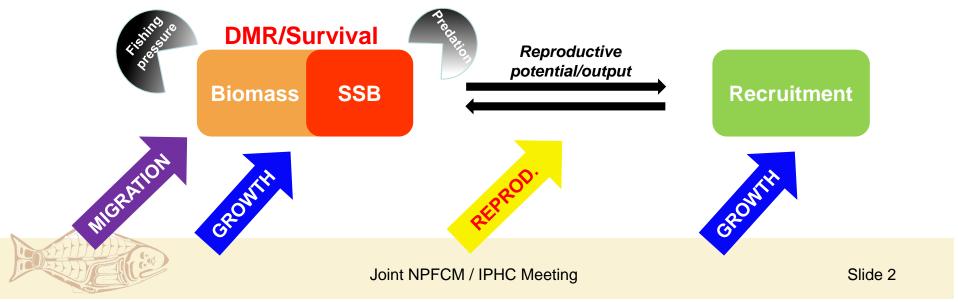
Overview of the IPHC 5-year Biological and Ecosystem Science Research Program

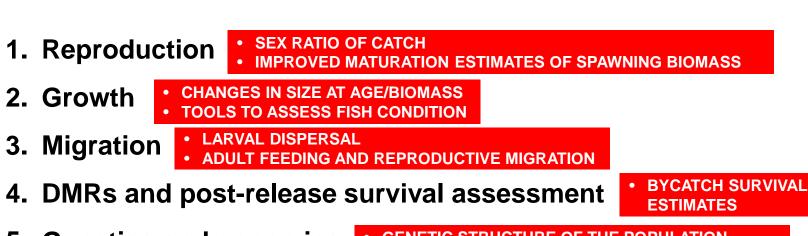
Josep V. Planas Biological and Ecosystem Science Program Manager

Joint NPFCM / IPHC Meeting

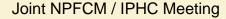
June 7, 2017


D. Griffay

Primary research activities at IPHC


Primary objectives

- Identify and address critical knowledge gaps in the biology of the Pacific halibut
- Understand the influence of *environmental conditions* on halibut biology
- Apply resulting knowledge to reduce *uncertainty* in current stock assessment models


Primary research activities at IPHC

5. Genetics and genomics

GENETIC STRUCTURE OF THE POPULATION
GENOMIC TOOLS (e.g. GENOME)

1. Reproduction

There are important knowledge gaps on the reproductive biology of the species

• SEX RATIO OF CATCH

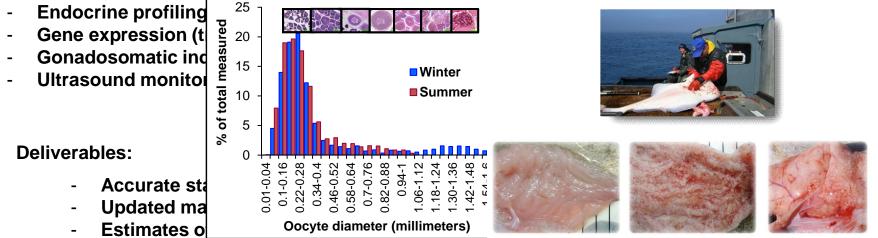
• IMPROVED MATURATION ESTIMATES OF SPAWNING BIOMASS

What is needed?

- Knowledge on reproductive development, maturation, fecundity, sex determination mechanisms (sex identification), environmental and hormonal control of reproduction.
- Scientific-based criteria to identify reproductive status and potential.
- Updated estimates of age and size at maturation.
- Information on skipped spawning.

New proposed studies:

- Full characterization of the annual reproductive cycle
- Identification of sex determination mechanism(s) and influencing factors


Joint NPFCM / IPHC Meeting

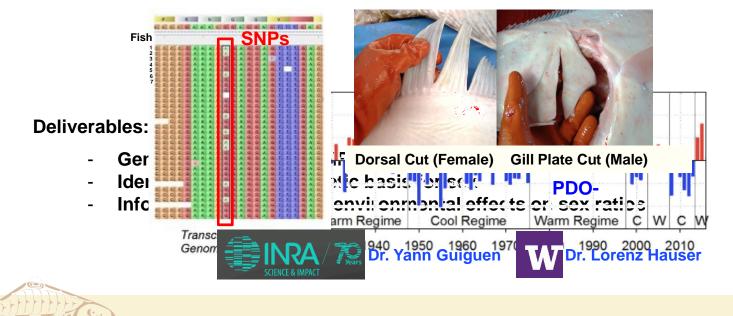
1. Reproduction

• Full characterization of the annual reproductive cycle

Objective: Understand temporal changes in reproductive development throughout an entire annual reproductive cycle in male and female Pacific halibut

- Histological assessment of gonadal development and maturation.

- Comprehensive reproductive monitoring of the adult population in order to improve our estimate of actual spawning biomass


Joint NPFCM / IPHC Meeting

1. Reproduction

• Identification of sex by genetic means and of sex determination mechanisms

Objectives: To identify genetic markers for sex identification in commercial catch and to understand how sex is established in Pacific halibut

- Identification of genetic sex markers: Validation of the coast-wide sex-marking project

Joint NPFCM / IPHC Meeting

Little is known regarding what factors influence growth in this species

• CHANGES IN SIZE AT AGE/BIOMASS

• TOOLS TO ASSESS FISH CONDITION

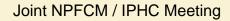
What is needed?

- Knowledge on growth patterns and environmental influences.
- Improved understanding in the possible role of growth alterations in the observed decrease in size at age.

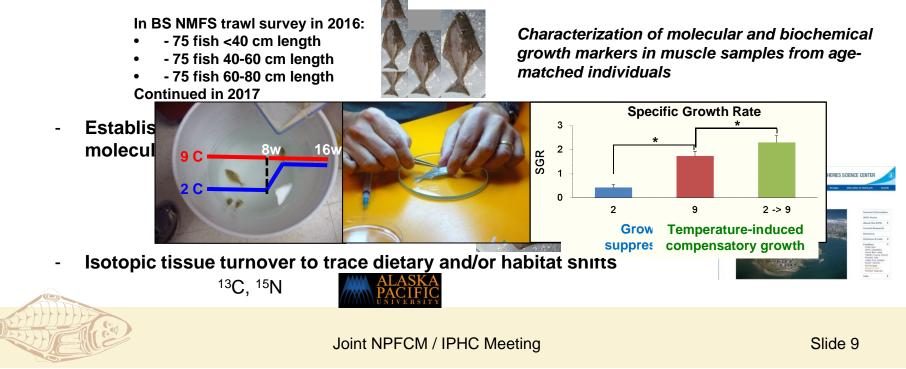
New proposed studies:

- Extensive catalogue of physiological markers to monitor growth
- Evaluation of growth patterns and effects of environmental influences

Joint NPFCM / IPHC Meeting


2. Growth: Annotation

- Catalogue of model
 Objective: Identify
 - Identification of guide Histore
 - Develop molecula

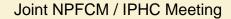

	Gene	Length			
Annotation	symbol	(nt)	Identity (%)	Function	
Androgen receptor	ar	4426	81.48	Protein synthesis	
Calcium/calmodulin-dependent protein kinase II alpha	camk2a	2342	87.27	Force transmission	
Creatine kinase, muscle a	ckma	2256	89.76 🖌	Energy metabolism	
Carnitine palmitoyltransferase 1B	cpt1b	762	81.82	Lipid metabolism	
Dystrophin	dmd	1282	75.23	Force transmission	th studies
Eukaryotic translation initiation factor 4eb	eif4eb	1168	05.19	Protein synthesis	in Studies
F-box protein 32	fbxo32	695	86.25	Protein atrophy	
Glycogen synthase 1	gys1	303	89.47	Linergy metabolism	
Histone deacetylase 1	hdac1	2490	96.35	Muscle repressor	
Insulin-like growth factor 2 receptor	igf2r	511	052	Growth regulator	
Insulin-like growth factor binding protein 5b	igfbp5	1372	81.5	Growth ang valor	ant tissues
Lipoprotein lipase		1789	60.48	Lipid netabolism	
Myocyte enhancer factor 2cb	mef2cb	540	79.8	Wriscle growth	
Myostatin b	mstnb	189	95.74	Growth regulator	
Mechanistic target of rapamycin	mtor	1153	97.92	Protein synthesis	
Myogenic factor 6	myre	819	7,19	Muscle growth	
Myosin, heavy polypeptide 1.3, skeletal muscle	71, 171.3	246	85.42	Muscle growth	
Myoblast determination protein 1 homolog	myod	2407	72.67	Muscle development	
Myozenin 1a 🛛 🗡	myoz1a	235	74.6	Force transmission	
Nuclear factor of activated T-cells, cytoplasmic 3	nfatc3	587	62.96	Muscle activity	
Paired box 3a	pax3	269	75	Muscle development	
Paired box 7b	Pax D	297	85.71	Muscle development	
Peroxisome proliferator-activated receptor gamma, ocactivator 1 alpha	upargc1a	519	88.7	Energy metabolism	
Protein phosphatase 3, catalytic subunit, alpha isozyme	ppp3ca	3407	83.69	Muscle activity	
Protein kinase, AMP-activated, alpha 1 catalytic subunit	prkaa1	1925	70.96	Energy metabolism	
Phosphorylase, glycogen, muscle	pygma	5514	90.91	Energy metabolism	
Serum response factor	srf	4393	63.81	Muscle development	
Transforming growth factor, beta 1a	tgfb1a	561	77.04	Growth regulator	
Tripartite motif containing 63b	trim63b	2117	81.16	Protein atrophy	

Deliverables:

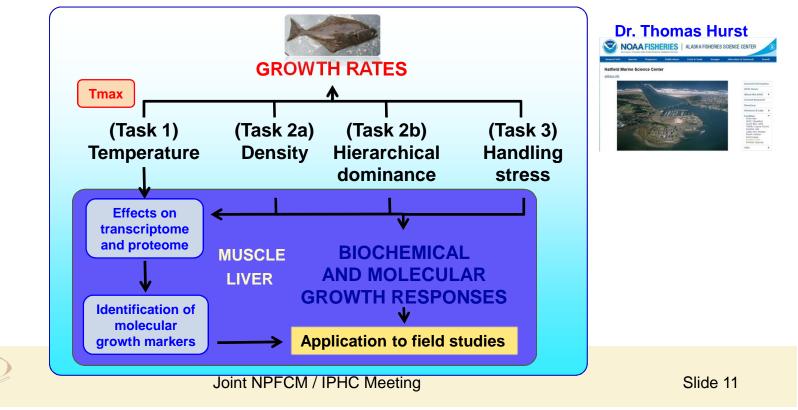
- Establishment of a growth-related gene sequence dataset
- Molecular assays to monitor growth patterns based on growth-markers

- Evaluation of growth patterns and effects of environmental influences
 Objective: Identify molecular, biochemical and isotopic profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.
 - Evaluation of different growth patterns in the wild.

- Investigate the effects of environmental factors on growth performance.
 - Effects of temperature, salinity, dissolved oxygen and water pH on growth.

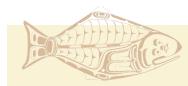

- Identify the optimal environmental conditions for growth.
- Understand the basis of sexual dimorphic growth in the Pacific halibut.

Deliverables:


- Identification and validation of growth markers for field studies
- Characterization of molecular and biochemical growth signatures
- Environmental effects on somatic growth
- Improved biological inputs on biomass estimates

NPRB Funding (2017-2019): "Somatic growth processes in the Pacific halibut (Hippoglossus stenolepis) and their response to temperature, density and stress manipulation effects". IPHC (coordinator) / AFSC – Newport, OR

3. Migration


- LARVAL DISPERSAL
- ADULT FEEDING AND REPRODUCTIVE MIGRATION

What is needed?

- Improve our understanding on larval, juvenile and reproductive migration.
- Incorporate additional sources of biological information on migration studies.

Projects:

- Juvenile and adult feeding migrations
- Reproductive and annual migrations of adult fish
- Larval migration and connectivity

Joint NPFCM / IPHC Meeting

3. Migration

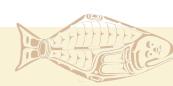
• Juvenile and adult migration studies

- Juvenile wire tagging:
 - NMFS trawl tagging project
- Adult wire tagging:
- IPHC survey tagging project
 - 2016 pilot study in area 4D (U32)
 - 2017 coast-wide study (U32)

Fin clips are collected: Genetic analyses of tagged fish to shed light on migration patterns and geographic origin.

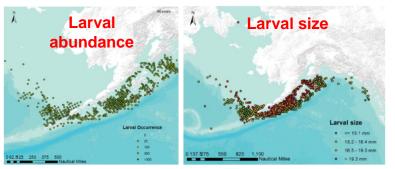
- Tail pattern recognition

Reproductive and annual migration


Deliverables:

- Improved knowledge on juvenile, adult and reproductive migrations and identification of spawning areas

Joint NPFCM / IPHC Meeting



3. Migration

• Larval migration and connectivity

Objective: Understand the mechanisms of larval connectivity between GOA and BS.

- Collect data from the NMFS icthyoplankton survey and map larval distribution over time and space.
- Collect larval samples from the survey to conduct genetic analyses.

Collaboration with Janet Duffy-Anderson, Esther Goldstein, William Stockhausen (NOAA-AFSC-Seattle)

Deliverables:

Improved knowledge on larval distribution, migration and genetic structure within the population

Joint NPFCM / IPHC Meeting

Little is known regarding the factors that influence bycatch survival

• BYCATCH SURVIVAL ESTIMATES

What is needed?

• To introduce quantitative measurable factors that are linked to fish handling practices and to fish physiological condition and ultimately to survival in order to improve current DMR estimations

Projects:

- Evaluation of the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut
- Investigate the relationship between physiological condition post-capture and survival as assessed by the use of accelerometer tags.
- FUTURE: Improving estimates of survival of fish caught in the trawl fishery

Joint NPFCM / IPHC Meeting

• Evaluation of the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut

Objective: Understand relationship between handling practices and physiological condition of captured Pacific halibut in the longline fishery

- Assess injuries associated with release techniques (gangion cut, careful shake, hook straigthening).
- Determine the physiological condition of all captured fish with associated injury levels after different deck exposure times: condition factor index (Kn), energy (fat) levels, morphometric analyses.
- Measure the levels of stress and physiological disturbance indicators in the blood of all captured fish (cortisol, lactate, glucose, potassium, hematocrit).

Deliverables:

- Injury profile for different release techniques in the longline fishery
- Physiological assessment of fish handling practices: fish condition index post-capture

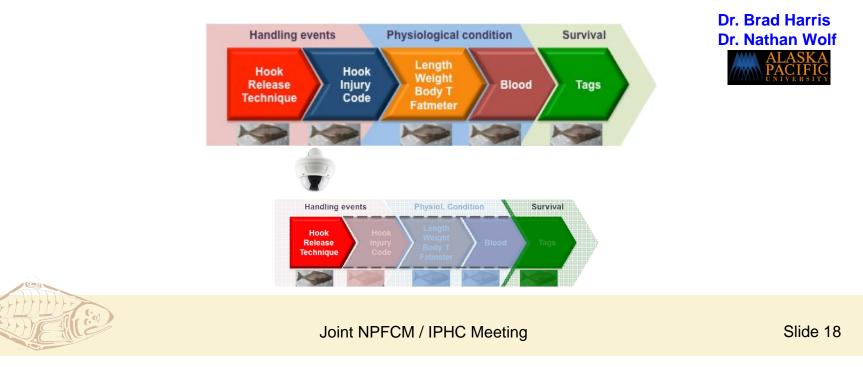
Joint NPFCM / IPHC Meeting

• Investigate the relationship between physiological condition postcapture and survival as assessed by tagging.

Objective: Measure post-release survival in Pacific halibut and relate it to physiological condition and capture-related events

- Tag fish that have been exposed to different handling practices in the longline fishery with accelerometer tags in addition to conventional tags (wire).
- Assess survival of fish according to size and physiological conditon.

Deliverables:


- Information on post-release survival in relation to handling practices and physiological condition.
- Information on post-release survival in relation to size.
- Estimating DMRs by EM.

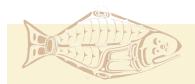
Joint NPFCM / IPHC Meeting

• Saltonstall – Kennedy Program Funding (2017-2019): "Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival". IPHC (coordinator) / APU – Anchorage, AK

• Improving estimates of survival of Pacific halibut in the trawl fishery

Objective: Assess the conditi non-directed trawl fishery an

- Continue and capitalize continue and capitalize continue and capitalize control collaborative research on the collaborative


Apply methods to assess

- Determine survival rates of discarded halibut after tagging.

- Relate physiological condition with survival rates of discarded halibut

Deliverables:

- Improved knowledge of survival of discarded halibut and, consequently, improved estimates of discard mortality rates in the trawl fishery.

Joint NPFCM / IPHC Meeting

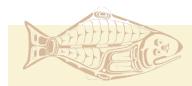
discarded Pacific halibut in the nates of discard mortality rates

.g. Amendment 80 fleet) to plan

captured halibut.

5. Genetics and genomics

GENETIC STRUCTURE OF THE POPULATION

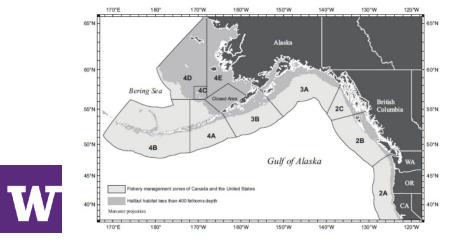

• GENOMIC TOOLS (e.g. GENOME)

What is needed?

- Improved knowledge on the genetic composition of the population
- Establish genomic resources for the species
- Genome-wide association studies to evaluate genetic effects of fisherydependent and fishery-independent influences on growth, reproduction, nutrition, etc.

New proposed studies:

- Population genetic studies
- Sequencing of the Pacific halibut genome


Joint NPFCM / IPHC Meeting

5. Genetics and genomics

• Population genetic studies

Objective: Genetic characterization of Pacific halibut throughout its distribution range

- Characterization of population structure by RAD sequencing and SNP analysis.
- Identification of possible genetic signatures of geographical origin



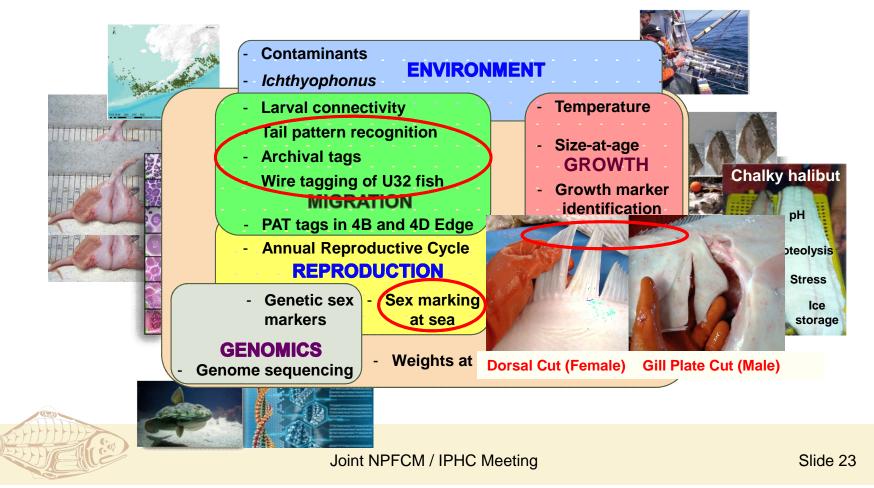
Joint NPFCM / IPHC Meeting

5. Genetics and genomics

• Pacific halibut genome

Objective: Obtain a first draft sequence of the Pacific halibut genome

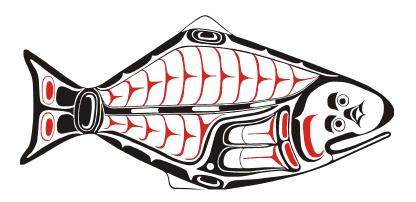
- Provide genomic resolution to genetic markers (SNPs or transcripts).
- Identify genomic regions and genes responsible for temporal and spatial adaptive characteristics.
- Genome-wide association studies to try to understand the genetic basis of growth, reproductive performance, migratory behavior and performance, etc.
- Link genotype and phenotype.


Dr. Yann Guiguen

Slide 22


Joint NPFCM / IPHC Meeting

Research projects for 2017



Temporal chart of activities

	2016	2017	2018	2019	2020	2021
Reproduction		Annual reproductive cycle				
			Sex determinati	on mechanisms		
	Sex identification					

Joint NPFCM / IPHC Meeting

Joint NPFCM / IPHC Meeting