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North Pacific Fishery Management Council Tier System  

Purpose of averaging time series 
 

1) Estimate the biomass from survey data (Tiers 4 and 5) 

2) Partition the harvest quotas within a model area, based on survey time series (Tiers 1-5)   



A signal to noise problem 

1) We want to remove the observation error 

2) We do not want to “smooth” the underlying “signal” 

3) The last data point is the most important (for management) 



State-space representation  
Z = Population size (unobserved) 

Y = Survey index 

 

Process and observation errors are represented  

by a and e, respectively ttt
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One example of special interest is the random walk model plus uncorrelated noise  

(RWPUN; Stockhausen and Fogarty (2007))  
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Exponential smoothing  

This is a Kalman Filter with constant 

observation error variance 

For the random walk model with constant variances: 

 

1) α = f(process variance/observation variance) (Pennington 1986, Thompson) 

2) Exponential smoothing is the optimal forecast method (Pennington 1986) 
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Considers the process errors as “random effects” (i.e., drawn from an underlying 

distribution) and integrated out of the likelihood 

 

The state-space random walk plus noise can be formulated as a random effect model 

Random effects model 

Differences between the Kalman filter and random effects 

models 

1) Different statistical approaches – Bayesian updating equations vs. hierarchical 

random effects model 

2) The random effects model can provide more flexibility with non-linear processes 

and non-normal error structures 



ARIMA models (auto-regressive integrated moving average) 

ARIMA modeling notation 

 The data can be differenced d times to achieve stationarity 

 

 The structure of the ARIMA model is referred to as (p,d,q) 

 

 The random walk plus uncorrelated noise (RWPUN) is a (0,1,1) ARIMA model 
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 α – p auto-regressive parameters 

 β – q moving average parameters 

 ε – random errors 



Models where we do not assume the 

underlying state is a random walk 
 Stockhausen and Fogarty (2007) applied a smoothing procedure based on 

generalized ARIMA models: 

 

1) Fit a series of candidate ARIMA models to survey data 

2) Use model selection criteria to identify the best ARIMA model 

3) Estimate  the power spectrum for the ARIMA process, which give an estimate of 

the upper bound of the observation error variance (K*) 

4) From the ARIMA parameters and K*, estimate smoothing weights to be used in a 

symmetric moving average 

 

Important point – The q dimension we estimate for the observed data must be equal 

or greater than (p+d)  



Example estimation of power spectrum and K* 



Conditions for applying generalized ARIMA 

smoothing 

 1) A time series long enough to get reliable parameter estimates (Stockhausen and 

Fogarty (2007) suggest 40 years) 

 

2) Estimated q   >=  (p+d)  

3) Not white noise 

4) Other (stationarity of autoregressive parameters, invertibility, variance 

reduction) 



Description of Simulation Study  

Objective: How well does generalized ARIMA modeling compare to exponential 

smoothing and random effects models?  

 

Two life-history types: Pacific ocean perch (long-lived) and walleye pollock (shorter-

lived) 

 

Recent population: Increasing, Flat, or Decreasing 

 

Process error – two levels of recruitment variance  

 

Observation errors – two levels of coefficient of variation (CV) of survey biomass 

estimates 

 

Three levels of survey frequency  



Classification of ARIMA model results 



Bias and variance of relative errors of recent smoothed 

biomass estimate 
Best ARIMA model is (0,1,1) 

 

Generalized ARIMA model performs about as well 

 as exponential smoothing and random effects 

models 

Best ARIMA model is not (0,1,1) 

 

Smaller number of cases, but it appears that the 

 generalized ARIMA modeling has greater variance 



The random effects model seems to produce 

reasonable fits in most cases 
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Gulf of Alaska dogfish 

Survey biomass 

estimates vary 

widely, especially 

from 2003-2005 

 

CVs of 0.22 and 

0.18 

 

Estimated log-scale 

process standard 

deviation of 0.49 
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A simple exponential smoothing model can give 

information on the ratio of variances 
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Observation error variance 

Process error variance 

Mean α = 0.256 

Mean ratio = 11.35 



The variance ratio is a function of  stock longevity, 

recruitment variability, and survey variability  

Implied from fit to GOA dogfish  

Used as a prior  to constrain 

the estimate of process error 

standard deviations  
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The fit with the prior constrains the estimate of process 

error standard deviation, and appears more reasonable  

Fit with prior 

shown in green 



Conclusions 

 
1) The random walk model described many of our 

simulated datasets. For these cases, the three 

smoothing methods performed similarly. 

2) Some cases may not be conducive to generalized 

ARIMA smoothing 

3) Prior information on the ratio of observation to 

process error (either from a simple model, or 

knowledge of the life-history and survey process) 

could be used to constrain estimation in the random 

effects model.   

 





? 

Additional work -- these methods could be used to fill in 

areas in which the survey was not conducted 


