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Summary

Biomass observations from individual survey trawls were run through the VAST (Vector Autoregressive
SpatieTemporal) model to obtain modeased population indices (Thorson and Barnett, 2017). This
approach can be used to fill in missengadepthgaps uig spatial information and has the potential to
benefit the Dovesole assessnm assurveys inconsistently extend out to 1000m where this species can
be detectedvAST resultswere compared to desipased estimates from stratified surveys and results
from a random effects (RE) model used to fill in adegath gapsVAST models run with default settings
led to biomass estimates that were consistently above those from the REwhddeVAST models run
with the Gammabbservation model led to biomass esties that were, for most years, similar to those
from the RE modelYearsin whichVAST estimate=ither higher or lower than estimates from the RE
modeldid not always arrespond to yeaiia which surveys were truncated to 500fuarther research is
recomnended before VAST estimates are used in the Dover Sole stock assebsarition to

presenting results on a VAST GOA Doweite model, this appendix also details model validation steps
thatare usefuivhen evaluating VAST models.

| ntroducti on

Spatial orrelation has long been knowngpesent a source of extra variability in ecological observations
due to a fundamental property in geograpbservations in close proximity tend to be more similar than
observations distant from each otlieigurel). Spatial correlation arises from different ecological
processes. With respect to species distributitreselationship between a species and its environment
leads to spatial correlatidhat directly results frorapecies organizing themselves aroundsitetial

pattern of the environment. A second notable source of spatial corrédatienspatial structure af

species that is independent of the environmmamnth as aggregation patterns and patterns resulting from
competition, predation, etRegardlss of its source, spatial correlation leads to exdréability in
observations. This, in turimvalidatesa key statistical assumption required for most basic analyses, that
observations aredependent

The development of desigrmased population assgnent methods weir part dugo the need to

minimize the impact of spatial correlatiand environmental stochticity on population estimates.

Historically, nodelbased approaches thretplicitly incorporate spatial correlation into model design

were &ailable yetcomputational and statistical challengeadethese approaches inferior to design

based methods. Recent advancements in computer technology and spatial modeling software tools, such
as VAST, are now available to apply motlalsed methods tesessing population indices both precisely

and efficiently.

VAST modelsused for stock assessment estimate two levels of spatial correlation for a species: an overall
effect that is estimated by aggregating annual data; and a-tgraporal effect, thaagstimates an annual
spatial effect. The former can be thought of an

o6

represents additional annual spatial wvariability.



example, by static propertieban environment,ich as deptlgr consistent areas of species aggregation,
such asn the case of stationagpeciesgoral mounds. The spattemporal pattern could reflect

associations with temporally variable environmental characteristics, suchpesatume, or other

complex biological patterns, such as migration or events related to high recruitment. With respect to GOA
Dover solespatial patterns in this species could arise from its ontogenetic movement aitkiiss

association with depth

VAST uses spatial correlation information to estimate annual biomass at unobserved locations. The
prediction region, for example in GOA: Western, Central, and Eastern GOA, is covered by a grid. For
each year, the 0 a-tempoalgfeddaddedts theahnuahnmedn bemaastvalue to
derive an annual, locallyunique biomass prediction for each grid cell. These values are then summed to
obtain annual biomass estimatas.a distinct advantage over desiggsed methods, information can be
borrowed from nearby locations, supplementing data when survey coverage is not complete.

Designbased methods are known to provide unbiased estimates of biomass, however, thihiéscade

when strata design @ptimal to the species. Biases, therefora, lmaoccurringin the desigrbased

estimates of Dover sol®ue to Doversoldd s ont ogeneti ¢ mov e additotallypatter ns
occupies depths that are not consistently surveyed. Withgixtezn years of survey data, eleven years

extended out to 700m, of which 6 years additionally extended out to 1000m. Random effects (RE) models
areusedin the Dover solestock assessment to fill in depdinea gaps in surveys. These models do not take

spatial correlatiorexplicitly into accountResearch has shown that metlaked methods resultiimore

precise biomass estimat@horson, 2019, Thorson, Shelton, Ward, & Skaug, 204/jle they are not

guaranteed to be unbiasedtimates fronWAST modelscan be optimally defined for a given species,

potentially leading to less bias than a-gytimal desigrbased approach.

Anal ytic Approach

The VAST model was run using settings for the purpose of index standardization. Under this framework,
the underlying obsed v akdameuhdae thaspesifieaan éxpectéds s o n
encounter probability that is correlated with anentpd positive catch ra{@horson, 2017)Each

expectation is a function of an annual intercept value plus additional latent effects (spatial, spatio
temporal, etc.).

A spatial random effects model is specified to handimesariation in the observations as spatial
correlation. The spatial likelihood is defined as a Gaussian Markov Random Field (GMRF). This
likelihood is a multivariate normal likelihood that defines a precision matrix, which is the inverse of the
multivariate normal covariance matrix. In the GMRF model, the precision matrix has a unique definition
such that its inverse represents a covariance matrix defined usingra btatariance function, a

common covariance structure used when correlations betwediotscdecay with distand®esag,

1974)

The GMREF likelihood results in efficient computation times as calculations only involve the precision
matrix, skipping the computationally expensive task of inverting the covariartce.rithie precision

matrix also has the Markov property of sparseness, that is, correlations are engraéor observations
that are in close proximity. The model can efficiently learn the spatial structure by only considering the
nearest neighbors afgiven location.

The GMRF was originally developed for lattice, or spatially discrete data. The extension of the GMRF to
continuous space relies on discretizing this spac:



discrete spatial areas byarlaying a grid of triangles over the area of interEgjure2). The precision

matrix of the GMRF is estimated using distances along the triangle edges and apphgtigematical
function derived from engineering called the finite element method to construct the solution to a
stochastic partial differential equation (SPDE), the solution being a continuous Gaussian Field with a
Matérn covariance matrigLindgren, Rue, & Lindstrom, 2011This method, therefore, provides an
approximation to the precision matrix for a continuous Gaussian Field using a discrete GMRF, and
thereby carries along all the computational benefits associated wifttiitization. Correlation at
observation locations are weighted according to the distance between the observation and the nearest
triangle vertex. Markov properties hold such that correlations between two observations are -@efyonon

if locations are whin two triangle edges of each other.

The resolution of the estimated spatial correlati.
resolution of the discretization step. The vertices of the mesh triangles are the latent observations of the

spatal field. If these are spaced at a distance larger than the spatial range (maximum distance of

detectable correlation), then the latent observations are essentially independent and will not be able to

detect any spatial correlation in observed data. Whitémal research has been conducted on the

relationship between maximum edge distance (maximum distance between two triangle vertices on the

mesh), recommendations for optimal mesh properties have been made based on the underlying finite

element method #ory. Recommendations include a boundary area that extends beyond the area used for
inference/prediction to about 145times the spatial range of the field, and a maximum triangle edge in

the interior mesh that is approximately 11/ the spatial rang(Bakka, 2018)

The 6meshd method is the preferred aplmsediadicés. i n VA
Initial recommendations are to use 250 knots in the GOA as this resalisesh with an adequate

number of tiangles spread throughout the area. More research is needed to determine an optimal number

of knots, and whether or not this optimal number needs to be species dependent. Each knot is a vertex of

the inner triangulated mesh, its placement determineddrkmearesneighbor algorithm on observation

locations. For kdefined knots (eg. k=250), the algorithm searches for placement locations given the

clusters of observations to optimally minimize distance between knots and observations.

A boundary region islrawn around the inner mesh using a nonconvex hull algorithm. A convex hull
boundary can be conceptualized as a boundary defined using the outermost points of an area, much like
using a rubber band around a group of pegs. The nonconvex hull algorithed ioudraw a smoother

boundary than the convex hull around a set of points. While locations of outermost points still define the
general shape, observations do not fall directly on boundary but are rather buffered at a specified distance;
boundary linesr@ not drawn with hard angles. Larger triangles are drawn between the inner mesh and the
outer boundary; this region is not used for prediction, and therefore, does not require as fine a scale
resolution as the inner mesh.

Increasing the number of knotsocdeases the maximum triangle edge (distances between triangles),
improving the approximation of the Mah covariance, however, at a computational cost. The mesh can
also be drawn by specifying an inner and outer boundary and setting a maximum triaadgleaedg
defines the size of triangles within the meBly(@re3). Increasing the maximum triangle edge lowers the
spatial resolution of the mesh, decreases the accurdoy Magrn covariance approximation, and
increases computational run times.

Weight matrices are defined in VAST that link the locations of the mesh to those of the observations as
well as locations on the extrapolation grid. In this step, the spatralation value at the location of the



observation or grid cell center is calculated using the value of the nearest mesh vertex but weighted by the
distance between the two.

The default settings of the VAST model for survey indices does not specifyrapgrt correlation

structure. The model instead estimates a spatial effect and atepapioral effect. The end result is a

spati al random effect that is consistent across Yy
structure) and a spattempral effect which specifies a unique spatial correlation structure at each time

step (approximating temporally unique spatial structure). The average spatial and annutdrapatial

effects are realizations from a spatial process unique to the spedigs\erned by two parameters:

kappa, which is the rate of spatial correlation decay with distance, and tau, which is the scaled inverse of

the spatial variance. Default settings in VAST also include the specification of a unique vessel random

effect whichintroduces extra variability attributed to veskrlel variation.

Default settings in VAST also include an estimation of anisotropy. In spatial statistics, the property of
isotropy defines spatial correlation as a process that decreases with distapt®avaalocation at the

same rate regardless of directidtigure4a). Geometric anisotropy occurs when this pattern is stretched
(Figure4b) and/or rotatedHigure4c) along an axis. Correlation follows an elliptical, rather than circular
pattern of decay away from the origin. In VAST, specifying anisotropy adds an additional two pesamete
to estimate the rotation and scale on kappa (spatial correlation decay parameter). Anisotropy likely occurs
in the spatial pattern of depth and currdriven environmental variables along the GOA coastline due to
the narrow shelf. Spatial patterns ishf resulting from these spatial environmental effects, as seen in
Dover, translate into anisotropic effects in species biomass. The anisotropy of the GOA bathymetry,
however, is not caused by a simple stretching and rotation; it is also affected bgpcaeeo curvilinear
pattern Figure4d). This type of anisotropy is more challenging to model and is not currently
implemented in VAST.

GOA bottom trawl survey biomaskta for Dover sole were fit using VAST settings for the purpose of
index standardization. Random effects in this model included a spatialaifiecspatietemporal effect.
A second set of models were fit where the observation model was changeddrdefiethlt lognormal
distribution to a gamma distribution.

The lognormal and gamma VAST models were each run using a series of knots from 50 to 1000 knots at
two hundred knot intervals. In addition, three udefined meshes were generated using maximum

triangle edges specified at 100, 50, and 30 meters. Models were evaluated for convergence and validated
using QQplots output from VAST. Modebased indices and their standard errors were compared to

results from desigihased index values and results from RE model results used in the Dover sole stock
assessment and the movement models presentgabandix A

New data were simulated from the model using estimated parameters. Two types of simulations were
created. Unconditional simulations were generaietirst simulating data from spatiemporal models

after which biomass data were generated from both the simulated random effects and model parameter
estimates. Conditional simulations generated data from the observation model conditioned on estimated
spatio-temporal and random effects. Conditional simulations, as they rely on random effects values
estimated by the model, contain less variability than unconditional simulations where data is generated
from both the random effects and observation models.

Simulations were used in an additional model validation step using a new approach detailed in the
DHARMa R packagéHartig, 2019) The empirical cumulative distribution function (ECDF) is used to
compare an observation in the gdento a series of simulations of the observation given the model. The
ECDF is an empirical measure of the sample and therefore does not rely on a specific distribution. Using



this approach, the simulated data can be used to calculate quantile residelaksre/aniformly

distributed when observations are similar to simulations from the model. Uniform patterns, therefore, are
evidence for model validity as the observed data are considered a reasonable realization from the model.
The KolmogorovSmirnov (KS)Test, which measures the difference between two distributions, was

performed on the scaled quantile residuals to evaluate the null hypothesis that the simulations and
observations were drawn from the same data generating process. Quantile residubks damditional
simulations were also used to perform a Moranbs |
spatial model.

Resul ts

Model Validation

QQ-plots from VASToutput Figureb, Figure6, Figure7, andFigure8) and results from KS Test on

the quantile residualg &blel) led to siilar findings.The KS Test on unconditional residuals, calculated
from simulations generated from both the random and observation model, rejected the validity of all
models. Conditional residual, or those calculated when data were only simulated fiayaeheation
model, failed to reject the Gamma model based on &260mesh Tablel).

QQ-plots from VAST output also supported a lack of fit in Lognormal modetgi(e5 andFigure6)

and Gamma models with either low or high spatial resolutidhe meshKigure7 andFigure8). All
model validation tests rejected modelsdshen the set of us@lefined mesh. Visual interpretation of QQ
plots suggested the Lognaahmodels wereindedispersed, that jshere was less variability in the data
than what was estimated by tiedel Similarly, Gamma models withlargenumber of knots (&.
greaterthan 250were alsaundedispersedin contrast, Gamma models witlsmallnumber of kiots (ie.
lessthan 250)were overdispersed, that is, there was greater variability in the datatihhwas

estimated by the model.

Residual Spatial Correlation Results

The Mor an6s Iconditeraltesidudls dgmorstnated thaeresiduals from models based on a
low resolution mesh still retained spatial correlation. The spatial correlata@nee in residuals declined
as the spatial resolution of the mesh increa$alé€2, Table3).

Comparison of indices

Lognormal Models

VAST estimates from Lognormal model runs were either comparable or greater than stratified/RE model
results Figure9, Figure10). Differences between these VAST estimates and the dbaggd and RE

based estimates decreased as the number of knots incriegsed X3, Figurel14). The decrease in

differences leveled off as more knots were added, yet stabifix&d estimates were still greater than

the desigrbased and Ribased estimates for a majority of the time series. While survey years that only
sampled 6600m coincided with greater differences between VAST aneM#®BT approaches (1990

1993, 2001, 2009yreater differences between approaches also occurred when surveys extended depths
to 1000m (2005, 2007).

Gamma Models

VAST estimates from Gamma model runs resulted in mbdséd estimates with fewer differences
between VAST indices argtratified/RE model indices than for the Lognormal model réigu¢e11



andFigurel?). Differences decreased as the number of knots increBgrag15 andFigure16). The
decrease in differences leveled off as more knots were added, and unlike the Lognormal model runs,
stabilized at zero difference around 750 knots. Excluding years 1988 2001, 201,12015, and 2017,
results between VAST and nMAST estimates were within model standard errors. There was no clear
pattern between years with big vs small differences between VAST andAf®n approaches and years
with high vs. low survey coverage.

Indexcomparisons between VAST and degdigeed estimates

All VAST models consistently estimated a higher biomass in survey years 1993 and 1996 compared with
nonVAST methods Figure9-Figure12). Surveys extended out to 500m during these years, therefore,
biomass estimates of Doveolein the deep were more informed by the spatial aatiGpemporal

models than by survey observations. As the spatial resolution of the models increa$&ST knots
increased), the biomass indices decreased. Models using th&rid@Q@esh, however, still resulted in
estimates significantly higher thaonVAST estimatesThe RE model indices were also higher than

those from desigihased methods during this time frame. In contrast, other survey years with coverage
out to 500m did not result in large differences between VAST and/AST methods. Thseresults

support a higher trend in Dover sole biomass during this time period than what was estimated using the
designbased method. The VAST approach may be better suited to approximate the additional biomass
than the RE modetjiven its ability to projectmatial distributions inthe deegrataf r om t he &éaver ac
spatial effect aggregated over time.

In 2001, the Eastern GOA was not surveydterefore VAST estimates were only informed by the

annual mean estimatdibmassrom observations inthe Westaann d Cent ral GOA, the 06a
effect from the Eastern GOA aggregated over years in which this region was surveyed, and the spatio
temporal effect extrapolated from observation in Western and Central GOA. The RE model estimate was
informed by Easte GOA data in 1999 and 2003 as well as data from Central GOA. The -tesigd

index from 2001 is not considered to be reliable and therefore excluded from stock assessments. As

expected, both the VAST and RE model estimates were significantly higheretttatunlike 1993 and

1996, the RE model was estimated higher than the VAST estimate. Due to issues stated below, the VAST
model may not be well approximating spatial correlation in the Eastern GOA, and therefore, may not be
producing as reliable an estite as the RE model.

Index comparison by area

The 250knot VAST model was used to make comparisons to area apportionedbasggiiRE model
results Figure17 andFigurel8). Little to no differences between VAST and stratified/RE model indices
were detected in the Western GOA. VAST indices consistently led to hégtierates than neiAST
indices in the Central GOA while a range of magnitude in differences between VAST aWé&8dn
estimates occurred in the Eastern GOA. The differences between estimates from different methodologies
occurred in the Eastern GOA. Whidgest differences between VAST and AOAST methods occurred
during survey years with 500m survey coverage, this trend was not consigieRB009) and significant
differences also occurred in 700m and 1000m coverage years. this A comparison ofgoroptine

GOA area surveyed by area, depth, and yeigu¢e 19) failed to suggest any clear pattern between
survey coverage and differences in approaches between ¥stBiates and stratified/RE model
estimates.



Di scussi on

The spatiabnd spatidemporalmodelwithin the VAST model wa likely mis-specified Unconditional
simulations generated from tt®th therandom effectaind observatiomodek failed to generate dat
similar to observations. This level of misspecification isurccommon in spatitemporalmodels as the
random effects tend woak upvariability better explained by other processes, such as missing covariates.
In other words, when a species is cotiediawith a spatial or spati@mporal covariate, a model designed
to estimate theelationship with the covariate, a fixed effasquld better explain the data. It is not
possible, however, to model or measure all possible covariates associated wibdgrestiy

distributions One of the benefits apatiectemporal models is their ability to explairextra sources of
variability due to missing covariatesim should be taken, however, to identify significant covariates that
are readily available anddlude them in spatiemporal models whenever possible. In the case of Dover
sole, the inclusion of depth would likely improve model performaviven generating unconditional
simulations

Additional misspecificationin the spatial model may be occurridge toissues irestimatinganisotropy.

Parameter estimation of anisotroffyigure20 andFigure21) in the Doversole VAST model wa likely

being driven bythe northreasterrtrending pattars in theCentral/\Western GOAather than northern

westerntrending patterns that would be expected fromBhasternGOA. This is apparent iRigure18

wheredifferences between VAST and desigmased estimates are highesthia EasternGOA.

Additionally, biomass density patterns showwesem st er n trending O0strips6é in
contrast the expectation for a more nata@th-westerrpattern Figure28andFigure29). This striping

pattern is most apparent in the low resolutiorkkB6t meshMis-specification of anisotropy is known to

lead to decreased accuracy in predictigfengtao Guan, 2004and therefore, could be driving

differences between VAST and ndAST estimates in this region

In general, models with the best performance, where performance was evaluated by comparing model fits
to observations, had lower resolution than mougtls better predictive performance (tbatis, resulted

in biomass indices closer to what was estimhaiging noAVAST method$. Higherspatial resolutiom

the meslbetter approximatethe spatial structurdaitoughout the predictive region. Consequently, models
with higher spatial resolution tend to have better predictive performance. Notably, biomsitesi&rom
50-knot mesh models oversimplified density patterns throughout the Gi@aré28 andFigure29). As
knots increased, the spatial pattern of density became more réfiretigher resolution models better
approximatd the absence of Dover spkuggesting that an ovestimation of absence is a source in the
discrepancieseen between VAST and nMAST methods. Additional evidence of the relationship
between spatial resolution and predictive performaacebe seen imodel testesults. With increased
spatial resolution, residuals were less likely to retain spatial atimel(Table2 andTable3) and

differences between VAST and rMAST survey indces decreasefFigure13 andFigurelb).

Models with better fits to observations resulted in larger spatial raRgps€20 andFigure2l),

resulting in larger spatial and spatemporal offsets from the annual mean. Extrapolating these larger
spatial and spatitemporaleffectsto unobserved locationhowever,resulted in larger differences
between VAST and neWAST biomass estimates. In contrast, higher spatial resolution models were
estimating smaller spatial ranges resulting in smédleal offsetsto the annual mean biomassspection

of QQplots suggetedthese modelarere likely not explaining enough variability present in the data
(Tablel, Figure5, andFigure?), and therefore, were likely underestimating the spatial range of the true
correlation structure



TheDoversole spatial range wasensitive to both the observation model and the spatial resolution of the
mesh(Figure20 andFigure21). The spatial range of both the positive catch rates and encounter
probability extended from about HD0Om.Given aspdial range of 50mgbservations further apart than

this distance are independeahdspatal correlation between survey hauls may be difficult to defect.
noted above, a more realistic spatial range of the Dover sole is likeljjaoglee This species, however,
may still be particularlgensitive to changes in mesh structame may requiréner mesh resolution than
other species in the GOAdditionally, Doveris found in deep water and can therefore occuthe
boundary of observationSpatial effects along the boundargn be biasedighwhen mesh boundaries

do not extend far enoughgighe region of observation®sulting in biased high estimates of annual
biomass.

Future Research Directions

Overall, a VAST model of the Dover sole has the potential to impronealbiomass estimateds the

GOA. VAST modelspresented here in this pgndixhave been shown to detect higher abundémae
designbased methods in years wharssing deptkarea gapsvere present-urther work is needed,
however, to identify a model that optimizes both performance in estimation and prediction. This author
recommends exploring improvements to both the spatial and observation models.

VAST models with finer spatial resolution than presented in this appendix should beUssted.
specified meshgsresented hereid not result in a high enough spatial resolutioexplain all of the
spatial correlatiostructure in the dat@able2 andTable3). At higher resolutions, however, a user
specified mesh with larger boundaries najter aproximate spatidemporal correlation patterns and
ameliorate any potential boundary effedtgy(ire22, Figure23, andFigure24). It is recommended to
rerunuserspecific mesimodels with inner maximum edges defiridund 20 and a larger boundary
area than whawas presented in this appendbhis recommendation aligns witkest practices that have
beendefinedby statistical developers of the mesh spatial modeling me{Badika, 2018)

Current spatiatemporal modelingpproaches cannot account for thededer level of anisotropygure

4d) that may be affecting results in the GOA. Research on this topic is ongoing, yet a definitive solution
has yet to be determined. In the meantime, one model exploration step could estimate the Eastern GOA in
a separate spatial model than the Western @aRACentral GOA to determine the degree to which
misspecification of anisotropy in the Eastern GOAdsurring Such sensitivity analyses could benefit

other species as all GOA VAST models would be similarly affected if anisotropy is behspaaigied.

The inclusion of significant covariates, such as depth, could minimize anisotropic effects. If anisotropy is
being largely driven by the narrow, curved shape of the shelf, and Baleés correlated with depth, this
anisotropic effect could bmollified by including depth as a covariate.

Additional recommendatiortsy this authoinclude exploring the underlying observation model and
investigating the inclusion/exclusion of spatimporal effectand vessel random effedtsboth the
probability of encouater and positive biomass components of the expectation
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Tablel. Model validation pvalues from &olmogorov+Smirnov Test on thaniformity of simulation residuals

from conditional simulationsResults listed for residuals frobognormalversus Gamma observation models. Fits
areevaluated at incrementally increasing spatial knots-valpe less than 0.05 indicates strong evidence against the
null hypothesis thathe observed and simulated data are derived from the same iistribu

Knots Max Edge Logrormal Gamma
50 0.013 0.006
250 0.01 0.348
450 0.003 0.039
650 0 0.003
850 0 0
1000 0 0
100 0 0.036
50 0 0.021
30 0 0




Table2. P-values fromMor ands |

maximum triangle edge decreasRs/alues in bolded indicateevidence against the null of no spatial correlation.

test

o hogmoensl iolibenatiormadel residualsaby yiear and i n
spatial mesh complexitfuantile residuals were calculated from conditional simulatidas/AST knots increase,
spatial resolution of the mesh increases. Whemgusiuseidefined mesh, spatial resolution increases as the

Years from models that fail ed t boeelalibowas poSitve. |
Year VAST Knots
50 250 450 650 850 1000
1984 0O 0 0 0.001 0.005 0.017
1987 0 0.25 0.158 0.335 0.596 0.504
1990 0.011 0.983 0.925 0.559 0.589 0.876
1993 0.001 0.395 0.686 0.39 0.992 0.889
1996 O 0.004 0.171 0.041 0.229 0.34
1999 0O 0.103 0.705 0.585 0.796 0.119
2001 O 0.013 0.083 0.041 0.05 0.173
2003 O 0.054 0.167 0.627 0.594 0.55
2005 0 0.007 0.163 0.705 0.861 0.945
2007 O 0.778 0.622 0.906 0.642 0.407
2009 0O 0.04 0.118 0.588 0.142 0.988
2011 0.008 0.086 0.352 0.599 0.339 0.736
2013 0.012 0.134 0.186 0.096 0.167 0.026
2015 0O 0.004 0.001 0.002 0.006 0.053
2017 0.001 0.874 0.37 0.896 0.92 0.633
2019 0O 0.051 0.082 0.577 0.218 0.172
User Defined Meshmaxedge
100 50 30
1984 0O 0 0
1987 0.511 0.784 0.409
1990 0.332 0.852 0.539
1993 0.831 0.147 0.888
1996 0.09 0.015 0.073
1999 0.69 0.136 0.219
2001 o0.108 0.23 0.164
2003 0.882 0.146 0.502
2005 0.877 0.041 0.933
2007 0.849 0.814 0.813
2009 0.708 0.055 0.638
2011 0.298 0.8 0.811
2013 0.117 0.122 0.057
2015 0.245 0.005 0.028
2017 0.22 0.772 0.977
2019 0.006 0.298 0.12

test

al



Table3.Pval ues from Moranbés | Ganemaobseoationrmedeliresdiduald by gearmande | at i on
spatial mesh complexitfQuantile residuals were calculated from conditional simulatidas/AST knots increase,

spatial resolution of the mesh increas#$ien using a usafefined mesh, spatial resolution increases as the

maximum triangle edge decreasesdiues in bold red indicate strong evidence against the null of no spatial

correlation. Years from mod el sresiddalspatiafcarielatiendwad posgiveMor an 6 s
Year VAST Knots
50 250 450 650 850 1000

1984 0O 0 0.003 0 0.001 0.015
1987 O 0.038 0.324 0.71 0.903 0.331
1990 0.007 0.713 0.735 0.929 0.959 0.755
1993 0.001 0.238 0.736 0.874 0.92 0.543
1996 O 0 0.022 0.025 0.068 0.031
1999 0O 0.015 0.24 0.796 0.689 0.494
2001 O 0.044 0.033 0.206 0.086 0.221
2003 O 0.013 0.114 0.356 0.261 0.635
2005 O 0.003 0.233 0.797 0.878 0.667
2007 O 0.805 0.905 0.975 0.924 0.831
2009 0O 0.01 0.068 0.921 0.817 0.712
2011 0.002 0.006 0.458 0.485 0.96 0.236
2013 0.001 0.1 0.236 0.32 0.106 0.18
2015 0O 0 0.005 0.009 0.292 0.123
2017 0.002 0.675 0.718 0.867 0.92 0.969

2019 0.013 0.029 0.126 0.307 0.065 0.6
User Defined Meshmaxedge
100 50 30
1984 0 0 0.017
1987 0.125 0.292 0.44
1990 0.016 0.175 0.362
1993 0.001 0.446 0.573
1996 0.002 0.009 0.006
1999 0.001 0.086 0.555
2001 0.001 0.004 0.149
2003 0.006 0.018 0.298
2005 0 0.016 0.418
2007 0.01 0.392 0.659
2009 0.002 0.011 0.744
2011 0.071 0.035 0.155
2013 0.026 0.049 0.026
2015 0 0.08 0.188
2017 0.071 0.517 0.694
2019 0.02 0.152 0.031
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Figurel. Left: Positive spatial correlation. Cross section plot on bottom shows smooth change in correlation value
along the xgradient.Observations sampled at close proximity would not be indeperilight: Random spatial

pattern. Cross section plot bottom shows no correlation pattern along thgradient.Observations are guaranteed

to be independent, regardless of distance.



Triangulated Mesh

Figure2.Left: Sample | ocations across the sMe$hoecwntvbar spal
continuous spatiaurface to areas of discrete triangles. Spatial correlation is estimated along the triangle edges.
Correlation at observation locations are weighted according to the distance between the observation and the nearest
triangle vertex. Gaussian Markov properties hold such that correlations between two observations arezenty non

if they are within two triangle edges of each other.



Low Resolution High Resolution

Max Edge = 0.5 Max Edge = 0.2

Figure3. Examples of different Mesh structures for a sirggeof observations. Resolution increases from left to

right. Boundaries were drawn using convex hullsp: Meshesvere generated using knots similar to VAST. The
number of knots are placed within the data region and triangles drawn between the kfrots &nel knots to the

outer edgeBottom: Meshes were generated using a maximum edge, that is a distance used to define the maximum
edge of any triangle length. The number of knots are not specified.



Isotropy Anisotropy
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Figured. Isotropy (a) is atationary property of spatial correlation where correlation decays at the same rate with
distance regardless of directidBeometric aisotropyoccurs when correlation decay is stronger over one axes and
weaker over a perpendicular one (b) and when thijgieal pattern of decay is rotated (c). Secarder anisotropy

(d) occurs when there is a curvilinear pattern to the direction of stronger decay; this type of pattern is not well
approximated given current spatial modeling methods.




o o

— | M Observed — | M Observed
B Predicted B Predicted

Lee] Lee]

= o] = o]

o o

c c

@ @

3 3

o o

[l [l

= o = o

8 ° g ©

[ [

3 3

(=] (=]

Q Q

[ = [ =

o = o =

o o o o

@ @

2 2

@ @

w w

=] =]

O o O o
o o
(=] (=]
oS- oS-

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted encounter probability Predicted encounter probability
o L
—7| M Observed . 3
B Predicted
Lee]

> O]

o

f =4

i

3

o

@

= o

E, o

=

=

o

Q

=

o =

T o

@

I

@

w

o

O o
pl
o
=N

T T T T T
0.0 0.2 04 0.6 0.8 1.0

Predicted encounter probability

Figure5. Diagnostics comparing observed versus predicted probability of encountdrdgmormal VAST
models. From left to right: 5Rnot Mesh, 25&Knot Mesh, 100&knot Mesh
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Figure6. . Diagnostics comparing observed versus predicted probability of encountdrdgmmormal VAST
models. From left to right: 5Rnot Mesh, 25Knot Mesh, 100&not Mesh
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Figure7. Diagnostics comparing observed versus predicteobjpitity of encounter fronbammaVAST models.
From left to right: 5&knot Mesh, 25&Knot Mesh, 100&not Mesh
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Figure8. . Diagnostics comparing observed versus predicted probability of encountétdimma VAST models.
From left to right: 56knot Mesh, 25Knot Mesh, 100&knot Mesh
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Figure9. Biomass stimates from theLognormal VAST model under different knot scenarios (colors light grey
black) compared with index results frahe random effects model which filled in ardepth gaps (red)na original
stratified estimateflue). Years which surveyed out to 500m (small), 700m (medium), arnl@arge) are
displayed along the-axis at the bottom of the pldkhe survey did nadample the Eastern GOA in 2001.
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Figure10. Biomass stimates from theLognormal VAST model under different maximum edge scenarios from
userdefined meshes (colors light grelack) compared with index results from the random effects model which
filled in areadepth gaps (red) and original stratified estimates (blue). Years whictysdreat to 500m (small),
700m (medium), and 1000m (large) are displayed along-thésxat the bottom of the pldEhe survey did not
sample the Eastern GOA in 2001.
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Figure1l. Biomass stimate from theGammaVAST model undedifferent knot scenarios (colors light grey
black) compared with index results from the random effects model which filled wteptia gaps (red) and original
stratified estimates (blue). Years which surveyed out to 500m (small), 700m (medium), and|l&0§&nare
displayed along the-axis at the bottom of the pldkhe survey did not sample the Eastern GOA in 2001.



Figure12. Biomass stimate from theGammaVAST model under different maximum edge scenarios from-user
definedmeshes (colors light greylack) compared with index results from the random effects model which filled in
areadepth gaps (red) and original stratified estimates (blue). Years which surveyed out to 500m (small), 700m
(medium), and 1000m (large) are digmd along the saxis at the bottom of the plothe survey did not sample the
Eastern GOA in 2001.



















































