Adjusting station-level catchability using side-by-side trawl studies and environmental information

William Stockhausen Alaska Fisheries Science Center NOAA/NMFS Estimating NMFS station-level trawl efficiency using side-by-side trawl studies and environmental information (1)

 Somerton et al. (2013) estimated NMFS survey haul efficiency for snow crab using side-by-side BSFRF survey tows

$$C = D \cdot r \cdot A \cdot S$$

$$\Phi \equiv \frac{C_a}{C_a + C_b}$$

• and with a little math

$$\Phi = \frac{r_a}{r_a + R_A \cdot R_S}$$

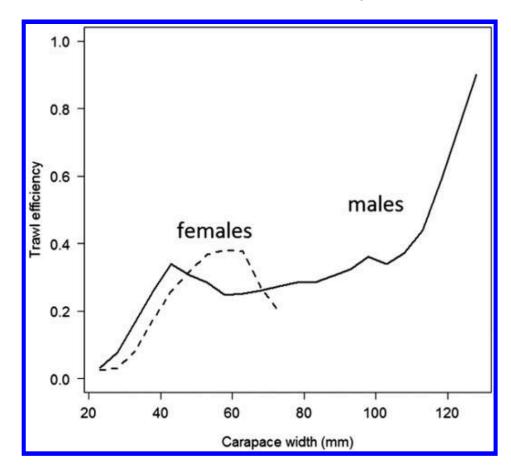
• and a little more

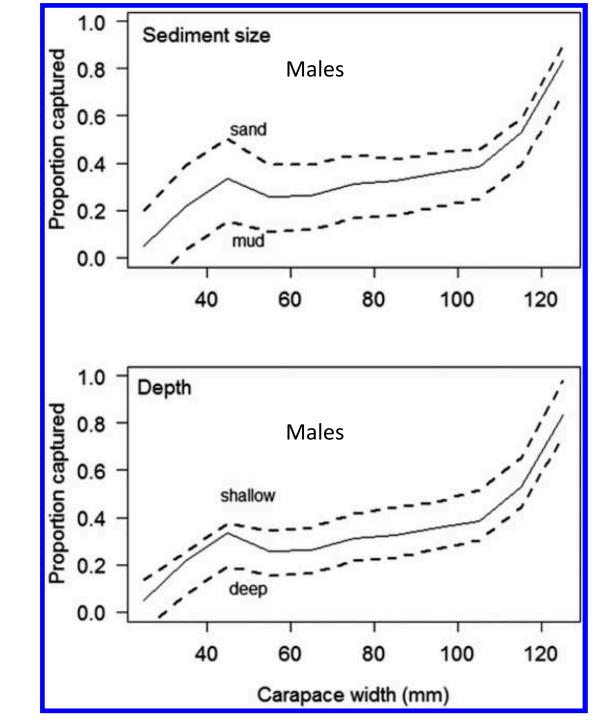
$$logit(\Phi) = ln(r_a) + ln(R_A \cdot R_S)$$

- *C* = catch in length bin *z* at station *h*
- *D* = crab density in length bin *z* at station *h*
- r = trawl efficiency in length bin z at station h
- A = area swept at station h
- *S* = catch sampling proportion at station *h*
- C_a = catch in length bin z at station h for AFSC survey
- C_b = catch in length bin z at station h for BSFRF survey
- $D_a \equiv D_b$
- $r_b \equiv 1$
- $R_A = A_b/A_a$ = ratio of swept areas
- $R_s = S_b/S_a$ = ratio of sampling fractions

Estimating NMFS station-level trawl efficiency using side-by-side trawl studies and environmental information (2)

• Somerton et al. (2013) fit the following model for using generalized additive models (GAMs)


$$logit(\Phi) = ln(r_a) + ln(R_A \cdot R_S) = \Omega_1(W) + \Omega_2(X)$$


- Ω = smooth, nonparameteric functions
- *W* = carapace width
- *X* = set of environment variables

 $r_a = \exp[\operatorname{logit}(\Phi) - \ln(R_A \cdot R_S)] = \exp[\Omega_1(W) + \Omega_2(X) - \ln(R_A \cdot R_S)]$

Somerton et al. (2013) Results

Mean Trawl Efficiency

Adjusting station-level catchability using side-by-side trawl studies and environmental information (3)

- Somerton et al. (2013) fit the following model for using generalized additive models (GAMs)
- $logit(\Phi) = \Omega_1(W) + \Omega_2(X)$
- Ω = smooth, nonparameteric functions
- *W* = carapace width
- *X* = set of environment variables
- Somerton et al. (2013), using kriging to interpolate grain size

Sex	X	R ²	Deviance explained
male	depth, grain size	49%	45%
female	depth, grain size	55%	54%

• Somerton et al. (2017), using acoustically-determined sediment characterization variables Q₁, Q₂, Q₃

Sex	X	R ²	Deviance explained
male	depth, Q_1 , Q_2 , Q_3		52%
female	depth, Q_1 , Q_2 , Q_3		73%

Adjusting station-level catchability using side-by-side trawl studies and environmental information (4)

• So can estimate AFSC trawl efficiency **on a haul basis** as

 $r_a = \exp[\Omega_1(W) + \Omega_2(X) - \ln(R_A \cdot R_S)]$

- Could inflate AFSC survey catches by station to account for local environmental effects (by $exp[\Omega_2(X)]$)
 - would estimate size selectivity (and availability) in assessment model
- Could inflate AFSC survey catches by station to account for all efficiency effects (by $\exp[\Omega_1(W) + \Omega_2(X)]$)
 - would treat inflated survey catches as estimates of population abundance
- Would not include BSFRF surveys in assessment model fits(?)
- One wrinkle: how to treat $\ln(R_A \cdot R_S)$ at stations without side-by-side information?