GOA Rougheye \& Blackspotted Rockfish

Shotwell and Hanselman

Outline

- Full assessment for RE/BS rockfish
- PT/SSC comments specific to RE/BS
- Data and trends
- Model results
- Harvest recommendations, risk table
- Appendix on two-species research
- Future research priorities

RE/BS (Rougheye/Blackspotted)

- Tier 3a species - 2019 full assessment
- Uses two surveys (bottom trawl \& longline) for model and apportionment
- Appendix on two-species research to date
- Summary of Changes:
- Data: new/updated catch, new trawl/longline survey, new survey age, new fishery/survey sizes
- Trends: increase in bottom trawl but very high CV, decrease in longline from 2017, strong 2010 yc
- No model changes from 2015 full assessment

SSC Comments

"The SSC recommends the authors complete the risk table and note important concerns or issues associated with completing the table.

- Since this is a full assessment we completed the risk table and provide details in the Harvest Recommendation section.
"The Team agreed with the authors that apportionment using the 4:6:9 standard was acceptable until the longline and trawl survey inputs can be combined to determine apportionment.
- We evaluate the 4:6:9 trawl survey weighting method and the combined trawl survey and longline survey random effects models. We recommend using the new two survey random effects model because it is effectively using the most available data.
"The authors should clarify how the fishery age data by gear type is being incorporated into the model. A description of sample sizes from each geartype, and the years for which age data by each gear-type was used for the model would provide additional information on this potential issue.
- We provide a brief comparison of age data and catch for both longline and trawl gear types by area and time.

RE/BS Fishery Age Samples

- Provide summary of age data by gear type, area
- Gear mixture of age samples dominated by longline gear, but trawl samples increasing recently
- Compared age samples to catch by gear type, getting more samples for longline gear per ton catch
- Proportion of ages by area has not changed, not been a spatial shift in observer age collections
- Different gear types catch different components of population, see in overall comparison of age comps
- Future considerations
- Age sámples very small, broad age range and EM
- Separate curves stretch data too thin, but could weight age comps by gear type in future

RE/BS Fishery Age Compositions

Overall age compositions by gear

SSC Comments

"The SSC supports the Plan Team recommendation for an analysis that provides a more realistic range of management risk of combining RE/BS in one stock than is currently in the assessment. A variety of methods could be used, including catch composition, analysis, genetic vs visual survey ids, maturity curve differences, etc.

> "The SSC supports the authors' recommendation to evaluate maturity information and explore fitting separate maturity curves. This would allow treatment of the differences in maturity between the species within the assessment."

- Stock identification, growth, and maturity analyses of GOA RE/BS rockfish are ongoing. We have collected a short summary of these studies to date in Appendix 13.B.
- At this time we do not evaluate the new maturity information due to concerns over the samples not being identified to species. We are currently investigating the use of otolith morphometrics to identify the study samples to species. We will eyaluate this data within the model when that information becomes available.

RE/BS Data Table

Source	Data	Years
Fisheries	Catch	1977-2017, 2018, 2019
	Age	$\begin{aligned} & 1990,2004,2006,2008,2009,2010,2012, \\ & 2014,2016 \end{aligned}$
	Length	$\begin{aligned} & 1991-1992,2002-2003,2005,2007,2011, \\ & 2013,2015,2017 \end{aligned}$
NMFS trawl survey	Biomass index	1984, 1987, 1990, 1993, 1996, 1999, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019
	Age ${ }^{\text {, }}$	1984, 1987, 1990, 1993, 1996, 1999, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017
AFSC longline survey	Relative Population Number (RPN)	1993-2017, 2018, 2019
	Length	1993-2017, 2018, 2019

RE/BS Fishery

- Gulfwide catch has been relatively stable since 2010, around 588 t on average since then
- Increased discard rate in 2018 to 42\%, but back down to below average at 16% in 2019
- Generally 20\%-60\% of TAC
- Catch increase then decrease in EGOA and CGOA, increase in WGOA, no overages
- Most increase in rockfish, increase then decrease in sablefish and flatfish fisheries, some increase in pollock fishery, stable in halibut fishery

RE/BS Catch

RE/BS Catch by Region

RE/BS Catch by Fishery

RE/BS Fishery Age/Length

RE/BS Surveys - Bottom Trawl

- Overall fairly low contrast (CIs overlap)
- Steadily increasing since low in 2013
- Spatial distribution generally even along slope but more catches on shelf in CGOA
- 2019 survey estimate up by 39\% from 2017
- One very large haul of at-sea ID blackspotted in CGOA near Kodiak, causes very high CV
- Very few catches in WGOA and decreasing in EGOA, overall fewer at-sea ID rougheye
- Overall, 22\% above long term average

RE/BS Trawl Survey Biomass

RE/BS Trawl Survey Age/Length

RE/BS Trawl Survey Length

Blackspotted

$$
80 \quad 190300410520630740
$$

At-sea Identification

RE/BS Surveys - Longline

- Fully revised RPN index (1993-2019)
- Uses new areas sizes, RPN, new error estimates
- Overall low contrast, all CI's overlap
- Generally samples slope environment
- 2018 survey down (-31\%), 2019 up (29\%)
- Large increases in time series do not match trawl, but recent decline in 2012-2013 similar to trawl
- Cyclic pattern increasing in amplitude recently
- Catches in WGOA increasing, EGOA decreasing, CGOA relatively stable, 13% above average

RE/BS LL Survey Abundance

RE/BS LL Survey Length

Surivey Comparison:

 2019
RE/BS - Results

- No changes in assessment model
- Same as 2015 (15.4) model
- Parameters - similar to 2017 model
- Slightly higher survey catchabilities, dome LL
- Slightly lower mean recruitment (1.8 vs 1.9 mil)
- Model fit - similar to 2017 model
- Moderate fit to fishery ages (plus group ok), good fit to survey ages, misses some peaks
- Flattening of some peaks in size comps

RE/BS Fishery Age

RE/BS Trawl Survey Age

RE/BS Selectivity

Blue line = Trawl Survey, Red line = Longline Survey, Yellow line = Fishery

RE/BS Recruitment

Red square $=2017$, Blue bar $=2019$

RE/BS Spawning Biomass

Blue dotted line $=2017$, Black solid line $\mathbf{= 2 0 1 9}$

RE/BS Total Biomass

Blue dotted line $=\mathbf{2 0 1 7}$, Black solid line $\mathbf{= 2 0 1 9}$

RE/BS Retrospective

Statistic	$2015(\mathrm{M} 15.4)$	2017 (M15.4)	2019 (M15.4)
Mohn's revised ρ	0.105	0.009	0.167

RE/BS Recommendation

- Recommended 2020 ABC: 1,209 t
- 15% decrease from last year's ABC of $1,428 \mathrm{t}$
- Summary, no model changes
- Lack of larger exploitable fish in the last several years of age and length compositions, increase in younger fish from the 2010 year-class
- ABC decreasing despite large uncertain increase in the trawl survey biomass estimate
- Shift in age and length compositions to the appearance of a younger stock
- Female spawning biomass is well above $\mathrm{B}_{40 \%}$, and projected to be stable

RE/BS Risk Table

- Overall score of Level 1
- Suggests no need to consider ABC below max permissible, NOTE: this was not a quick exercise!
- Summary points for each consideration
- Assessment: moderate retro bias, good fit to age data, no distinct trend in fit to two surveys
- Pop dy: different maturity but no ID to species, growth differences, but ongoing research, impact unknown
- Ecosystem: heatwave impact on early life but slope buffer, mixed signals on prey reduction
- Fishery Perf: no directed fishery and catch trends are relatively stable, below TAC, and low discard rates

RE/BS Summary

RE/BS Apportionment

RE/BS Apportionment

Method	WGOA	CGOA	EGOA
Weighted Avg	6.6%	55.7%	37.7%
2 Survey RE	13.9%	37.6%	48.5%

RE/BS Apportionment

Method	Area Allocation		Western GOA	$\begin{gathered} \text { Central } \\ \text { GOA } \end{gathered}$	Eastern GOA	Total
Three Survey Weighted Average	$\begin{aligned} & 2020 \\ & 2021 \end{aligned}$		6.63\%	55.70\%	37.67\%	100\%
		Area ABC (t)	80	673	456	1,209
		OFL (t)				1,452
		Area ABC (t)	80	675	456	1,211
		OFL (t)				1,455
Two Survey Random Effects	2020	$\begin{aligned} & \text { Area ABC (} \mathrm{t}) \\ & \text { OFL }(\mathrm{t}) \end{aligned}$	13.88\%	37.61\%	48.51\%	100\%
			168	455	586	1,209
						1,452
	2021	Area ABC (t)	169	455	587	1,211
		OFL (t)				1,455

RE/BS Projection

RE/BS Two-species Summary

- Appendix 13.B
- Summary of work to date on two-species
- Organized by ID, growth, and maturity
- Overall considerations
- Two options for identifying to species, oto is cost effective and potential for historic reconstruction
- Growth and maturity data could be incorporated into the assessment, important to ID to species
- Research is in progress for many studies...

RE/BS Two-Species Genetic ID

Misidentification rates of RE/BS Rockfish

RE/BS Two-Species Otolith ID

Red dot = Blackspotted (2/3), Blue dot = Rougheye (1/3), more longline samples

RE/BS Two-Species Growth

RE/BS Two-Species Maturity

Rougheye:
$\mathrm{L} 50 \%=45.0 \mathrm{~cm}$
$\mathrm{A} 50 \%=19.6 \mathrm{yrs}$

b)

Blackspotted:
$\mathbf{L 5 0 \%}=45.3 \mathrm{~cm}$
$\mathrm{A} 50 \%=27.4 \mathrm{yrs}$

Reproduced from Conrath (2017)

Research Priorities

- Two-species information
- Complete misidentification projects for genetics and otolith morphometrics in fishery and surveys
- Determine potential differences in growth between two species using species-identified samples
- Update maturity information with new data and explore otolith morphometrics for samples
- Model considerations
- Explore sensitivity to size/age matrix and update matrix
- Consider weighting fishery age composition by gear type
- Consider ESP report to investigate two species model

Questions?

