begin{equation*}
N_{l, 1}=p_{l} e^{\log _{_} N_{76}} \tag{1}
\end{equation*}
$$

where, length proportion of the first year $\left(p_{l}\right)$ was calculated as

$$
\begin{align*}
& p_{l}=\frac{\exp \left(a_{l}\right)}{1+\sum_{l=1}^{n-1} \exp \left(a_{l}\right)} \text { for } l=1, . ., n-1 \\
& p_{n}=1-\frac{\sum_{l=1}^{n-1} \exp \left(a_{l}\right)}{1+\sum_{l=1}^{n-1} \exp \left(a_{l}\right)} \tag{2}
\end{align*}
$$

for model estimated parameters a_{l}.

Crab abundance on July $1^{\text {st }}$

Summer (01 July) crab abundance of new and oldshells consists of survivors of winter commercial and subsistence crab fisheries and natural mortality from 01Feb to 01July:

$$
\begin{align*}
& N_{s, l, t}=\left(N_{w, l t-1}-C_{w, t-1} P_{w, n, l, t-1}-C_{p, t} P_{p, n, l, t-1}-D_{w, n, l, t-1}-D_{p, n, l, t-1}\right) e^{-0.42 M_{l}} \\
& O_{s, l, t}=\left(O_{w, t, t-1}-C_{w, t-1} P_{w, o, l, t-1}-C_{p, t} P_{p, o, l, t-1}-D_{w, o l, l-1}-D_{p, o, l, t-1}\right) e^{-0.42 M_{l}} \tag{3}
\end{align*}
$$

where
$N_{s, l, t}, O_{s, l t}$: summer abundances of newshell and oldshell crab in length class l in year t, $N_{w, l, t-1}, O_{w, l, t-1}$: winter abundances of newshell and oldshell crab in length class l in year $t-1$, $C_{w, t-1}, C_{p, t-1}$: total winter commercial and subsistence catches in year $t-1$, $P_{w, n, l, t-1}, P_{w, o l, t-1}$: Proportion of newshell and oldshell length class l crab in year $t-1$, harvested by winter commercial fishery,
$P_{p, n, l, t-1}, P_{p, o, l, t-1}$: Proportion of newshell and oldshell length class l crab in year $t-1$, harvested by winter subsistence fishery,
$D_{w, n, l, t-1}, D_{w, o l, t-1}$: Discard mortality of newshell and oldshell length class l crab in winter commercial fishery in year $t-1$,
$D_{p, n, l, t-1}, D_{p, o, l, t-1}$: Discard mortality of newshell and oldshell length class l crab in winter subsistence fishery in year $t-1$,
M_{l} : instantaneous natural mortality in length class l,
0.42 : proportion of the year from Feb 1 to July 1 is 5 months.

Length proportion compositions of winter commercial catch ($P_{w, n, l, t}, P_{w, o l, t}$) in year t were estimated as:

$$
\begin{align*}
& P_{w, n, l, t}=N_{w, l t} S_{w, l} L_{l} / \sum_{l=1}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l} L_{l}\right] \tag{4}\\
& P_{w, o, l t}=O_{w, l t} S_{w, l} L_{l} / \sum_{l=1}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l} L_{l}\right]
\end{align*}
$$

where
L_{l} : the proportion of legal males in length class l,
$S_{w, l}$: Selectivity of winter fishery pot.

Subsistence fishery does not have a size limit; however, crab of size smaller than length class 3 are generally not retained. Hence, we assumed proportion of length composition $l=1$ and 2 as 0 , and estimated length compositions ($l \geq 3$) as follows

$$
\begin{align*}
& P_{p, n, l t}=N_{w, l l} S_{w, l} / \sum_{l=3}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l}\right] \tag{5}\\
& P_{p, o l l}=O_{w, l l} S_{w, l} / \sum_{l=3}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l}\right]
\end{align*}
$$

Crab abundance on Feb 1 ${ }^{\text {st }}$

Newshell Crab: Abundance of newshell crab of year t and length-class $l\left(N_{w, l, t}\right)$ year-t consist of: (1) new and oldshell crab that survived the summer commercial fishery and molted, and (2) recruitment ($R_{l, t}$) .

$$
\begin{equation*}
N_{w, l, t}=\sum_{l^{\prime}=1}^{l^{\prime}=1} G_{l^{\prime}, l}\left[\left(N_{s, l^{\prime}, t-1}+O_{s, l^{\prime}, t-1}\right) e^{-y_{c} M_{l}}-C_{s, t}\left(P_{s, n, l^{\prime}, t-1}+P_{s, o, l^{\prime}, t-1}\right)-D_{l^{\prime}, t-1}\right] m_{l} e^{-\left(0.58-y_{c}\right) M_{l}}+R_{l, t} \tag{6}
\end{equation*}
$$

Oldshell Crab: Abundance of oldshell crabs of year t and length-class $l\left(O_{w, l, t}\right)$ consists of the nonmolting portion of survivors from the summer fishery:

$$
\begin{equation*}
O_{w, l, t}=\left[\left(N_{s, l, t-1}+O_{s, l, t-1}\right) e^{-y_{c} M_{l}}-C_{s, t}\left(P_{s, n, l, t-1}+P_{s, o, l, t-1}\right)-D_{l, t-1}\right]\left(1-m_{l}\right) e^{-\left(0.58-y_{c}\right) M_{l}} \tag{7}
\end{equation*}
$$

where
$G_{l, l}, l$: a growth matrix representing the expected proportion of crabs growing from length class l ' to length class l
$C_{\mathrm{s}, t}$: total summer catch in year t
$P_{s, n, l, t}, P_{s, o, l, t}$: proportion of summer catch for newshell and oldshell crabs of length class l in year t, $D_{l, t}$: summer discard mortality of length class l in year t,
m_{l} : molting probability of length class l,
y_{c} : the time in year from July 1 to the mid-point of the summer fishery,
0.58: Proportion of the year from July $1^{\text {st }}$ to Feb $1^{\text {st }}$ is 7 months is 0.58 year,
$R_{l, t}$ recruitment into length class l in year t.

Discards

Discards are crabs that were caught by fisheries but were not retained, which consists of summer commercial, winter commercial and winter subsistence.

Summer and winter commercial discards
In summer ($D_{l, t}$) and winter ($D_{w, n, l, t}, D_{w, o, l, t}$) commercial fisheries, sublegal males (<4.75 inch CW and <5.0 inch CW since 2005) are discarded. Those discarded crabs are subject to handling mortality. The number of discards was not directly observed, and thus was estimated from the model as: Observed Catch x (estimated abundance of crab that are not caught by commercial pot)/(estimated abundance of crab that are caught by commercial pot)

Model discard mortality in length-class l in year t from the summer and winter commercial pot fisheries is given by

$$
\begin{gather*}
D_{l, t}=C_{s, t} \frac{\left(N_{s, l, t}+O_{s, l, t}\right) S_{s, l}\left(1-L_{l}\right)}{\sum_{l}\left(N_{s, l, t}+O_{s, l, t}\right) S_{s, l} L_{l}} h m_{s} \tag{8}\\
D_{w, n, l, t}=C_{w, t} \frac{N_{w, l, t} S_{w, l}\left(1-L_{l}\right)}{\sum_{l}\left(N_{w, l, t}+O_{w, l, t}\right) S_{w, l} L_{l}} h m_{w} \tag{9}\\
D_{w, o l, t, t}=C_{w, t} \frac{O_{w, l, t} S_{w, l}\left(1-L_{l}\right)}{\sum_{l}\left(N_{w, l, t}+O_{w, l, t}\right) S_{w, l} L_{l}} h m_{w} \tag{10}
\end{gather*}
$$

where
$h m_{s}$: summer commercial handling mortality rate assumed to be 0.2 ,
$h m_{w}$: winter commercial handling mortality rate assumed to be 0.2 ,
$S_{\mathrm{s}, I}$: Selectivity of the summer commercial fishery,
$S_{w, l}$: Selectivity of the winter commercial fishery,

Winter subsistence Discards

Discards (unretained) of winter subsistence fishery is reported in a permit survey ($C_{d, t}$), though its size composition is unknown. We assumed that subsistence fishers discarded all crabs of length classes 1-2.

$$
\begin{align*}
& D_{p, n, l, t}=C_{d, t} \frac{N_{w, l, t} S_{w, l}}{\sum_{l=1}^{2}\left(N_{w, l, t}+O_{w, l, t}\right) S_{w, l}} h m_{w} \tag{11}\\
& D_{p, o, l, t}=C_{d, t} \frac{O_{w, l, t} S_{w, l}}{\sum_{l=1}^{2}\left(N_{w, l, t}+O_{w, l, t}\right) S_{w, l}} h m_{w} \tag{12}
\end{align*}
$$

$C_{d, t}:$ Winter subsistence discards catch,

Recruitment

Recruitment of year t, R_{t}, is a stochastic process around the geometric mean, R_{0} :

$$
\begin{equation*}
R_{t}=R_{0} e^{\tau_{t}}, \tau_{t} \sim N\left(0, \sigma_{R}^{2}\right) \tag{13}
\end{equation*}
$$

R_{t} of the last year was assumed to be an average of previous 5 years: $R_{t}=\left(R_{t-1}+R_{t-2}+R_{t-3}+R_{t-4}+\right.$ $\left.R_{t-5}\right) / 5$.
R_{t} was assumed to be newshell crab of immature (<94mm) length classes 1 to r :

$$
\begin{equation*}
R_{r, t}=p_{r} R_{t} \tag{14}
\end{equation*}
$$

where r takes multinomial distribution, same as the equation (2)

Molting Probability

Molting probability for length class l, m_{l}, was estimated as an inverse logistic function of lengthclass mid carapace length (L) and parameters (α, β) where β corresponds to L_{50}.

$$
\begin{equation*}
m_{l}=1-\frac{1}{1+e^{\alpha(L-\beta)}} \tag{15}
\end{equation*}
$$

Trawl net and summer commercial pot selectivity

Trawl and summer commercial pot selectivity was assumed to be a logistic function of mid-lengthclass, constrained to be 0.999 at the largest length-class ($L_{m a x}$):

$$
\begin{equation*}
S_{l}=\frac{1}{1+e^{\left(\phi\left(L_{\max }-L\right)+\ln (1 / 0.999-1)\right)}} \tag{16}
\end{equation*}
$$

Winter pot selectivity

Winter pot selectivity was assumed to be a dome-shaped with inverse logistic function of lengthclass mid carapace length (L) and parameters (α, β) where β corresponds to L_{50}.

$$
\begin{equation*}
S_{w, l}=\frac{1}{1+e^{\alpha(L-\beta)}} \tag{17}
\end{equation*}
$$

Selectivity of the length classes $S_{w, s}\left(\mathrm{~S}=l_{1}, l_{2}\right)$ were individually estimated.

Growth transition matrix

The growth matrix $G_{l^{\prime}, l}$ (the expected proportion of crab molting from length class l^{\prime} to length class l) was assumed to be normally distributed:

$$
G_{l^{\prime}, l}= \begin{cases}\frac{\int_{l m_{l}-h}^{l m_{l}+h} N\left(L \mid \mu_{l^{\prime}}, \sigma^{2}\right) d L}{\sum_{l=1}^{n} \int_{l m_{l}-h}^{l m_{l}+h} N\left(L \mid \mu_{l^{\prime}}, \sigma^{2}\right) d L} & \text { when } l \geq l^{\prime} \tag{18}\\ 0 & \text { when } l<l^{\prime}\end{cases}
$$

Where

$$
\begin{aligned}
& N\left(x \mid \mu_{l}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(L-\mu_{l}\right)^{2}}{\sigma^{2}}\right) \\
& I m_{l}=L_{1}+s t \cdot l \\
& \mu_{l}=L_{1}+\beta_{0}+\beta_{1} \cdot l
\end{aligned}
$$

Observation model

Summer trawl survey abundance

Modeled trawl survey abundance of year $t\left(B_{s t, t}\right)$ is July $1^{\text {st }}$ abundance subtracted by summer commercial fishery harvest occurring from July $1^{\text {st }}$ to the mid-point of summer trawl survey, multiplied by natural mortality occurring between the mid-point of commercial fishery date and
trawl survey date, and multiplied by trawl survey selectivity. For the first year (1976) trawl survey, the commercial fishery did not occur.

$$
\begin{equation*}
\hat{B}_{s t, t}=\sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) e^{-y_{c} M_{l}}-C_{s, t} P_{c, t}\left(P_{s, n, l, t}+P_{s, o, l, t}\right)\right] e^{-\left(y_{s t}-y_{c}\right) M_{l}} S_{s t, l} \tag{19}
\end{equation*}
$$

where
$y_{s t}$: the time in year from July 1 to the mid-point of the summer trawl survey, y_{c} : the time in year from July 1 to the mid-point for the catch before the survey, $\left(y_{s t}>y_{c}\right.$: Trawl survey starts after opening of commercial fisheries),
$P_{c, t}$: the proportion of summer commercial crab harvested before the mid-point of trawl survey date. $S_{s t, l}$: Selectivity of the trawl survey.

Winter pot survey CPUE

Winter pot survey cpue ($f_{w t}$) was calculated with catchability coefficient q and exploitable abundance:

$$
\begin{equation*}
\hat{f}_{w t}=q_{w} \sum_{l}\left[\left(N_{w, l, t}+O_{w, l, t}\right) S_{w, l}\right] \tag{20}
\end{equation*}
$$

Summer commercial CPUE

Summer commercial fishing CPUE $\left(f_{t}\right)$ was calculated as a product of catchability coefficient q and mean exploitable abundance minus one half of summer catch, A_{t} :

$$
\begin{equation*}
\hat{f}_{t}=q_{i}\left(A_{t}-0.5 C_{t}\right) \tag{21}
\end{equation*}
$$

Because the fishing fleet and pot limit configuration changed in 1993, q_{1} is for fishing efforts before 1993, q_{2} is from 1994 to present.

Where A_{t} is exploitable legal abundance in year t, estimated as

$$
\begin{equation*}
A_{t}=\sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) S_{s, l} L_{l}\right] \tag{22}
\end{equation*}
$$

Summer pot survey abundance (Removed from likelihood components)
Abundance of t-th year pot survey was estimated as

$$
\begin{equation*}
\hat{B}_{p, t}=\sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) e^{-y_{p} M_{l}}\right] S_{p, l} \tag{23}
\end{equation*}
$$

Where
y_{p} : the time in year from July 1 to the mid-point of the summer pot survey.
Length composition

Summer commercial catch

Length compositions of the summer commercial catch for new and old shell crabs $P_{s, n, l, t}$ and $P_{s, o l, t}$, were modeled based on the summer population, selectivity, and legal abundance:

$$
\begin{align*}
& \hat{P}_{s, n, l, t}=N_{s, l, t} S_{s, l} L_{l} / A_{t} \tag{24}\\
& \hat{P}_{s, o, l, t}=O_{s, l, t} S_{s, l} L_{l} / A_{t}
\end{align*}
$$

Summer commercial fishery discards

Length/shell compositions of observer discards were modeled as

$$
\begin{align*}
& \hat{P}_{b, n, l, t}=N_{s, l t} S_{s, l}\left(1-L_{l}\right) / \sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) S_{s, l}\left(1-L_{l}\right)\right] \tag{25}\\
& \hat{P}_{b, o, l, t}=O_{s, l t} S_{s, l}\left(1-L_{l}\right) / \sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) S_{s, l}\left(1-L_{l}\right)\right]
\end{align*}
$$

Summer trawl survey

Proportions of newshell and oldshell crab, $P_{s t, n, l, t}$ and $P_{s t, o, l, t}$ were given by

$$
\begin{align*}
\hat{P}_{s t, n, l, t} & =\frac{\left[N_{s, l, t} e^{-y_{c} M_{l}}-C_{s, t} P_{c, t} \hat{P}_{s, n, l^{\prime}, t}\right] e^{-\left(y_{s t}-y_{c}\right) M_{l}} S_{s t, l}}{\sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) e^{-y_{c} M_{l}}-C_{s, t} P_{c, t}\left(\hat{P}_{s, n, l^{\prime}, t}+\hat{P}_{s, o, l^{\prime}, t}\right)\right] e^{-\left(y_{s t}-y_{c}\right) M_{l}} S_{s t, l}} \tag{26}\\
\hat{P}_{s t, o, l, t} & =\frac{\left[O_{s, l, t} e^{-y_{c} M_{l}}-C_{s, t} \hat{P}_{s, o l, l^{\prime}, t} P_{c, t}\right] e^{-\left(y_{s t}-y_{c}\right) M_{l}} S_{s t, l}}{\sum_{l}\left[\left(N_{s, l, t}+O_{s, l, t}\right) e^{-y_{c} M_{l}}-C_{s, t} P_{c, t}\left(\hat{P}_{s, n, l, t}+\hat{P}_{s, o, l, t}\right)\right] e^{-\left(y_{s t}-y_{c}\right) M_{l}} S_{s t, l}}
\end{align*}
$$

Winter pot survey

Winter pot survey length compositions for newshell and oldshell crab, $P_{s w, n, l, t}$ and $P_{s w, o l, t}(l \geq 1)$ were calculated as

$$
\begin{align*}
& \hat{P}_{s w, n, l t}=N_{w, l l} S_{w, l} / \sum_{l}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l}\right] \\
& \hat{P}_{s w, o l l t}=O_{w, l t} S_{w, l} / \sum_{l}\left[\left(N_{w, l t}+O_{w, l t}\right) S_{w, l}\right] \tag{27}
\end{align*}
$$

Estimates of tag recovery

The proportion of released tagged length class l' crab recovered after t-th year with length class of l by a fishery of s-th selectivity $\left(S_{l}\right)$ was assumed to be proportional to the growth matrix, catch
selectivity, and molting probability $\left(m_{l}\right)$ as

$$
\begin{equation*}
\hat{P}_{l^{\prime}, l, t, s}=\frac{S_{l} \cdot\left[X^{t}\right]_{l^{\prime}, l}}{\sum_{l=1}^{n} S_{l} \cdot\left[X^{t}\right]_{l^{\prime}, l}} \tag{28}
\end{equation*}
$$

where X is a molting probability adjusted growth matrix with each component consisting of

$$
X_{l, l}=\left\{\begin{array}{c}
m_{l \cdot} \cdot G_{l^{\prime}, l} \quad \text { when } l^{\prime} \neq l \tag{29}\\
m_{l} \cdot G_{l, l}^{\prime}+\left(1-m_{i}\right) \text { when } l^{\prime}=l
\end{array}\right.
$$

b. Software used: AD Model Builder (Fournier et al. 2012).

c. Likelihood components.

Under assumptions that measurement errors of annual total survey abundances and summer commercial fishing efforts follow lognormal distributions and each type of length composition has a multinomial error structure (Fournier and Archibald 1982; Methot 1989), the log-likelihood function is

$$
\begin{align*}
& \sum_{i=1}^{i=4} \sum_{t=1}^{t=n_{i}} K_{i, t}\left[\sum_{l=1}^{l=n} P_{i, l, t} \ln \left(\hat{P}_{i, l, t}+\kappa\right)-\sum_{l=1}^{l=n} P_{i, l, t} \ln \left(P_{i, l, t}+\kappa\right)\right] \\
& -\sum_{t=1}^{t=n_{i}} \frac{\left[\ln \left(q \cdot \hat{B}_{i, t}+\kappa\right)-\ln \left(B_{i, t}+\kappa\right)\right]^{2}}{2 \cdot \ln \left(C V_{i, t}^{2}+1\right)} \\
& -\sum_{t=1}^{t=n_{i}}\left[\frac{\ln \left[\ln \left(C V_{t}^{2}+1\right)+w_{t}\right]}{2}+\frac{\left[\ln \left(\hat{f}_{t}+\kappa\right)-\ln \left(f_{t}+\kappa\right)\right]^{2}}{2 \cdot\left[\ln \left(C V_{t}^{2}+1\right)+w_{t}\right]}\right] \tag{30}\\
& -\sum_{t=1} \frac{\tau_{t}^{2}}{2 \cdot S D R^{2}} \\
& +W \sum_{s=1}^{s=2} \sum_{t=1}^{t=3} \sum_{l^{\prime}=1}^{l^{\prime}=n} K_{l^{\prime}, t, s}\left[\sum_{l=1}^{l=n} P_{l^{\prime}, l, t} \ln \left(\hat{P}_{l l^{\prime} l, t, s}+\kappa\right)-\sum_{l=1}^{l=n} P_{l^{\prime}, l, t} \ln \left(P_{r_{l, l, t, s}}+\kappa\right)\right] \\
& +W_{s}^{l=n-2}\left[\left(\ln \left(m_{l+2}\right)-2 \cdot \ln \left(m_{l+1}\right)+\ln \left(m_{l}\right)\right)^{2}+\sum_{j}\left(\ln \left(S_{j, l+2}\right)-2 \cdot \ln \left(S_{j, l+1}\right)+\ln \left(S_{j, l}\right)\right)^{2}\right]
\end{align*}
$$

where
i : length/shell compositions of :
1 triennial summer trawl survey,
2 annual winter pot survey,

3 summer commercial fishery, 4 observer discards during the summer fishery.
n_{i} : the number of years in which data set i is available,
$K_{i, t}$: the effective sample size of length/shell compositions for data set i in year t, $P_{i, l, t}$: observed and estimated length compositions for data set i, length class l, and year t.
While observation and estimation were made for oldshell and newshell separately, both were combined for likelihood calculations.
κ : a constant equal to 0.0001 ,
$C V$: coefficient of variation for the survey abundance,
$B_{i, k, t}$: observed and estimated annual total abundances for data set i and year t,
f_{t} : observed and estimated summer fishing CPUE,
$w^{2} t$: extra variance factor,
$S D R_{w}$: Standard deviation of winter survey CPUE $=0.3$,
$S D R$: Standard deviation of recruitment $=0.5$,
K_{l}, t : the effective sample size of length class l' released and recovered after t-th in year,
$K_{l,, t}$: the effective sample size of length class l' released and recovered after t-th in year,
$P_{l^{\prime}, l, t, s}$: observed and estimated proportion of tagged crab released at length l ' and recaptured at
length l, after t-th year by commercial fishy pot selectivity s,
s : fishery selectivity (1) 1976-1992, (2) 1993- present,
W : weighting for the tagging survey likelihood
W_{s} : weighting for the $2^{\text {nd }}$ order smoothing likelihood
j : selectivity for trawl survey, commercial fishery, winter pot survey
It is generally believed that total annual commercial crab catches in Alaska are fairly accurately reported. Thus, total annual catch was assumed known.

d. Parameter estimation framework:

i. Parameters Estimated Independently

The following parameters were estimated independently: natural mortality ($M=0.18$), proportions of legal males by length group.
Natural mortality was based on an assumed maximum age, $t_{\max }$, and the 1% rule (Zheng 2005):

$$
M=-\ln (p) / t_{\max }
$$

where p is the proportion of animals that reach the maximum age and is assumed to be 0.01 for the 1% rule (Shepherd and Breen 1992, Clarke et al. 2003). The maximum age of 25 , which was used to estimate M for U.S. federal overfishing limits for red king crab stocks results in an estimated M of 0.18 . Among the 199 recovered crabs from the tagging returns during 1991-2007 in Norton Sound, the longest time at liberty was 6 years and 4 months from a crab tagged at 85 mm CL. The crab was below the mature size and was likely less than 6 years old when tagged. Therefore, the maximum age from tagging data is about 12, which does not support the maximum age of 25 chosen by the СРТ.

Proportions of legal males (CW > 4.75 inches) by length group were estimated from the ADF\&G trawl data 1996-2011 (Table 11).
ii. Parameters Estimated Conditionally

Estimated parameters are listed in Table 10. Selectivity and molting probabilities based on these estimated parameters are summarized in Tables 11.

A likelihood approach was used to estimate parameters

e. Definition of model outputs.

i. Estimate of mature male biomass (MMB) is on February $1^{\text {st }}$ and is consisting of the biomass of male crab in length classes 4 to 8

$$
M M B=\sum_{l=3}\left(N_{w, l}+O_{w, l}\right) w m_{l}
$$

w_{l} : mean weight of each length class (Table 11).
ii. Projected legal male biomass for winter and summer fishery OFL was calculated as

$$
\text { Legal }_{-} B=\sum_{l}\left(N_{w, l}+O_{w, l}\right) S_{w, l} L_{l} w m_{l}
$$

iii. Recruitment: the number of males in length classes 1,2 , and 3 .

Appendix B

Norton Sound Red King Crab CPUE Standardization

Note: This is an update of model by G. Bishop (SAFE 2013).

Methods

Data Source \& Cleaning

Commercial fishery harvest data were obtained from a fish ticket database, which included: Landing Date, Fish Ticket Number, Vessel Number, Permit Fishery ID, Statistical Area(s) fished, Effort, and Number and Pounds of Crab harvested (Table A2-1,2,3, Figure A2-1). Fish ticket database may have multiple entries of identical Fish Ticket Number, Vessel Number, Permit Fishery ID, and Statistical Area. In those cases, at least one Effort data are missing or zero with the Number and Pounds of Crab harvested. These entries indicate that crabs were either retained from commercial fishery (i.e., not sold), or dead loss.

Following data cleaning and combining methods were conducted.

1. Sum crab number and efforts by Fish Ticket Number, Vessel Number, Permit Fishery ID, Statistical Area
2. Remove data of missing or zero Efforts, Number of Crab, Pounds of Crab (Those are considered as true missing data)
3. Calculate CPUE as Number of Crab/Effort

The data were separated into two periods: 1977-1992 and 1993-2017. The two periods represents before and after super exclusive status enacted since 1993.

Data Censoring

During 1977-92 period, vessels of 1 year of operation and/or 1 delivery per year harvested 20-90\% of crabs (Table A2-5, Figure A2-2). For instance, all vessels did only 1 delivery in 1989, and in 1988 64\% of crabs were harvested by 1 vessel that did only 1 delivery. On the other hand, during the 1993-2017 period of post super-exclusive fishery status, the majority of commercial crab fishery and harvest was done by vessels with more than 5 years of operations and more than 5 deliveries per year. For 1977 1992, censoring was made for vessels of more than 2 years of operations. Increasing deliveries to more than one would result in no estimates for some years. For 1993 - 2016, censoring was made for vessels of more than 5 years of operations and 5 deliveries per year.

Analyses

A GLM was constructed as

$$
\ln (C P U E)=Y R+V S L+M S A+W O Y+P F
$$

Where YR: Year, VSL: Vessel, MSA: Modified Statistical Area, WOY: Week of Year, PF: Week of Year (Table 1). All variables were treated as categorical. Inclusion of interaction terms were not considered because they were absent (SAFE 2013).

For selection of the best model, forward and backward stepwise selection was conducted. (R step function)

```
fit <- glm(L.CPUE.NO ~ factor(YR) + factor(VSL) + factor(WOY) +
factor(MSA) + factor(PF),data=NSdata.C)
step <- step(fit, direction='both', trace = 10)
best.glm<-glm(formula(step), data=NSdata.C)
```

The analyses were conducted for both censored and full data.
Generally, censoring had little effects on standardized CPUE.

Table B-1. List of variables in the fish ticket database. Variables in bold face were used for generalized linear modeling.

Variable	\quad Description
YR	Year of commercial fishery
VSL	Unique vessel identification number
Fish Ticket Number	Unique delivery to a processor by a vessel.
PF	Unique Permit Fishery categories
Statistical Area	Unique fishery area.
MOA	Modified statistical area, combining each statistical area into 4 larger
Fishing beginning date	areas: Inner, Mid, Outer, Outer North
Landing date	Date of crab landed to processor
WOY	Week of Landing Date (calculated)
Effort	The number of pot lift
Crab Numbers	Total number of crabs harvested from pots
Crab Pounds	Total pounds of crab harvested from pots
$\ln (\mathbf{C P U E})$	$\ln ($ Crab Numbers/Effort) (calculated)

Table B-2. Permit fisheries, descriptions, and years with deliveries for Norton Sound summer commercial red king crab harvest data.

Permit fishery	Type	Description	Years
K09Q	Open access	KING CRAB , POT GEAR VESSEL UNDER 60', BERING SEA	$1994-2002$
K09Z	Open access	KING CRAB , POT GEAR VESSEL UNDER 60', NORTON SOUND	$1992-2017$
K09ZE	CDQ	KING CRAB , POT GEAR VESSEL UNDER 60', NORTON SOUND	$2000-2017$
K09ZF	CDQ	CDQ, NSEDC	KING CRAB, POT GEAR VESSEL UNDER 60', NORTON SOUND
K91Q	Open access	CDQ, YDFDA	KING CRAB , POT GEAR VESSEL 60' OR OVER, BERING SEA
K91Z	Open access	KING CRAB , POT GEAR VESSEL 60' OR OVER, NORTON SOUND	$1978-1982-1994$

Table B-3. Modified statistical area definitions used for analysis of Norton Sound summer commercial red king crab harvest data.

Modified statistical area	Statistical areas included
Inner	$616331,616401,626331,626401,626402$
Mid	$636330,636401,636402,646301,646330,646401,646402$
Outer	$656300,656330,656401,656402,666230,666300,666330,666401$
Outer North	$666402,666431,676300,676330,676400,676430,676501,686330$

Table B-4. Final generalized linear model formulae and associated R^{2} selected for Norton Sound summer commercial red king crab fishery. The dependent variable is \ln (CPUE) in numbers.

Time series	Years	Deliveries	Explanatory variables	Null dev.	Null df	Resid. dev.	Resid. df	AIC
1977-	All	All	YR+VSL+WOY+MSA	1163.1	797	445.4	653	2091
1992	≥ 2	≥ 1	YR+VSL+WOY+MSA	703.7	483	379.9	420	1188
1993-	All	All	YR+VSL+WOY+MSA+PF	5815.9	6854	3365.4	6666	14957
2017	≥ 5	≥ 5	YR+VSL+WOY+MSA+PF	3760.9	5337	2426.5	5240	11138

Table B-5. Standardized (Censored/full data), and scaled arithmetic observed CPUE indices from 19771992.

	Censored		Full data		Observed	
Year	CPUE	SE	CPUE	SE	CPUE	
1977	4.18	0.34	3.43	0.34	2.08	
1978	2.21	0.23	2.83	0.23	3.73	
1979	3.09	0.18	2.59	0.17	1.62	
1980	3.03	0.26	2.43	0.25	1.80	
1981	0.89	0.19	0.74	0.17	0.64	
1982	0.11	0.25	0.13	0.25	0.33	
1983	1.00	0.22	0.90	0.22	0.68	
1984	0.94	0.23	1.09	0.23	0.83	
1985	0.34	0.20	0.37	0.21	0.62	
1986	0.76	0.41	1.00	0.43	2.20	
1987	0.57	0.32	0.63	0.32	0.58	
1988	1.44	0.67	1.51	0.71	1.88	
1989	1.80	0.32	1.61	0.33	0.89	
1990	1.13	0.40	1.18	0.42	1.10	
1991	NA	NA	NA	NA	NA	
1992	0.30	0.31	0.26	0.31	0.25	

Table B-6. Standardized (Censored/full data), and scaled arithmetic observed CPUE indices from 19932017.

Year	Censored		Full data		$\begin{gathered} \text { Observed } \\ \hline \text { CPUE } \end{gathered}$
	CPUE	SE	CPUE	SE	
1993	0.91	0.10	0.91	0.08	1.16
1994	0.81	0.06	0.81	0.05	0.69
1995	0.42	0.05	0.47	0.05	0.44
1996	0.51	0.08	0.44	0.06	0.54
1997	0.85	0.10	0.86	0.08	0.87
1998	0.78	0.13	0.73	0.12	0.54
1999	0.92	0.13	0.76	0.12	0.50
2000	1.25	0.06	1.25	0.06	1.39
2001	0.65	0.05	0.69	0.04	0.65
2002	1.24	0.06	1.19	0.06	1.01
2003	0.86	0.05	0.87	0.05	0.87
2004	1.30	0.05	1.31	0.05	1.37
2005	1.22	0.05	1.26	0.05	1.30
2006	1.34	0.05	1.39	0.05	1.36
2007	1.03	0.05	1.10	0.05	1.00
2008	1.36	0.05	1.40	0.05	1.40
2009	0.86	0.04	0.88	0.04	1.01
2010	1.23	0.04	1.27	0.04	1.27
2011	1.59	0.05	1.60	0.05	1.65
2012	1.31	0.04	1.34	0.04	1.50
2013	0.68	0.04	0.69	0.04	0.82
2014	1.14	0.04	1.16	0.04	1.20
2015	1.49	0.05	1.52	0.05	1.46
2016	1.32	0.05	1.23	0.05	1.51
2017	1.20	0.05	1.18	0.05	1.24

Figure A2-1. Closed area and statistical area boundaries used for reporting commercial harvest information for red king crab in Registration Area Q, Northern District, Norton Sound Section and boundaries of the new Modified Statistical Areas used in this analysis.

Appendix C1: Baseline (Model 0)

Figure C1-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C1-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Trawl survey crab abundance

Figure C1-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C1-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C1-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C1-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C1-8. Total catch and estimated harvest rate 1976-2017.

Figure C1-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C1-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C1-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C1-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C1-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C2 (Model 1)

Figure C2-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C2-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Trawl survey crab abundance

Figure C2-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C2-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C2-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C2-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C2-8. Total catch and estimated harvest rate 1976-2017.

Figure C2-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C2-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C2-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C2-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C2-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C3 (Model 2)

Figure C3-1. QQ Plot of Trawl survey and Commercial CPUE.

Trawl survey crab abundance

Figure C3-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C3-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C3-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C3-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C3-8. Total catch and estimated harvest rate 1976-2017.

Figure C3-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C3-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C3-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C3-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C3-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C4 (Model 3)

Figure C4-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C4-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C4-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C4-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C4-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C4-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C4-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C4-8. Total catch and estimated harvest rate 1976-2017.

Figure C4-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C4-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C4-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C4-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C4-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C5 (Model 4)

Figure C5-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C5-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Trawl survey crab abundance

Figure C5-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C5-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C5-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C5-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C5-8. Total catch and estimated harvest rate 1976-2017.

Figure C5-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C5-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C5-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C5-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C5-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C6 (Model 5)

Figure C6-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C6-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C6-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C6-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C6-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C6-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C6-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C6-8. Total catch and estimated harvest rate 1976-2017.

Figure C6-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C6-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C6-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C6-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C6-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C7: No trawl abundance data

Figure C7-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C7-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x-axis) vs. implied effective sample size (y-axis).

Figure C7-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C7-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Figure C7-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C7-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C7-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C7-8. Total catch and estimated harvest rate 1976-2017.

Figure C7-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C7-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C7-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C7-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C7-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C8: No St CPUE data

Figure C8-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C8-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x-axis) vs. implied effective sample size (y-axis).

Figure C8-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C8-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C8-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C8-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C8-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C8-8. Total catch and estimated harvest rate 1976-2017.

Figure C8-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C8-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C8-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C8-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C8-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C9: No Trawl length data

Figure C9-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C9-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C9-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C9-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C9-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C9-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C9-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C9-8. Total catch and estimated harvest rate 1976-2017.

Figure C9-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C9-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C9-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C9-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C9-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C10: No Winter Pot data

Figure C10-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C10-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is $1: 1$ line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C10-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C10-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C10-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C10-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C10-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C10-8. Total catch and estimated harvest rate 1976-2017.

Figure C10-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C10-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C10-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C10-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C10-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C11: No Commercial length data

Figure C11-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C11-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is $1: 1$ line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C11-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C11-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C11-5. Estimated abundance of legal males from 1976-2015.

Figure C11-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C11-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C11-8. Total catch and estimated harvest rate 1976-2017.

Figure C11-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C11-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C11-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C11-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C11-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C12: No Observer data

Figure C12-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C12-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Trawl survey crab abundance

Figure C12-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C12-5. Estimated abundance of legal males from 1976-2015.

Figure C12-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C12-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C12-8. Total catch and estimated harvest rate 1976-2017.

Figure C12-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C12-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C12-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C12-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C12-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

Appendix C13: No Tag recovery data

Figure C13-1. QQ Plot of Trawl survey and Commercial CPUE.

Figure C13-2: Implied effective samples. Figures in the first column show implied effective sample size (x -axis) vs. frequency (y-axis). Vertical solid line is the mean implied effective sample size. The second column show input sample size (x-axis) vs. implied effective sample size (y-axis). Dashed line indicates linear regression slope, and solid line is 1:1 line. The third column show year (x -axis) vs. implied effective sample size (y -axis).

Figure C13-3. Molting probability and trawl/pot selectivity. X-axis is carapace length.

Trawl survey crab abundance

Figure C13-4. Estimated trawl survey male abundance (crab = 74 mm CL).

Modeled crab abundance Feb 01

Figure C13-5. Estimated abundance of legal males from 1976-2015.

MMB Feb 01

Figure C13-6. Estimated abundance of leg recruits from 1976-2017. Dash line shows Bmsy (Average MMB of 1980-2017).

Summer commercial standardized cpue

Figure C13-7. Summer commercial standardized cpue (1977-2017).

Total catch \& Harvest rate

Figure C13-8. Total catch and estimated harvest rate 1976-2017.

Figure C13-9. Predicted (dashed line) vs. observed (black dots) length class proportions for commercial catch.

Winter pot length: observed vs predicted

Figure C13-10. Predicted (dashed line) vs. observed (black dots) length class proportions for the winter pot survey.

Trawl length: observed vs predicted

Figure C13-11. Predicted (dashed line) vs. observed (black dots) length class proportions for the trawl survey and observer survey.

Figure C13-12. Predicted vs. observed length class proportions for tag recovery data.

Figure C13-13. Bubble plots of predicted and observed length proportions. Black circle indicates model estimates lower than observed, white circle indicates model estimates higher than observed. Size of circle indicates degree of deviance (larger circle = larger deviance).

