2018 BSAI Pacific ocean perch Assessment

NOAA FISHERIES

Paul Spencer and Jim Ianelli

Alaska Fisheries Science Center

BSAI POP Outline

1) Catch information
2) Economic performance report
3) Survey and fishery data
4) Retrospective analysis
5) Model fits to data
6) Management recommendations
7) Appendix - time-varying q

BSAI POP catch by month and area, 2011-2018

Economic performance report

	2008-2012					
	Average	2013	2014	2015	2016	2017
Total catch K mt	24.2	34.9	36.1	39.6	36.9	38.4
Retained catch K mt	21.1	31.7	32.3	37.5	35.3	35.5
Pac. Ocn. perch share of retained	85\%	91\%	91\%	80\%	86\%	85\%
Northern share of retained	10\%	5\%	6\%	18\%	12\%	12\%
Vessels \#	18.4	20	23	20	21	20
First-wholesale production K mt	11.3	16.9	18.0	19.4	17.6	17.4
First-wholesale value M US\$	\$31.5	\$39.7	\$47.1	\$42.8	\$34.7	\$42.0
First-wholesale price/lb US\$	\$1.26	\$1.07	\$1.18	\$1.00	\$0.90	\$1.09
Pac. Ocn. perch share of value	86\%	92\%	90\%	83\%	87\%	88\%
Pac. Ocn. perch price/lb US\$	\$1.26	\$1.06	\$1.19	\$1.05	\$0.91	\$1.12
Northern rockfish share of value	7\%	3\%	5\%	14\%	8\%	8\%
Northern rockfish price/lb US\$	\$1.00	\$0.72	\$0.91	\$0.74	\$0.64	\$0.76
H\&G share of value	96\%	97\%	97\%	97\%	94\%	95\%

Increased discards in the EBS

EBS				AI			BSAI		
Year	Retained	Discarded	Percent Discarded	Retained	Discarded	Percent Discarded	Retained	Discard	Percent Discarded
2011	5,249	353	6	18,021	382	2	23,269	735	3
2012	5,182	408	7	18,169	401	2	23,352	810	3
2013	4,746	304	6	26,063	249	1	30,809	553	2
2014	6,614	823	11	24,770	174	1	31,384	997	3
2015	6,749	1,166	15	23,267	240	1	30,016	1,406	4
2016	7,419	754	9	22,899	199	1	30,317	952	3
2017	6,986	2,001	22	23,293	264	1	30,279	2,265	7
2018*	3,785	1,792	32	22,635	394	2	26,419	2,186	8

Survey CPUE, 2014-2018 AI surveys

Year	Western	Central	Eastern	southern BS	Total AI survey
2014	$338,455(0.21)$	$315,544(0.49)$	$233,560(0.28)$	$83,409(0.50)$	$970,968(0.19)$
2016	$403,049(0.19)$	$206,593(0.19)$	$284,909(0.17)$	$87,952(0.47)$	$982,503(0.11)$
2018	$427,440(0.20)$	$195,497(0.19)$	$278,326(0.21)$	$115,046(0.29)$	$1,016,309(0.11)$

2016 AI Survey POP CPUE (scaled wgt/km²)

2018 AI Survey POP CPUE (scaled wgt/km ${ }^{2}$)

Has the area of POP expanded over time?

(Swain and Sinclair (1994), applied by Spencer 2008)
Based on cumulative distributions of survey CPUE data
Model-free, and a useful way to describe the survey data (provided that the stratified design is considered). Each tow has an area, based on the total survey area and sampling density of the strata.

F(c) = Cumulative frequency of CPUE
$\mathrm{G}(\mathrm{c})=$ Cumulative area in relation to CPUE

$$
\begin{gathered}
F(c)=100 \frac{\sum_{h=1 i=1}^{L} \frac{n_{h}}{n_{h}} X_{h i} I}{\sum_{h=1}^{L} \sum_{i=1}^{n_{h}} \frac{A_{h}}{n_{h}} X_{h i}} \text { where } I=\left\{\begin{array}{l}
1 \text { if } X_{h i} \leq c \\
0 \text { otherwise }
\end{array}\right. \\
G(c)=\sum_{h=1}^{L} \sum_{i=1}^{n_{h}} \frac{A_{h}}{n_{h}} I \quad \text { where } I=\left\{\begin{array}{l}
1 \text { if } X_{h i} \leq c \\
0 \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Example (POP, 2018)

POP area occupied ($\mathrm{D}_{95 \%}$)

Increased proportion of tows catching POP

Al survey population increases by strata

45 Al survey strata
Plot shows top 10 strata with the largest abundance in the 2018 survey

In 9 of the 10, abundance has increased.

Mean depth in fishery and survey

Survey CPUE, 2010 - 2016 EBS surveys

2012 EBS Survey POP CPUE (wgt/km²)

Year	EBS slope survey
2002	$72,665(0.53)$
2004	$112,273(0.38)$
2008	$107,886(0.41)$
2010	$203,421(0.38)$
2012	$231,046(0.38)$
2016	$357,369(0.68)$

Data in assessment model

Component	BSAI
Fishery catch	$1960-\mathbf{- 2 0 1 8}$
Fishery age composition	$1981-82,1990,1998,2000-2009,2011,2013, \mathbf{2 0 1 5 , 2 0 1 7}$
Fishery size composition	$1964-72,1983-1984,1987-1989,1991-1997,1999,2010,2012$,
	$2014, \mathbf{2 0 1 6}$
AI Survey age composition	$1991,1994,1997,2000,2002,2004,2006,2010,2012,2014, \mathbf{2 0 1 6}$
AI Survey length composition	$\mathbf{2 0 1 8}$
AI Survey biomass estimates	$1991,1994,1997,2000,2002,2004,2006,2010,2012,2014$,
	$2016, \mathbf{2 0 1 8}$
EBS Survey age composition	$2002,2004,2008,2010,2012, \mathbf{2 0 1 6}$
EBS Survey biomass estimates	$2002,2004,2008,2010,2012,2016$

POP fishery age composition data

POP Al survey age composition data

POP EBS survey age composition data

NOAA FISHERIES

Time series of relative proportion of BSAI survey biomass in Al subarea

Models evaluated

- Model 16.3 From 2016 assessment, updated data and reweighting of age/length compositions with McAllister-lanelli method
- Model 16.3a Model 16.3, but with number of year nodes for fishery selectivity spline increased from 4 to 5

Estimates of total biomass

Fit to the Al survey

Fit to the EBS survey index

Age/length composition weights

Data weights

BSAI POP retrospective pattern

Mohn's rho $=-0.45$
(-0.35 in 2016 assessment)

Is natural mortality unduly constrained?

2018 M estimate $=0.056$
2018 M estimate, prior distribution removed $=0.060$
Empirical estimates, based on max age, range from 0.044 to 0.069 (Hoenig 1983, Then 2015, Hamel in prep)

BSAI POP catch and fit to Al survey biomass

BSAI POP recruitment

BSAl fishery age composition

Al survey age composition

EBS survey age composition

Not a great fit to the EBS survey age compositions

2000 year class is strong in the AI age data, not so much in the EBS data

Some arguments about a combined BSAI for blackspotted apply here as well:

1) Different year class strengths in the 2 areas
2) Different ecosystems

Might be useful to consider a separate model for the EBS (which we had prior to 2001)

EBS and Al survey selectivity

Survey catchability

Survey catchability (unadjusted for availability)

Al:	1.18
EBS:	1.44

Fishery selectivity

NOAA FISHERIES

Phase plane plot

How have POP increased so rapidly?

For many ages, the abundance at age estimates from the AI survey have increased over time.

A recruitment pulse moving through the population would be expected to affect a limited number of ages

Where are these fish coming from?

- From myself and the internal reviewer:
- Fish stocking?
- Species ID? (could we trade the "extra" POP for the "missing" old blackspotted rockfish?) Great idea, but the numbers don't balance.
- Spontaneous generation?
- Magical realism?

I focused on some exploratory model runs with time-varying survey catchability.

A (crude) 2q model

- A separate survey catchability beginning in 2010
- Shared survey selectivity for the two periods

Residual pattern and retrospective pattern are improved

Mohn's rho $=-0.30$
2018 total biomass reduced from 955 kt to 753 kt

Estimates of survey catchability differ between retrospective runs

The "early" Al q increases from 1.15 in 2018 to 1.57 in 2008, which explains some retrospective variability

Fixing the catchabilities at their 2018 estimates improves Mohn's rho to -0.17.

Time-varying survey q

- Additional improvement in Mohn's rho could likely be obtained by varying q within each of the two time blocks.
- However, difficult to explain how the Al survey catchability would be changing over time.
- There is the potential of overreaching, such that nearly any change in survey biomass could be attributed to a change in selectivity.
- Without a better understanding of both the population and survey processes, it can be difficult to know how to interpret the increase in survey biomass.

Reference points and ABCs

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2018	2019	2019	2020
M (natural mortality rate)	0.058	0.058	0.056	0.056
Tier	3a	3a	3 a	3a
Projected total (age 3+) biomass (t)	749,925	734,431	934,293	914,577
Female spawning biomass (t)				
Projected	305,804	295,593	399,024	386,835
$B_{100 \%}$	536,713	536,713	645,738	645,738
$B_{40 \%}$	214,685	214,685	258,295	258,295
$B_{35 \%}$	187,849	187,849	226,008	226,008
$F_{\text {OFL }}$	0.101	0.101	0.095	0.095
$\operatorname{maxF}_{A B C}$	0.082	0.082	0.079	0.079
$F_{A B C}$	0.082	0.082	0.079	0.079
OFL (t)	51,675	50,098	61,067	59,396
$\operatorname{maxABC}(\mathrm{t})$	42,509	41,212	50,594	49,211
$\mathrm{ABC}(\mathrm{t})$	42,509	41,212	50,594	49,211
	As determined l	ear for:	As determined	ar for:
Status	2016	2017	2017	2018
Overfishing	No	n/a	No	n/a
Overfished	n / a	No	n / a	No
Approaching overfished	n / a	No	n / a	No

Smoothed survey time series by subarea

Subarea ABCs

Area	Year	Age 3 Bio (t)	OFL	ABC	TAC	Catch 1
	2017	767,767	53,152	43,723	34,900	32,543
BSAI	2018	749,925	51,675	42,509	37,361	28,606
	2019	934,293	61,067	50,594		
	2020	914,577	59,396	49,211		
	2017		12,199	11,000	8,987	
Eastern Bering Sea	2018		11,861	11,861	5,577	
	2019		14,675	n / a	n / a	
	2020		14,274	n / a	n / a	
	2017		10,307	7,900	7,803	
Eastern Aleutian	2018		10,021	9,000	6,858	
Islands	2019		11,459	n / a	n / a	
	2020		11,146	n / a	n / a	
	2017		8,009	7,000	6,868	
Central Aleutian	2018		7,787	7,500	7,311	
Islands	2019		8,435	n / a	n / a	
	2020		8,205	n / a	n / a	
	2017		13,208	9,000	8,886	
Western Aleutian	2018		12,840	9,000	8,859	
Islands	2019		16,024	n / a	n / a	
	2020		15,586	n / a	n / a	

Conclusions

- Continued high abundance of POP
- Hard to explain increase in population abundance solely from recruitment
- It might be useful to explore whether a separate model could be supported for the EBS area

