

ALASKA SABLEFISH

DAN GOETHEL, DANA HANSELMAN, CARA RODGVELLER, KARI FENSKE, KALEI SHOTWELL, KATY ECHAVE, PAT MALECHA, KEVIN SIWICKE, CHRIS LUNSFORD

MARINE ECOLOGY AND STOCK ASSESSMENT
ALASKA FISHERIES SCIENCE CENTER
JUNEAU, AK

2 OUTLINE

- Stock Assessment Overview
- Review Key Data Inputs
- Results and Model Fit
- Sensitivity Runs
- EBS Bycatch Overview
- ABC Projections

- Caveats and Considerations
- Summary of Assessment and ABC
- Apportionment
- Simulation and Retrospective Analyses Results
- Recommendations

3 BOTTOM LINE

- Biomass increasing, but not as strongly as projected
- Maximum permissible ABC increasing rapidly, but projections are overly optimistic
- 2021 Author's ABC $=2020$ SSC recommended ABC
- F_ABC_2021 (0.0423) = F_ABC_2020 (0.043) \approx F_2020 (0.046)
- +17\% from author's ABC in 2020, because population is rebuilding
- Risk table approach utilized as rationale

Year	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
ABC	22,551	22,551	29,723
ABC $_{\mathbf{w}}$	$\mathbf{2 2 , 0 0 9}$	$\mathbf{2 2 , 2 3 7}$	$\mathbf{2 9 , 3 0 9}$
OFL $^{* \text { OFL }_{\mathbf{w}}}$	51,726	61,319	71,756

4 NEW DATA

- Catch
- Updated catch for 2019
- New estimated/specified catch for 2020-2022
- Relative abundance
- 2020 Longline survey
- 2019 longline fishery CPUE

- Ages
- 2019 longline survey
- 2019 fixed gear fishery
- Lengths
- 2020 longline survey
- 2019 fixed gear fishery
- 2019 trawl fishery

5 RECENT CATCHES

6 INDICES IN THE MODEL

7 FISHERY CPUE BY AREA

20\% increase primarily due to catch rates in western areas

8 LONGLINE SURVEY

LL Survey Catch in Number

\|l
$\quad 1,000$
\square

- 2020

2019
2020

9 GROW UP!

10 GROW UP!

11 GROW UP!

2014 Year Class

2008 Year Class

2000 Year Class

12 MODEL SPECIFICATION

- 1 Area across entire GOA+BSAI
- Sex-specific dynamics (i.e., growth and selectivity)
- 2 fleets: fixed gear and trawl
- Dynamics (i.e., selectivity and F) and catch aggregated across entire area
- Fixed gear fishery dynamics modeled separately before and after IFQ
- Catch = landings/bycatch + discards (100\% mortality)
- All data aggregated across entire area
- Fixed and input biological parameters (growth, maturity, weight)

13 MODEL SPECIFICATION

- No stock-recruit relationship
- Yearly recruit deviations from average recruitment
- Terminal year recruitment fixed at average
- Yearly F deviations for each fleet
- Limited time-varying selectivity (only fixed gear IFQ)
- Natural mortality (M) is time-/age-invariant and estimated with prior
- Maximum likelihood estimation
- 2016 CIE review specified data weights that emphasized compositional data over indices (rationale: overfitting LL survey)

14 MODEL FIT: WHO DO YOU TRUST?

Large year class strength informed by compositional data
leads to overpredicting population growth from indices.

THE 2014 YEAR CLASS DECREASED (AGAIN), 2016 ON SAME TRAJECTORY

SPAWNING BIOMASS INCREASING,

 16 BUT STILL LOW

17 DECREASING FISHING MORTALITY

18 NEW KIDS ON THE BLOCK

19 WHALES IN THE FISHERY

We are now getting whale observations in logbooks!

Directly accounted for in assessment and projections.

20 RETROSPECTIVE BIAS INCREASED

20\% reduction in terminal SSB when subsequent year of data is added to model.

21 RETROSPECTIVE BIAS INCREASED

20\% reduction in terminal SSB when subsequent year of data is added to model.

22 PESKY DATA WEIGHTING

Francis reweighting greatly improved model consistency, but there are still issues in the terminal year likely due to data lags and fixed recruitment.

23 PESKY DATA WEIGHTING

Francis reweighting greatly improved model consistency, but there are still issues in the terminal year likely due to data lags and fixed recruitment.

24 SAFE TO SAFE CHANGES

25 REFERENCE POINTS INCREASED

2014

SSB (kt) Comparison	Inclusion of 2016
B40	Year Class in $\mathrm{B}_{40 \%}$

${ }^{840}--------------$ -

26 IMPACT OF DATA REWEIGHTING

If we can improve data weighting, then model updates should be more consistent in the future.

27 SENSITIVITY RUNS

- Explored nine areas of model sensitivity and/or parametrization
- Focused on allowing new selectivity time blocks and/or time-/age-variation in natural mortality
- Also explored impact of maturity assumptions and data weighting
- Alternate parametrizations and assumptions had strong impact on terminal SSB (ranging from ~49 kt to 136 kt) and ABC

28 SENSITIVITY RUNS

29 FUTURE DIRECTIONS

- Improve data weighting and move on from CIE recommendations
- Address changes in availability and targeting by estimating timevarying selectivity (in conjunction with data weighting)
- Reassess biological parameters and assumptions (growth, mortality)
- Explore time-varying or age-varying natural mortality, develop parsimonious parametrizations, and determine appropriate priors
- Assess impact of terminal year data and estimation assumptions
- Incorporate tagging data
- Further refine spatial modeling efforts

30 ASSESSMENT SUMMARY

- Model tension between fitting indices and compositional data
- Recent year classes are large, but continue to be downgraded
- SSB increasing rapidly, but still below target rebuilding
- Reference points have increased due to inclusion of 2016 year class
- F is decreasing and well below M
- Retrospective patterns increased and indicate consistent overestimation
- Sensitivity runs indicate that the model may be overestimating SSB and/or underestimating M
- Realized population growth in terminal year SSB from 2019 SAFE to 2020 SAFE was ~10\%

31 MOVEMENT AND DISTRIBUTION

32 APPROXIMATE DISTRIBUTION

Age-2+ Biomass (kt) by Region Partioned Using Longline Survey Relative Population Weight (RPWs)

33 EBS TRAWL BYCATCH

Fraction of TAC Harvested by Trawl Gear

34 TRAWL BYCATCH

Relative impacts of BS trawl catch

35 AGE MATTERS

36 DATA NEEDS

- Fishery-dependent data
- Low observer coverage on directed trips in BSAI
- Sablefish are low priority on non-directed trips in EBS
- LL survey occurs every other year in BSAI
- Other surveys poorly sample both juvenile and adult sablefish
- Limited information on juvenile habitat and movement patterns
- Unknown impact of large year classes on condition and survival (e.g., densitydependence)

37 MAX ABC PROJECTIONS

REDUCED RECRUITMENT 38 PROJECTION

- Fix uncertain 2016 and 2017 year classes at average levels

	Max ABC Projection		Avg. Recruitment Projection	
Quantity	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
SSB (t)	134,000	192,000	98,000	109,000
ABC (t)	52,400	61,400	22,100	23,400
OFL (t)	61,300	71,800	25,800	27,400

39 EXTRAPOLATED GROWTH

- Assume consistent retrospective patterns and population growth and include 2017 year class in B_{40}

40 FISHERY PERFORMANCE

- Fishery performance (CPUE, Value) declining
- Rapid shifts in fishery composition

POOR CONDITION, CHANGES IN 41 VITAL RATES (ESP)

ECOSYSTEM AND SOCIO42 ECONOMIC PROFILE (ESP)

- Eco-Positives: Continued presence of 2016 and now 2019 YC in ADF\&G large-mesh, \uparrow adult condition
- Eco-Negatives: Spawners and age evenness remain low, \uparrow overlap with arrowtooth fishery
- Socio-Positives: TACs no longer \downarrow, \downarrow incidental catch in GOA
- Socio-Negatives: \uparrow incidental catch in BSAI, exvessel value and average price continue to decline

43 RISK TABLE FRAMEWORK

- Assessment model: 3 (major concern)
- Population dynamics: 3 (major concern)
- Ecosystem: 2 (increased concern)
- Fishery performance: 3 (major concern)
- Reduced ABC would aid in more rapidly rebuilding spawning biomass and improving age structure

44 BOTTOM LINE

- Biomass increasing, but not as strongly as projected
- Maximum permissible ABC increasing rapidly, but projections are overly optimistic
- 2021 Author's ABC $=2020$ SSC recommended ABC
- F_ABC_2021 (0.0423) = F_ABC_2020 (0.043) \approx F_2020 (0.046)
- +17\% from author's ABC in 2020, because population is rebuilding
- Risk table approach utilized as rationale

Year	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
ABC	22,551	22,551	29,723
ABC $_{\mathbf{w}}$	$\mathbf{2 2 , 0 0 9}$	$\mathbf{2 2 , 2 3 7}$	$\mathbf{2 9 , 3 0 9}$
OFL $^{* \text { OFL }_{\mathbf{w}}}$	51,726	61,319	71,756

45 ABC SUMMARY

- Rationale: maintain F from previous years, because the stock has not rebuilt despite setting conservative ABCs in recent years
- May need to temper the control rule F: Do not support strong increases in fishing mortality when we do not fully understand the size of recent year classes and associated potential changes in natural mortality or other biological processes (e.g., growth, maturity, general condition) that may be occurring
- Strong increases in retrospective patterns escalate concern that the model may not be adequately capturing changing processes and that projections are overly optimistic

46 WHY CHANGE APPORTIONMENT?

- Biological considerations
- Changing distributions
- Age distribution of mortality
- SSC has requested 'resolution' of apportionment
- Dec 2019: "The SSC notes that the distribution of sablefish has changed considerably since 2013 and there remains a need to resolve how ABC allocations will be derived in the future. The SSC requests that the author finalizes the allocation process no later than September 2020."
- Dec 2018: "The SSC continues to request that a new apportionment approach be presented next year, noting that the percentages have now been static for many years. The potential for changes in distribution in the fishery and/or the population may become more pronounced with the increasing contribution of the 2014 year class."

PRIMARY APPORTIONMENT 47 STRATEGIES

- Fixed (status quo)
- Ignores rapidly changing distribution of biomass
- NPFMC (exponentially weighted survey and fishery data)
- Limited fishery-dependent data (i.e., BSAI observer data)
- Survey (5-year average survey proportions)
- Best represents biomass distribution

48 ALTERNATE APPORTIONMENTS

- Stakeholders suggested apportioning based on survey distribution of 65+ cm fish
- Used an age-based proxy in simulations
- Results essentially mimicked Fixed apportionment
- Similar biological concerns as the Fixed strategy
- Focus removals on diminishing mature cohorts
- Need to adjust $A B C$ to account for increased removals of older, mature fish (instead of removals from full age/size structure)

49 SIMULATION WORK

- Conditioned the operating model on the data/assessment model through 2018 (excluding 2016 year class)
- Applied estimation model similar to SAFE model
- Applied current harvest control rule
- Many SSC recommendations led to recurring convergence issues
- Desired results not possible due to limitations in simulation framework

50 SIMULATION WORK

ON AVERAGE most apportionment strategies perform similarly given the assumed dynamics.

51 LIMITATIONS

- Expectations/conclusions from MSE work need to be tempered
- Conditioned on extant dynamics as of ~ 2018
- Does not specifically account for current dynamics (i.e., strong year classes and resulting distributional shifts), because we don't have data to adequately address
- Have not tested alternate population dynamics or exceptional circumstances for which apportionment strategies might perform poorly

52 RETROSPECTIVE ANALYSIS

How does area ABC differ from biomass proportions by area from LL survey?

53 RETROSPECTIVE ANALYSIS

How does year-to-year variation in area ABCs compare to total ABC ?

54 APPORTIONMENT CONCLUSIONS

- Goal is to balance tracking regional biomass (conservation metric) vs. stability in area proportions (economic metric valued by stakeholders)
- Fixed apportionment is not responsive to changing biomass distributions
- BS ABC exceeded by >2,000 t in 2020, but also sharp recent increases in biomass in $B S$
- Tracking regional biomass or a best proxy thereof is likely the best defense against localized depletion
- Important to protect spawning biomass in all areas and keep fishing mortality on immature fish to reasonable levels

55 APPORTIONMENT SUGGESTION

- Suggestion: 5-year average of regional survey biomass proportions
- Stair step approach is likely warranted to avoid drastic changes in 2021 by area

Area	$\begin{gathered} 2020 \\ \text { ABC* }^{*} \end{gathered}$	NPFMC 'Standard' Apportionment for 2021 ABC	Fixed Apportionment for 2021 ABC*	\qquad	\% Difference from 2020 ABC	Stair Step Non-Exp. Survey Apportionment for 2021 ABC	\% Difference from 2020 ABC
Total	22,551	22,551	22,551	22,551	0\%	22,551	0\%
Bering Sea	2,201	4,538	2,201	3,714	69\%	2,958	34\%
Aleutians	2,976	5,021	2,976	5,324	79\%	4,150	39\%
Gulf of Alaska	17,374	12,991	17,375	13,513	-22\%	15,444	-11\%
Western	2,433	2,589	2,433	2,779	14\%	2,606	7\%
Central	7,692	5,097	7,693	5,786	-25\%	6,739	-12\%
W. Yakutat ${ }^{* *}$	2,587	1,742	2,588	1,934	-25\%	2,261	-13\%
E. Yak. / Southeast ${ }^{* *}$	4,662	3,563	4,662	3,014	-35\%	3,838	-18\%

56 APPORTIONMENT SUGGESTION

- This is one potential biological recommendation, but socioeconomics cannot be adequately addressed with our tools
- This is NOT a static apportionment, the proportions will change yearly based on changing distributions and updated survey biomass

57 THE FUTURE OF APPORTIONMENT?...

- Limitations to the existing simulation framework
- Difficult to simulate or predict biological consequences of apportionment related to extreme recruitment events
- We do not currently have the tools to account for socioeconomic considerations
- Better undertaken outside assessment recommendations in the SSC/Council Process
- Needs to address uncertainty, risk, and socioeconomic considerations
- Spatial models may be able to directly estimate area ABCs...
- ...BUT they are limited by lack of area-specific data (e.g., compositional data)

58 WHALE ADJUSTED AUTHOR ABC

Year	$\mathbf{2 0 2 0}$				$\mathbf{2 0 2 1}$		$\mathbf{2 0 2 2}$	
Region	OFL $_{\mathrm{w}}$	$\mathrm{ABC}_{\mathrm{w}}$	TAC	Catch*	OFL $_{\mathrm{w}}$	$\mathrm{ABC}_{\mathrm{w}}{ }^{* *}$	OFL $_{\mathrm{w}}$	$\mathrm{ABC}_{\mathrm{w}}{ }^{* *}$
BS	--	2,174	1,861	4,581	--	5,294	-	6,978
AI	--	2,952	2,039	1,104	--	3,674	--	4,843
GOA	--	16,883	14,393	9,208	--	13,269	-	17,489
WGOA	--	2,278	1,942	1,113	--	2,671	--	3,521
CGOA	--	7,560	6,445	4,151	--	5,738	--	7,563
**WYAK	--	2,521	2,343	1,547	--	2,050	-	2,702
**EY/SEO	--	4,524	3,663	2,398	-	2,809	--	3,703
Total	50,481	22,009	18,293	14,894	60,426	22,237	64,765	29,309

59 WHALE ADJUSTED AUTHOR ABC

Area	Year	Biomass (4+)	OFL	ABC	TAC	Catch
GOA	2019	264,000	22,703	11,571	11,571	12,772
	2020	387,000	--	16,883	14,393	9,208
	2021	390,000	--	13,269	--	--
	2022	383,000	--	17,489	--	--
BS	2019	52,000	2,887	1,489	1,489	3,191
	2020	116,000	--	2,174	1,861	4,581
	2021	142,000	--	3,674	--	--
	2022	139,000	--	4,843	--	--
AI	2019	98,000	3,917	2,008	2,008	661
	2020	154,000	--	2,952	2,039	1,104
	2021	175,000	--	5,294	--	--
	2022	172,000	--	6,978	--	--

60 SUMMARY TABLE

Quantity/Status	As estimated or specified last year for:		As estimated or recommended this year for:	
	2020	2021	2021*	2022*
M (natural mortality rate)	0.105	0.105	0.098	0.098
Tier	3a	3 a	3 a	3a
Projected total (age 2+) biomass (t)	704,683	741,029	753,110	789,584
Projected female spawning biomass (t)	113,368	156,854	134,401	191,503
$B_{100 \%}$	264,940	264,940	317,096	317,096
$B_{40 \%}$	105,976	105,976	126,389	126,839
B 35%	92,729	92,729	110,984	110,984
$F_{\text {OFL }}$	0.121	0.121	0.117	0.117
$\max _{\text {ABC }}$	0.102	0.102	0.100	0.100
$F_{A B C}$	0.043	0.041	0.042	0.048
OFL (t)	51,726	66,361	61,319	71,756
$\mathrm{OFL}_{\mathbf{w}}(\mathrm{t})^{* *}$	50,481	64,765	60,426	70,963
$\max A B C$ (t)	44,065	56,589	52,427	61,393
ABC (t)	22,551	29,723	22,551	29,723
$\mathrm{ABC}_{\mathrm{w}}(\mathrm{t})^{* *}$	22,009	29,008	22,237	29,309
Status	As determined last year for:		As determined this year for:	
	2018	2019	2019	2020
Overfishing	No	n/a	No	n/a
Overfished	n / a	No	n / a	No
Approaching overfished	n/a	No	n / a	No

61

62 LL SURVEY BY AREA

63 OTHER SURVEYS

Gulf of Alaska survey comparison

64 OTHER SURVEYS

65 ADFG

NSEI Assessment

Figure 4.-Fits to indices of catch and abundance with the assumed error distribution shown as shaded grey polygons. Input data are shown as grey points and model fits are shown in black. Indices include (A) arvest (million rown ab), (B) fishery CPE in round lb per hook with separate selectivity and catchability survey CPUE in number of fish per hook; and (D) mark-recapture abundance estimates in millions. Solid and dashed lines in panel D reflect years for which data were available (solid) and were not available (dashed).

66 COASTWIDE RESULTS

West Coast

67 COASTWIDE RESULTS

68 WHALE DEPREDATION

Survey Corrections

Area Depredation

69 MATURITY

70

71 ESTIMATED SELECTIVITY

FIT TO TRAWL SURVEY LENGTH 72 COMPS

73 FIT TO LL SURVEY AGE COMPS

FIT TO COOP LL SURVEY LENGTH 74 COMPS

FIT TO DOMESTIC LL SURVEY 75 LENGTH COMPS

FIT TO FIXED GEAR FISHERY LENGTH 76 COMPS

FIT TO FIXED GEAR FISHERY AGE 77 COMPS

FIT TO TRAWL FISHERY LENGTH 78 COMPS

79

80 PHASE PLANE DIAGRAM

ESTIMATES OF M FOR SENSITIVITY 81 RUNS

Natural Mortality Comparison by Age

SSB (kt) Comparison

82 SENSITIVITY TO MATURITY RATES

83

84 EBS POLLOCK EFFORT AND CPUE

Sablefish CPUE

85

86 RETROSPECTIVE APPORTIONMENT

Elended Equilibrium

87 RETROSPECTIVE APPORTIONMENT

88 RETROSPECTIVE APPORTIONMENT

89 RETROSPECTIVE APPORTIONMENT

