



### 2018 BSAI Pacific ocean perch Assessment

# Paul Spencer and Jim Ianelli Alaska Fisheries Science Center

## **BSAI POP Outline**

- 1) Catch information
- 2) Economic performance report
- 3) Survey and fishery data
- 4) Retrospective analysis
- 5) Model fits to data
- 7) Management recommendations
- 8) Appendix time-varying q



### BSAI POP catch by month and area, 2011-2018





### **Economic performance report**

| 2008-2012                         |         |        |        |        |        |        |
|-----------------------------------|---------|--------|--------|--------|--------|--------|
|                                   | Average | 2013   | 2014   | 2015   | 2016   | 2017   |
| Total catch K mt                  | 24.2    | 34.9   | 36.1   | 39.6   | 36.9   | 38.4   |
| Retained catch K mt               | 21.1    | 31.7   | 32.3   | 37.5   | 35.3   | 35.5   |
| Pac. Ocn. perch share of retained | 85%     | 91%    | 91%    | 80%    | 86%    | 85%    |
| Northern share of retained        | 10%     | 5%     | 6%     | 18%    | 12%    | 12%    |
| Vessels #                         | 18.4    | 20     | 23     | 20     | 21     | 20     |
| First-wholesale production K mt   | 11.3    | 16.9   | 18.0   | 19.4   | 17.6   | 17.4   |
| First-wholesale value M US\$      | \$31.5  | \$39.7 | \$47.1 | \$42.8 | \$34.7 | \$42.0 |
| First-wholesale price/lb US\$     | \$1.26  | \$1.07 | \$1.18 | \$1.00 | \$0.90 | \$1.09 |
| Pac. Ocn. perch share of value    | 86%     | 92%    | 90%    | 83%    | 87%    | 88%    |
| Pac. Ocn. perch price/lb US\$     | \$1.26  | \$1.06 | \$1.19 | \$1.05 | \$0.91 | \$1.12 |
| Northern rockfish share of value  | 7%      | 3%     | 5%     | 14%    | 8%     | 8%     |
| Northern rockfish price/lb US\$   | \$1.00  | \$0.72 | \$0.91 | \$0.74 | \$0.64 | \$0.76 |
| H&G share of value                | 96%     | 97%    | 97%    | 97%    | 94%    | 95%    |



### **Increased discards in the EBS**

| <br>EBS   |          |           |           |          | BSAI      |           |          |         |           |
|-----------|----------|-----------|-----------|----------|-----------|-----------|----------|---------|-----------|
|           |          |           | Percent   |          |           | Percent   |          |         | Percent   |
| <br>Year  | Retained | Discarded | Discarded | Retained | Discarded | Discarded | Retained | Discard | Discarded |
| 2011      | 5,249    | 353       | 6         | 18,021   | 382       | 2         | 23,269   | 735     | 3         |
| 2012      | 5,182    | 408       | 7         | 18,169   | 401       | 2         | 23,352   | 810     | 3         |
| 2013      | 4,746    | 304       | 6         | 26,063   | 249       | 1         | 30,809   | 553     | 2         |
| 2014      | 6,614    | 823       | 11        | 24,770   | 174       | 1         | 31,384   | 997     | 3         |
| 2015      | 6,749    | 1,166     | 15        | 23,267   | 240       | 1         | 30,016   | 1,406   | 4         |
| 2016      | 7,419    | 754       | 9         | 22,899   | 199       | 1         | 30,317   | 952     | 3         |
| 2017      | 6,986    | 2,001     | 22        | 23,293   | 264       | 1         | 30,279   | 2,265   | 7         |
| <br>2018* | 3,785    | 1,792     | 32        | 22,635   | 394       | 2         | 26,419   | 2,186   | 8         |



### Survey CPUE, 2014 – 2018 AI surveys

### 2014 AI Survey POP CPUE (scaled wgt/km<sup>2</sup>)



#### 2016 AI Survey POP CPUE (scaled wgt/km<sup>2</sup>)



#### 2018 AI Survey POP CPUE (scaled wgt/km<sup>2</sup>)





### Has the area of POP expanded over time?

(Swain and Sinclair (1994), applied by Spencer 2008)

Based on cumulative distributions of survey CPUE data

Model-free, and a useful way to describe the survey data (provided that the stratified design is considered). Each tow has an area, based on the total survey area and sampling density of the strata.

F(c) = Cumulative frequency of CPUE G(c) = Cumulative area in relation to CPUE

$$F(c) = 100 \frac{\sum_{h=1}^{L} \sum_{i=1}^{n_h} \frac{A_h}{n_h} X_{hi} I}{\sum_{h=1}^{L} \sum_{i=1}^{n_h} \frac{A_h}{n_h} X_{hi}} \quad \text{where } I = \begin{cases} 1 \text{ if } X_{hi} \le c \\ 0 \text{ otherwise} \end{cases}$$

$$G(c) = \sum_{h=1}^{L} \sum_{i=1}^{n_h} \frac{A_h}{n_h} I \qquad \text{where } I = \begin{cases} 1 \text{ if } X_{hi} \leq c \\ 0 \text{ otherwise.} \end{cases}$$



```
Example (POP, 2018)
```





### **POP** area occupied ( $D_{95\%}$ )





### Increased proportion of tows catching POP





### Al survey population increases by strata



45 AI survey strata

Plot shows top 10 strata with the largest abundance in the 2018 survey

In 9 of the 10, abundance has increased.



### Mean depth in fishery and survey





### Survey CPUE, 2010 – 2016 EBS surveys



| Year | EBS slope survey |
|------|------------------|
| 2002 | 72,665 (0.53)    |
| 2004 | 112,273 (0.38)   |
| 2008 | 107,886 (0.41)   |
| 2010 | 203,421 (0.38)   |
| 2012 | 231,046 (0.38)   |
| 2016 | 357,369 (0.68)   |



### Data in assessment model

| Component                    | BSAI                                                                    |
|------------------------------|-------------------------------------------------------------------------|
| Fishery catch                | 1960- <b>2018</b>                                                       |
| Fishery age composition      | 1981-82, 1990, 1998, 2000-2009, 2011, 2013, <b>2015, 2017</b>           |
| Fishery size composition     | 1964-72, 1983-1984, 1987-1989, 1991-1997, 1999, 2010, 2012,             |
|                              | 2014, <b>2016</b>                                                       |
| AI Survey age composition    | 1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014, <b>2016</b> |
| AI Survey length composition | 2018                                                                    |
| AI Survey biomass estimates  | 1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014,             |
|                              | 2016, <b>2018</b>                                                       |
| EBS Survey age composition   | 2002,2004,2008,2010,2012, <b>2016</b>                                   |
| EBS Survey biomass estimates | 2002,2004,2008,2010,2012,2016                                           |



### **POP fishery age composition data**





### **POP AI survey age composition data**





### **POP EBS survey age composition data**





# Time series of relative proportion of BSAI survey biomass in AI subarea





### Models evaluated

- *Model 16.3* From 2016 assessment, updated data and reweighting of age/length compositions with McAllister-lanelli method
- *Model 16.3a* Model 16.3, but with number of year nodes for fishery selectivity spline increased from 4 to 5



### **Estimates of total biomass**





### Fit to the Al survey





### Fit to the EBS survey index





### Age/length composition weights



### Data weights



### **BSAI POP retrospective pattern**





Mohn's rho = -0.45

### (-0.35 in 2016 assessment)



## Is natural mortality unduly constrained?



2018 M estimate = 0.056 2018 M estimate, prior distribution removed = 0.060

Empirical estimates, based on max age, range from 0.044 to 0.069 (Hoenig 1983, Then 2015, Hamel in prep)



### BSAI POP catch and fit to AI survey biomass





### **BSAI POP recruitment**







### **BSAI** fishery age composition







### Al survey age composition



Proportion



### **EBS** survey age composition



Not a great fit to the EBS survey age compositions

2000 year class is strong in the AI age data, not so much in the EBS data

Some arguments about a combined BSAI for blackspotted apply here as well:

- 1) Different year class strengths in the 2 areas
- 2) Different ecosystems

Might be useful to consider a separate model for the EBS (which we had prior to 2001)

Proportion

**AA FISHERIES** 

### **EBS and AI survey selectivity**





## **Survey catchability**



Survey catchability (unadjusted for availability)

| AI:  | 1.18 |
|------|------|
| EBS: | 1.44 |



### **Fishery selectivity**





### Phase plane plot





### How have POP increased so rapidly?



For many ages, the abundance at age estimates from the AI survey have increased over time.

A recruitment pulse moving through the population would be expected to affect a limited number of ages





### Where are these fish coming from?

- From myself and the internal reviewer:
  - Fish stocking?
  - Species ID? (could we trade the "extra" POP for the "missing" old blackspotted rockfish?) Great idea, but the numbers don't balance.
  - Spontaneous generation?
  - Magical realism?

I focused on some exploratory model runs with time-varying survey catchability.



## A (crude) 2q model

- A separate survey catchability beginning in 2010
- Shared survey selectivity for the two periods



Residual pattern and retrospective pattern are improved

Mohn's rho = -0.30

2018 total biomass reduced from 955 kt to 753 kt





# Estimates of survey catchability differ between retrospective runs



The "early" AI q increases from 1.15 in 2018 to 1.57 in 2008, which explains some retrospective variability



Fixing the catchabilities at their 2018 estimates improves Mohn's rho to -0.17.



## **Time-varying survey q**

- Additional improvement in Mohn's rho could likely be obtained by varying q within each of the two time blocks.
- However, difficult to explain how the AI survey catchability would be changing over time.
- There is the potential of overreaching, such that nearly any change in survey biomass could be attributed to a change in selectivity.
- Without a better understanding of both the population and survey processes, it can be difficult to know how to interpret the increase in survey biomass.



### **Reference points and ABCs**

|                                      | As estimated or |                | As estimated or            |                |  |
|--------------------------------------|-----------------|----------------|----------------------------|----------------|--|
|                                      | specified last  | t year for:    | recommended this year for: |                |  |
| Quantity                             | 2018            | 2019           | 2019                       | 2020           |  |
| M (natural mortality rate)           | 0.058           | 0.058          | 0.056                      | 0.056          |  |
| Tier                                 | 3a              | 3a             | 3a                         | 3a             |  |
| Projected total (age 3+) biomass (t) | 749,925         | 734,431        | 934,293                    | 914,577        |  |
| Female spawning biomass (t)          |                 |                |                            |                |  |
| Projected                            | 305,804         | 295,593        | 399,024                    | 386,835        |  |
| B100%                                | 536,713         | 536,713        | 645,738                    | 645,738        |  |
| $B_{40\%}$                           | 214,685         | 214,685        | 258,295                    | 258,295        |  |
| B35%                                 | 187,849         | 187,849        | 226,008                    | 226,008        |  |
| F <sub>OFL</sub>                     | 0.101           | 0.101          | 0.095                      | 0.095          |  |
| $maxF_{ABC}$                         | 0.082           | 0.082          | 0.079                      | 0.079          |  |
| FABC                                 | 0.082           | 0.082          | 0.079                      | 0.079          |  |
| OFL (t)                              | 51,675 50,098   |                | 61,067                     | 59,396         |  |
| maxABC (t)                           | 42,509 41,212   |                | 50,594                     | 49,211         |  |
| ABC (t)                              | 42,509          | 41,212         | 50,594                     | 49,211         |  |
|                                      | As determined   | last year for: | As determined              | this year for: |  |
| Status                               | 2016            | 2017           | 2017                       | 2018           |  |
| Overfishing                          | No              | n/a            | No                         | n/a            |  |
| Overfished                           | n/a No          |                | n/a                        | No             |  |
| Approaching overfished               | n/a No n/a      |                | No                         |                |  |



### Smoothed survey time series by subarea





2005

2010

Year

2015

2020

200000 - 0 - 2000

### Subarea ABCs

| Area               | Year | Age 3 Bio (t) | OFL    | ABC    | TAC    | Catch1 |
|--------------------|------|---------------|--------|--------|--------|--------|
|                    | 2017 | 767,767       | 53,152 | 43,723 | 34,900 | 32,543 |
| DCAL               | 2018 | 749,925       | 51,675 | 42,509 | 37,361 | 28,606 |
| DSAI               | 2019 | 934,293       | 61,067 | 50,594 |        |        |
|                    | 2020 | 914,577       | 59,396 | 49,211 |        |        |
|                    | 2017 |               |        | 12,199 | 11,000 | 8,987  |
| Fastern Baring See | 2018 |               |        | 11,861 | 11,861 | 5,577  |
| Lastern Dernig Sea | 2019 |               |        | 14,675 | n/a    | n/a    |
|                    | 2020 |               |        | 14,274 | n/a    | n/a    |
|                    | 2017 |               |        | 10,307 | 7,900  | 7,803  |
| Eastern Aleutian   | 2018 |               |        | 10,021 | 9,000  | 6,858  |
| Islands            | 2019 |               |        | 11,459 | n/a    | n/a    |
|                    | 2020 |               |        | 11,146 | n/a    | n/a    |
|                    | 2017 |               |        | 8,009  | 7,000  | 6,868  |
| Central Aleutian   | 2018 |               |        | 7,787  | 7,500  | 7,311  |
| Islands            | 2019 |               |        | 8,435  | n/a    | n/a    |
|                    | 2020 |               |        | 8,205  | n/a    | n/a    |
|                    | 2017 |               |        | 13,208 | 9,000  | 8,886  |
| Western Aleutian   | 2018 |               |        | 12,840 | 9,000  | 8,859  |
| Islands            | 2019 |               |        | 16,024 | n/a    | n/a    |
|                    | 2020 |               |        | 15,586 | n/a    | n/a    |



### Conclusions

- Continued high abundance of POP
- Hard to explain increase in population abundance solely from recruitment
- It might be useful to explore whether a separate model could be supported for the EBS area

