2021 assessment for eastern Bering Sea snow crab

September 30, 2021

The drop in observed numbers of male crab at size from 2018 to 2019 was even more severe in 2021.

Record Iows

Maturity
What happened?

Nearly every size grouping is at all time lows.

Size group	Current biomass (kt)	Previous low (kt)	Overfished declaration (1999)
$>101 \mathrm{~mm}$	12.4	$20.7(2016)$	52.0
$>24 \mathrm{~mm}$	73.5	$99.8(1985)$	111.5
$>77 \mathrm{~mm}$	60.1	$51.7(2016)$	87.1
$>94 \mathrm{~mm}$	24.4	$29.4(2016)$	67.4

What happened?

Allowing for a more flexible survey selectivity produces probabilities of maturing more similar to observed...but reference points are impacted.

Record lows

Maturity

What happened?

The best available information suggests a mortality event occurred.

Bitter crab syndrome?

What happened?

Fishery update

Hypotheses for missing crab

Assessment models and fits

Model selection

Fishery update

vessels

Snow crab weighted mean centers of catch

2020/21 snow crab

snow

Snow crab discard mortality rate

Assessment models

- Status quo model with updated data did not converge
- Availability and natural mortality parameters had large gradients
- Size composition re-weighting was recommended by CPT, SSC, CIE
- Tried both McAllister-lanelli (1998) and Francis (2011) reweighting for size composition, but neither produced viable models (for slightly different reasons)
- No GMACS model-time-varying M doesn't work with terminal molt yet
- 20.1 - Last year's accepted model (status quo) fit to last year's data
- 21.1 - Last year's accepted model (status quo) fit to this year's data
- 21.1a-21.1 + empirical availability
- 21.1b $-21.1+$ mortality events in 2018 and 2019
- 21.1c $-21.1 \mathrm{a}+$ McAllister-Ianelli re-weighting
- $21.2-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ tighter priors on M and maturity smoothness
- $21.3-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ empirical selectivity
- $21.3 \mathrm{a}-21.3+\mathrm{FMSY}=$ natural mortality
- 20.1 - Last year's accepted model (status quo) fit to last year's data
- 21.1 - Last year's accepted model (status quo) fit to this year's data
- 21.1a-21.1 + empirical availability
- 21.1 b -21.1 + mortality events in 2018 and 2019
- 21.1c-21.1a + McAllister-Ianelli re-weighting
- $21.2-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ tighter priors on M and maturity smoothness
- $21.3-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ empirical selectivity
- $21.3 \mathrm{a}-21.3+\mathrm{FMSY}=$ natural mortality

Empirical availability

To use the BSFRF data to inform survey selectivity, we need to know what portion of the NMFS survey data in the same year to compare it to-the 'availability' of the crab to the BSFRF surveys.

The status quo model estimated availabilities for males and females in 2009 and 2010.

However, we have the information to calculate the availabilities-the size compositions from the total NMFS survey and the size compositions from the NMFS survey that occurred in the BSFRF study areas in a given year.

$$
Q_{l, y}=\frac{N_{l, y, N M F S_{_} s}}{N_{l, y, N M F S_{-} t o t}}
$$

O
喜

Empirical selectivity

- "Empirical selectivity" is the estimate of the proportion of crab caught in the BSFRF study area in a given year, based on estimates of numbers at size in both surveys

$$
S_{l, y}=\frac{N_{l, y, N M F S_{-} s}}{N_{l, y, B S F R F}}
$$

- $S_{l, y}$ was used as a prior for non-parametric selectivity in some models.

Empirical selectivity

Empirical selectivity

- Consistency across experiments
- Methods for developing a prior:
- Mean of $S_{l, y}$ across 2009, 2010, 2016, 2017, 2018, weighted by sample size
- Fit a generalized additive model to data, use predicted $S_{l, y}$ and estimated SE
- Outcomes are similar, but not identical
- Additional exploration needed

Size composition reweighting

Size composition reweighting 'balances' the contribution of size composition data in the model.

Francis and McAllister-lanelli methods attempted

M-I converged to stable weightings, but the models ran with those weights did not converge (max gradient >>0.01)

Francis did not converge to stable weightings,
 the size composition data were essentially removed from the objective function.

Mortality events

- Transformed M to an array with dimensions for sex, maturity, and year
- Specify years for mortality (2018, 2019)
- All classes of M allow additional mortality in those year
- Immature
- Mature female
- Mature male
- Estimated as bounded numbers between 0 and 4
\#
\#\# time-varying natural mortality specs
\#
\# use_extra_m_imm : extra immature mortality added?
1
\# extra_m_phase_imm : phase
5
\# extra_m_len_imm_n : number of years of extra imm 2
\# extra_m_yr_imm : what years have extra mortality?
20182019
\# use_extra_m_mat : extra mature mortality added?
1
\# extra_m_phase_mat : phase
5
\# extra_m_len_mat_n : number of years of extra mature m 2
\# extra_m_yr_mat : what years have extra mortality?
20182019

Why 2018 and 2019?

- Big decline from 2018 to 2019
- 2020 bycatch was very low, suggesting whatever mortality occurred happened before 2020
- Estimating additional M in 2020 would have been difficult with no survey data

Why 2018 and 2019?

- Big decline from 2018 to 2019
- 2020 bycatch was very low, suggesting whatever mortality occurred happened before 2020
- Estimating additional M in 2020 would have been difficult with no survey data

Gear.Description

- Longliner
\rightarrow NON PELAGIC
\rightarrow PAIR TRAWL
\rightarrow PELAGIC
\rightarrow POT OR TRAP
- SHRIMP TRAWL

Hypotheses for the decline

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Immature males

Crab are still present in the NBS, but the densities at size ranges that are missing from the EBS are not sufficiently high to suggest crab from the EBS moved into the NBS.

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

BBRKC

The survey worked as expected for Tanner and BBRKC.

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Bering Sea slope surveys

- Not sampled since 2016
- < 10\% of EBS shelf area
- Maximum estimated biomass $=738 \mathrm{t}$ (2012)
- < 0.1% of estimated EBS biomass in 2018

Seasonal migrations of morphometrically mature male snow crab (Chionoecetes opilio) in the eastern Bering Sea in relation to mating dynamics

Daniel G. Nichol (contact author)
David A. Somerton

- 33 mature males tagged
- Commercial size males predominantly stayed on outer shelf
- Some moved more than 100 km in one direction

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Industry preferred males

From Mike Litzow et al.

Рис. 1. Медианы позиций промысловых судов в ЗападноБеринговоморской зоне по годам промысла. Белая точка - медиана за весь период

Fig. 1. Medians of the fishing vessels position in the West Bering Sea fishery zone, by years (the median for entire period is shown by white point)

Рис. 7. Номинальные и стандартизованные значения уловов на судо-сутки: N номинальные значения; S - стандартизованные; $S 95 \%$ - доверительные интервалы

Fig. 7. Nominal and standardized values of landing per vessel per day: N - nominal values; S - standardized values; $S 95 \%$ - confidence intervals

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Consumption of C. opilio by Pacific cod (mt/day)

Other predators to consider

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Disease Prevalence by Sex \& Maturity

- Immature_female
-- Immature_male
- Mature_female
- Mature_male

Blood samples have been collected at 6 index sites in the EBS (2014-2019) for DNA tests to detect the presence of the parasite
Hematodinium sp., the causative agent of Bitter Crab Syndrome

Overall, prevalence of bitter crab syndrome at index sites increased annually from 2014-2017
Percent Infected by EBS Index Site

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Cold pool in 2018 and 2019 were the smallest since 2003.
Negative effects on metabolic processes are not apparent in mature snow crab until temperatures exceed 6-7 degrees C (Foyle et al, 1989; Siidavuopio, S.I. et al., 2017)

Routine oxygen demand can be met even at lethal temperatures of 18 degrees C (Foyle et al., 1989)

Food consumption increases to 6 degrees C, then falls (Foyle et al., 1989)

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism

Missing crab were largely not vulnerable to the directed fishery

Quantification and reduction of unobserved mortality rates for snow, southern Tanner, and red king crabs (Chionoecetes opilio, C. bairdi, and Paralithodes camtschaticus) after encounters with trawls on the seafloor

Craig S. Rose (contact author) ${ }^{1}$
Carwyn F. Hammond ${ }^{1}$
Allan W. Stoner ${ }^{2}$
J. Eric Munk ${ }^{3}$

John R. Gauvin ${ }^{4}$

Estimates and 95\% confidence intervals of rates of mortality for snow crab (Chionoecetes opilio), southern Tanner crab (C. bairdi), and red king crab (Paralithodes camtschaticus that resulted from contact with 1 of 3 different components of a bottom trawl represen tative of the gear used bottom trawl fisheries in the Bering Sea-the footrope wings or extensions, the center of the footrope, or the sweep-and, for red king crab only, a sweep raised off of the seafloor (Rose et al., 2010)

Figure 2
Diagram of the trawl net (not to scale) used in our study of unobserved mortality rates for snow crab (Chionoecetes opilio), southern Tanner crab (C. bairdi), and red king crab (Paralithodes camtschaticus), showing positions of recapture nets designed to retain crabs after contact with various trawl components. No more than 2 of these nets were fished during the same tow, and the control net always was fished separately. Illustration by Karna McKinney.

Possibilities

- The crab are alive:
- Crab moved into the northern Bering Sea
- Crab are in the eastern Bering Sea, but the survey didn't see them
- Crab moved off of the shelf
- Crab moved into Russian waters
- The crab are dead:
- Predation
- Disease
- Temperature effects
- Fishery effects
- Cannibalism?? (Spatial analysis to come)

Summary

- Missing crab were not in the NBS
- Survey worked as expected for Tanner crab
- Slope area is tiny compared to the area occupied by the animals on the shelf, particularly in the north
- Russian nominal CPUE dropped in 2020 while fishing the line
- Cod consumption was at all time highs in past several year
- Visually identified infections of bitter crab were at all time highs recently
- Bitter crab infections known to be more severe than visually identified based on focused PCR work during 2014-2017
- Bottom temperatures very high in 2018 and 2019—no cold pool
- Bycatch increased in 2018 and 2019, spatial foot print was expanded, but estimated fishing mortality very small
- Unobserved bycatch mortality add $<15 \%$ additional mortality

Given the available information, a mortality event likely contributed at least in part to observed declines.

- 20.1 - Last year's accepted model (status quo) fit to last year's data
- 21.1 - Last year's accepted model (status quo) fit to this year's data
- 21.1a-21.1 + empirical availability
- 21.1 b -21.1 + mortality events in 2018 and 2019
- 21.1c-21.1a + McAllister-Ianelli re-weighting
- $21.2-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ tighter priors on M and maturity smoothness
- $21.3-21.1 \mathrm{a}+$ mortality events in 2018 and $2019+$ empirical selectivity
- $21.3 \mathrm{a}-21.3+\mathrm{FMSY}=$ natural mortality

Model overview

Survey

7.5/12 M

Directed fishery

Non-directed fishery

4.5/12 M

Molting

Growth

Recruitment

1. Logistic selectivity in 2 'eras'
2. Linked to BSFRF data
3. Size composition and biomass index

Model overview

Survey
Directed fishery
Non-directed fishery
Mating
4.5/12 M
Molting
Growth
Recruitment

1. Mature males, immature for both sexes, mature females
2. Estimated with a prior

Model overview

1. Logistic selectivity
2. Retention selectivity
3. Discard mortality equal to 30%

Fit to:
Retained length comps
Total length comps
Retained biomass
Male and female discard biomass

Model overview

1. Logistic selectivity
2. Discard mortality equal to 80%

Model overview

1. Freely estimated maturity curves
2. February 15

Model overview

1. All immature crab assumed to molt
2. Terminal molt to maturity

Model overview

1. Linear growth estimated outside of the model for both sexes

Fits to data

Data source	$\mathbf{2 1 . 1 a}$	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth			
Catch			
Retained size comp			
Total size comp			
Bycatch size comp			
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Model estimates of MMB are lower than the observed...why is that?

Data source	$\mathbf{2 1 . 1 a}$	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth			
Catch			
Retained size comp			
Total size comp			
Bycatch size comp			
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch			
Retained size comp			
Total size comp			
Bycatch size comp			
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp			
Total size comp			
Bycatch size comp			
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	21.2	21.3
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp			
Bycatch size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp			
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim	\sim	\sim
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim		
BSFRF size comp			
Survey size comp (imm M)	\sim		
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Fits to data

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim	\sim	\sim
BSFRF size comp	\sim		
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Data SOurce	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim	\sim	\sim
BSFRF size comp			
Survey size comp (imm M)			
Survey size comp (imm F)			
Survey size comp (mat M)			
Survey size comp (mat F)			

Data source	21.1a	$\mathbf{2 1 . 2}$	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim	\sim	\sim
BSFRF size comp	\sim		
Survey size comp (imm M)			
Survey size comp (imm F)			\sim
Survey size comp (mat M)			
Survey size comp (mat F)			

Data Source	21.1a	21.2	21.3
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim	\sim	\sim
BSFRF size comp	\sim		\sim
Survey size comp (imm M)			\sim
Survey size comp (imm F)			\sim
Survey size comp (mat M)			\sim
Survey size comp (mat F)			\sim

Estimated population processes

Estimated population processes

Population process	21.1a	21.2	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			
Fishing mortality			
Recruitment			
Natural mortality			
Status			

- Next cycle, exclude the first era (this was done in the GMACS models prepared for this cycle... which then couldn't be used because of the lack of time-variation in M)

Estimated population processes

width (mm)

Population process	21.1a	21.2	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			
Fishing mortality			
Recruitment			
Natural mortality			
Status			

- Size-comp reweighting gives fits similar to the logistic curve estimated in Somerton and Otto (1998)
- Free selectivity 'wants' higher selection around 50 mm carapace width than in the BSFRF data
- Remarkably consistent pattern in experimental data

Estimated population processes

Population process	21.1a	$\mathbf{2 1 . 2}$	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment			
Natural mortality			
Status			

Estimated population processes

Population process	21.1a	$\mathbf{2 1 . 2}$	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment			
Natural mortality			
Status			

- Reweighting the size composition data produced much higher probabilities of terminal molt than all other models.

Estimated population processes

Population process	21.1a	21.2	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment			
Natural mortality			
Status			

- Bold blue is size composition reweighting
- Purple is 21.3 ; green is 21.2 , red is 21.1

Estimated population processes

Population process	21.1a	21.2	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment			
Natural mortality			
Status			

- Considerable jumps in estimated F in recent years with the updated data

Estimated population processes
Carapace width (mm)

Population process	21.1a	$\mathbf{2 1 . 2}$	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment		\sim	\sim
Natural mortality			
Status			

- Model 21.2 and 21.3 were able to estimate the large recruitment pulse in 2015, 21.1a was not

Estimated population processes

Model	Immature males		Immature females		Mature males		Mature females	
	'18	'19	'18	'19	'18	'19	'18	'19
21.2	0.45	1.69	4	4	1.14	1.87	0.31	0.65
21.3	0.35	1.85	4	4	1.22	1.96	0.25	0.63

M	0.5	1.0	1.5	2.0	4
Survival	60%	36%	22%	13%	2%

Model selection

Population process	21.1a	21.2	21.3
Mature male biomass			
Survey selectivity			\sim
Probability of maturing			\sim
Fishing mortality			
Recruitment		\sim	\sim
Natural mortality		\sim	\sim
Status			

In terms of fits to data and population processes, model 21.3 is a clear winner in my opinion.

Data Source	21.1a	21.2	$\mathbf{2 1 . 3}$
Survey biomass		X	X
Growth	\sim	\sim	\sim
Catch	\sim	\sim	\sim
Retained size comp	\sim	\sim	\sim
Total size comp	\sim	\sim	\sim
Bycatch size comp	\sim		\sim
BSFRF size comp			\sim
Survey size comp (imm M)		\sim	
Survey size comp (imm F)			\sim
Survey size comp (mat M)			\sim
Survey size comp (mat F)			\sim

Model 21.1a
Model 21.2
Model 21.3

	Pro	Con	Pro	Con	Pro	Con
Fits to survey MMB		Does not fit last years	Fits terminal years		Fits terminal years	
Estimates of >101mm males		>triple observed				
Probability of terminally molting		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Survey selectivity		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Reference points	Target exploitation rates $<100 \%$		Target exploitation rates $<100 \%$			Target exploitation rates ~100\%
Survey size comp fit					~90 likelihood units better	
Retrospective patterns		Double the other models				

- If the model is not allowed to reach to the 20182019 data points and decline via mortality event, it will 'split the difference' between 2021 and 2018-2019 to some degree.
- This model mis-specification will pull up the estimate of the final year of MMB, which would result in an overly optimistic estimate of exploitable biomass (and giant retrospective patterns).

Model 21.1a
Model 21.2
Model 21.3

	Pro	Con	Pro	Con	Pro	Con
Fits to survey MMB		Does not fit last years	Fits terminal years		Fits terminal years	
Estimates of >101mm males		>triple observed				
Probability of terminally molting		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Survey selectivity		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Reference points	Target exploitation rates $<100 \%$		Target exploitation rates $<100 \%$			Target exploitation rates ~100\%
Survey size comp fit					~90 likelihood units better	
Retrospective patterns		Double the other models				

Model 21.1a
Model 21.2
Model 21.3

	Pro	Con	Pro	Con	Pro	Con
Fits to survey MMB		Does not fit last years	Fits terminal years		Fits terminal years	
Estimates of >101mm males		>triple observed				
Probability of terminally molting		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Survey selectivity		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Reference points	Target exploitation rates $<100 \%$		Target exploitation rates $<100 \%$			Target exploitation rates ~100\%
Survey size comp fit					~90 likelihood units better	
Retrospective patterns		Double the other models				

Model	MMB	B35	F35	FOFL	OFL	M	avg_rec	Status
20.1	133.51	121.47	1.23	1.23	88.90	0.29	103.91	1.10
21.1	58.55	101.73	1.46	1.06	27.55	0.28	91.44	0.58
21.1 a	69.93	106.87	1.79	1.40	35.70	0.29	92.51	0.65
21.1 b	24.63	137.98	1.43	0.38	7.82	0.29	119.43	0.18
21.1 c	171.58	183.36	165.67	105.22	51.92	0.27	158.00	0.94
21.2	26.74	153.42	1.43	0.37	7.50	0.27	106.14	0.17
21.3	41.82	173.36	4.76	1.15	17.03	0.30	146.83	0.24
21.3 a	41.82	173.36	0.30	0.10	2.27	0.30	146.83	0.24

Target fishing mortality (F35) of 4.76 translates to an exploitation rate of 99.2\% ($\mathrm{F} 35=1.43$ is 76%)

This means that almost all males $>101 \mathrm{~mm}$ could be harvested in a given year.

Morphometric maturity as currency of management

Maybe a high F35\% is appropriate?

- Dungeness crab seem to do ok with high Fs, given size limits and seasons are appropriate (Richardson, 2020)
- Laboratory studies show small males can fertilize females (e.g. Watson, 1972 in which a 61 mm male successfully mated with a female that molted from 64 mm to 74 mm).

Richerson, K. et al. 2020. Nearly half a century of high but sustainable exploitation in the Dungeness crab fishery.

Maybe F35\% isn't appropriate?

- Other productive snow crab fisheries have lower Fs (see Gulf of St Lawrence \rightarrow)
- Functional maturity in situ appears to be $>95 \mathrm{~mm}$ carapace width (Conan and Comeau, 1986; Ennis e al., 1988)

Model 21.1a
Model 21.2
Model 21.3

	Pro	Con	Pro	Con	Pro	Con
Fits to survey MMB		Does not fit last years	Fits terminal years		Fits terminal years	
Estimates of >101mm males		>triple observed				
Probability of terminally molting		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Survey selectivity		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Reference points	Target exploitation rates $<100 \%$		Target exploitation rates $<100 \%$			Target exploitation rates ~100\%
Survey size comp fit					~90 likelihood units better	
Retrospective patterns		Double the other models				

Model 21.1a
Model 21.2
Model 21.3

	Pro	Con	Pro	Con	Pro	Con
Fits to survey MMB		Does not fit last years	Fits terminal years		Fits terminal years	
Estimates of >101mm males		>triple observed				
Probability of terminally molting		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Survey selectivity		Does not reproduce observed		Does not reproduce observed	Closer to observed	
Reference points	Target exploitation rates $<100 \%$		Target exploitation rates $<100 \%$			Target exploitation rates ~100\%
Survey size comp fit					~90 likelihood units better	
Retrospective patterns		Double the other models				

Model	MMB	B35	F35	FOFL	OFL	M	avg_rec	Status
21.1 a	69.93	106.87	1.79	1.40	35.70	0.29	92.51	0.65
21.2	26.74	153.42	1.43	0.37	7.50	0.27	106.14	0.17
21.2 a	26.74	153.42	0.27	0.08	1.96	0.27	106.14	0.17
21.3	41.82	173.36	4.76	1.15	17.03	0.30	146.83	0.24
21.3 a	41.82	173.36	0.30	0.10	2.27	0.30	146.83	0.24

Model 21.2a and 21.3a substitute estimated M for the FMSY proxy, similar to tier 4 stocks, but use the population dynamics model from the status quo model to estimate MMB and status,
21.3 b 32.42 105.01 0.63 0.146 3.14 146.83

Model 21.3b used $>95 \mathrm{~mm}$ carapace width as the definition of 'maturity' in reference point calculations instead of morphometric maturity.
A model similar to 21.3 should be the goal, but given the knock-on effects, the methodology should be considered further before adoption.

The CPT preferred model 21.2.
If model 21.2 is adopted, the stock is overfished.

