now crab assessment CPT and SSC recommendations and author response

 CPT Recommendations September 2015"The CPT again cautioned that any sequential model revisions should incorporate only a single change so the effect of that change may be evaluated without confounding by other changes. The CPT again requests that any model steps be evaluated in individual model scenarios."
This report contains M odel scenarios from M odel 0 to M odel 5 (sort of) (of September 2015) in steps as requested by the CPT (see Table 1).

1. M odel 0 changed dramatically in this iteration - explore the convergence to a global minimum by starting at different parameter values.
See results for jittering M odels $0,0 \mathrm{a}, 1,1 \mathrm{a}$ and 1 b . The lowest likelihood runs from jittering M odel 0 were the same as the lowest likelihood runs from jittering M odel 1.
2. The CPT requests that any steps between M odels 0 and 1 be evaluated in individual model scenarios.
Since jittering starting parameter values resolved the differences in likelihoods between M odel and M odel 1, no intermediate models were run.
rovide both the potlift data and the protocol used to extrapolate post-1991 discard data to -1992 historical female discards.
odels $2,3,4,4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c remove fishing mortality penalties for males and females. M odels 4 , 4b and 4c explore different methods of estimating female Fs using potlift data.
xplore potential conflicts of trawl likelihood weighting (M odel 2) with other data sources.
acreasing the weight on the likelihood for the groundfish catch was an attempt to fit the catch dati ter. The issue with fitting the groundfish bycatch was that the average F to estimate bycatch was d in the model because in previous scenarios it could not be estimated. The fishing mortalities ar mated as a dev vector (dev vector as define in ADM B sums to 0) and an average F . M odel 0 b uses del 0 and estimates the average F for groundfish catch. M odel 9 is M odel 4 a with the addition of estimation of the average F for groundfish bycatch. Both these models were able to estimate the rage F and the fit to the groundfish bycatch was resolved without adding any additional weight to likelihood. A normal likelihood was retained. A lognormal likelihood was implemented in a nario not presented here which also fit well with the average F estimated.
3. Explore the dramatic differences in sequential survey estimates and why the models do not split the difference between the last two survey years. The fit in the last few years of the model was explored at the January CPT meeting. The main data set influencing higher biomass at the end of the time series is the higher discard catch relative to retained catch. The highe discard influences recruitment estimates that result in higher ending biomass. Down-weighting the survey length data results in higher biomass at the end of the time series. If fishery selectivity is allowed to change or if the last two years of discard are replaced by the average discard relative to retained then lower ending biomass results. Down-weighting all of the length data (M odel 18c in this report) also results in biomass increasing more at the end of the time series.
dels 4 and 5 use an F penalty vector that is not broken out over time; evaluate a r broken over time.
del 2 takes M odel 1 and removes the F penalties for males only and has one dev if or all years. Model 3 takes M odel 1 and removes the F penalties for males only plits the dev vector at 1991/92. M odel 3 has 1 more parameter than Model 2 (th ige F for the second period).
olore a scenario in which the weight of the trawl discard likelihood is increased. number 4 above.

omments October 2015

e SSC requests adding a table of commercial fishery CPUE to the annual stock sment; considerations of fishery CPUE could be investigated to help reconcile data cts.
s of fishery CPUE vs M odel estimated CPUE are included in the plot files for ence. The a for estimating CPUE in the model is fixed and the fit is not included in kelihood. A table of fishery CPUE can be added to the assessment document as as the plot.
2. As a matter of standard practice, the SSC requests that a suite of alternative starting parameter values be employed to help assure that models converge to a global, not a local, minimum.

Jittering has been done for every model scenario included in this report 3. The SSC requests a sensitivity analysis to determine the effect of downweighting size composition data.

- M odel 18c uses Francis effective sample sizes to reduce input Ns for the survey, retained and total length composition data. The sample size for length composition data for groundfish and female discards was also reduced but not by calculating the Francis Ns. M odel 18c uses M odel 13 with iteration until sample sizes converged to two decimal places. Jittering was then done on M odel 18 c with the converged sample sizes.

4. The SSC requests that a model be brought forward in which q is free ano not bound by an upper limit of one.

- M odels 17, 17a and 17b explore allowing survey qs to be estimated greater than 1.0

5. The SSC recommends that new studies on female growth should be a high research priority to better define the relationship between growth increment and pre-molt carapace width (e.g., Fig. 54d). The lack of data near the transition point in the growth curve and the clumped nature of th available data limit clear specification of the transition point with unknowr consequences on the stock assessment.

M odels 0 a and 1 la and 1 b explore fixing the transition point for growth and the effect on model stability.
M ore data near the transition point should improve stability
6. The SSC requests the reporting of additional model diagnostics, such as plots of retrospective patterns, plots of residuals from alternative model fit to survey biomass, and the like, as typically reported in other assessments.

- No retrospective analyses have been included in this report due to lack of time. These could be added in the future. This report includes plots comparing model scenarios and the set of plots for each model includes residual plots for male and female biomass fits.

Model Scenarios

pleted model scenarios are described in Table 1. M odel scenarios were cho ess CPT and SSC comments and to step through the transition from M odel (el 5 (of September 2015). Other model scenarios were added based on rev in AFSC as work progressed.
els 0 and 1 are the same as M odels 0 and 1 from September 2015.
M odel 0 has two line segments for growth, transition points estimated, sd fixed at 0.5.
M odel 1 has reparameterized 95% selectivity parameters to an offset from 50% and survey q for 1978-1981 and 2010 BSFRF study area q on probit scale
els 0a 1 a and 1 b explore how fixing the growth transition point for males a les effects model stability and convergence. Transition parameters were fix iverage between model 0 and model I from sept 2015
M odel 0a - model 0 with growth transition for males and females fixed M odel la - model 1 with growth transition for males and females fixed M odel 1b - model 1 with growth transition for females fixed Model 1c - is no model 1c
els $2,3,4,4 a, 4 b$ and $4 c$ remove fishing mortality penalties.
M odel 2 removes male fishing mortality penalties for 1992 to present M odel 3 takes M odel 2 and splits the F dev vector at 1991/92.

M odel 4 takes M odel 3 and removes fishing mortality penalties on females using a fixed q.

$$
\begin{gathered}
\operatorname{potf}=\frac{\sum \frac{\operatorname{potlifts}(1992, y)}{F(1992, y)}}{(y-1992)} \\
F(1978,1991)=\frac{\text { potlifts }(1978,1991)}{p o t f}
\end{gathered}
$$

Models 4a and 4b explore different methods of estimating q for females (suggested from AFSC review).

- M odel 4a - estimates q using likelihood component

$$
\sum_{y=1978}^{2014}\left(\log \left(F_{y}\right)-\log \left(q f_{y}\right)\right)^{2}
$$

$$
\text { F }(1978,1991)=q^{*} \operatorname{potlifts}(1978,1991)
$$

I odel 4b - uses 1992 to 2014 only in the likelihood to estimate q

$$
\sum_{y=1992}\left(\log \left(F_{y}\right)-\log \left(q f_{y}\right)\right)^{2}
$$

1 odel 4c - M odel 3 with the female F penalties removed for 1992 to 014/15 only (no use of potlifts). Female bycatch 1978-1991 estimated utside model using relationship to male catch.

M odel Scenarios

M odels 8 and 8 a remove the lowest length bin and estimate one straight line for growth estimated separately for males and females with a higher weight on the growth likelihood for M odel 8 (weight $=2$ $s d=0.5$) than M odel 8 a (weight $=1, \mathrm{sd}=0.7$). These scenarios were suggested from AFSC review to explore stability and convergence of the model using one straight line for growth.
The issue of fitting the groundfish bycatch is addressed in models 0b (from Model 0) and 9 (takes Model 4a) where the average F is changed from being fixed to being an estimated parameter. The model was able to estimate the parameter (not the case in previous models) and this resulted in a good fit to the bycatch.
M odels 10 (from M odel 9) and 11 remove a prior that was used on the probability of maturing for males (M odel 10) and, males and females (M odel 11).

Model Scenarios

M odel 12 is Model 11 with a higher weight put on the second difference smooth constraint for the probability of maturing for females.
M odel 13 is M odel 12 with the 50% selectivity parameter for female discard is estimated and is the closest M odel to M odel 5 of September 2015.

- This parameter was fixed in previous models because it was not estimable. The differences between M odel 13 and M odel 5 are that the average F for th groundfish discard is estimated (not fixed) and no additional weight is put on the groundfish bycatch likelihood, the 50% selectivity parameter for female discard is estimated (not fixed), the fishing mortality dev vector for males is split at 1991/92 and no additional weight was put on the growth likelihoods.

Model Scenarios

M odels 14, 15 and 16 alter weights on the growth likelihood to explore stability and sensitivity of the model.

- M odel 14 - M odel 13 with weight on growth likelihood for males increased from 1 ($\mathrm{sd}=0.7$) to $2(\mathrm{sd}=0.5)$
- M odel 15 - M odel 13 with weight on growth likelihood for females increased from 1 ($\mathrm{sd}=0.7$) to $2(\mathrm{sd}=0.5)$
- M odel 16 - M odel 13 with weight on growth likelihood for both males and females increased from 1 (sd=0.7) to $2(\mathrm{sd}=0.5)$
Models 17, 17a and 17b explore allowing survey qs to be estimated greate than 1.0 (SSC request).
- Model 17 -M odel 13 with the upper bound of survey q for all surveys increased to 3.0 (arithmetic scale).
- Model 17a -The upper bound on q for the first period (1978-81) survey only was increased
- Model 17b - The upper bound on q for the survey in the study area in 2010 only wa increased.

Model Scenarios

M odel 18c uses Francis effective sample sizes to reduce input Ns for the survey, retained and total length composition data.
$N_{? ?}=\widetilde{N}_{? ?} w_{?}$
equation TA1.8 from Francis (2011),

$$
w_{j}=\frac{1}{\operatorname{Var}_{?}\left\{\frac{A^{R} ? ? ? ? ? ?}{? ? ? A^{R ?} ? ?}\right\}}
$$

Where \bar{O}_{iy} are the mean observed lengths by year (y) and data type (j) and \bar{E}_{jy} are the predicted mean lengths by year (y) and data type (j).

The sample size for length composition data for groundfish and female discards was also reduced to 15 (but not by calculating the Francis Ns).
Model 18c uses Model 13 with iteration until sample sizes converged to two decimal places. Jittering was then done on M odel 18 c with the converged sample sizes.

ittering using R script

Run model scenario
Read in .par file
Read in file with bounds for parameters
Add uniform random number to 35 parameter values $+-20 \%$
write out .par file
Run model and save output files
Repeat 4-6 100 times (mostly)

Gradients

- Gradient is the change in likelihood relative to the change in parameter value
- Gradients close to 0 should determine a minimum in the likelihood - however, may not be the global minimum
- To output gradients put in the report section save_gradients(gradients);

re 2. Model 0. Total Likelihood by jitter number for runs that wrote the standard deviation file. ee runs wrote the standard deviation file were not included in this plot that had maximum gradients greater 1 uns were at the lowest likelihood (of 400).

e 1. Model 0 . M aximum gradient by jitter number for runs that wrote the standard deviation Three runs wrote the standard deviation file were not included in this plot that had maximum ents greater than 50 .

Female growth estimated from M odel 06376.97 run (red line) and M odel 06379.01 k line). Open circles are observed growth.

Female growth parameter al vs Total Likelihood for models that wrote the standard deviation file. ave been jittered for plotting to show where multiple runs occurred. The parameter values for each d with multiple runs were virtually identical. Models estimated basically two different values of the er that represent a shift in the transition of the growth curve (<-9 and >-4).
abd 7 c in document incorrect. All runs of M odel 0 with lowest likelihood had same estimated biomass.

Model 0 estimated male mature biomass for 32 (out of 100) jitter runs that std file, maximum gradient < 1.0 and the lowest total likelihood of 6376.97.

re 7b. M odel 0 estimated male mature biomass for 35 (out of 100) jitter runs that wrote the std f ximum gradient <1.0 and total likelihood of 6376.97 or 6379.01.

Figure 5. Parameter values for parameters 1-20 for runs where the total likelihood was 6379.01 (61 runs and 6376.97 (47 runs of 400). Refer to Table 1 for parameter names.

odel U trom september 201b, 63/9.01 total IIkelınood - parameter gradıents. 12 rameters with largest gradients.

me	Value	Gradient
slope (b1) growth	2.01649	-0.0023
evf(1991)	1.9501	-0.00146
evf(1987)	1.61484	0.001288
intercept(a1) growth	-17.1901	-0.00115
delta	27.2678	-0.00083
dev(1990)	1.21549	-0.00051
vg_sel50_mn	4.6649	0.000501
dev(1996)	-0.07388	-0.00048
dev(1998)	0.390927	0.000396
evf(2003)	0.839771	0.000384
dev(1989)	0.637854	0.000379
slope (b2) growth	1.15552	-0.00034

1 odel 1 from September 2015, 6376.97 total likelihood - parameter gradients. 12 arameters with largest gradients.

ParName	Value	Gradient	
rec_devf(1991)	1.93859	-0.00332	
rec_devf(1985)	1.62538	0.001726	
rec_devf(1983)	0.793248	0.001288	
rec_devf(1982)	0.306772	0.000977	
rec_devf(1992)	0.615182	-0.0008	
fmort_dev(1991)	1.50181	0.000741	
fmort_dev(1990)	1.21748	-0.00067	
rec_devf(1984)	1.02963	0.000635	
fmort_dev(1988)	0.932365	0.000441	
rec_devf(2003)	0.832483	0.000432	
fmort_dev(1992)	1.33983	-0.00039	
log_avg_sel50_mn	4.66493	0.000378	

Models 0a, 1a and 1b

Fixing the growth transition parameters resulted in a more stable model
M odel 0a and 1a - 94 (of 100) runs converged to the lowest likelihooo M odel 1b-51 (of 100) values converged to the lowest likelihood the male growth parameters were mainly different between likelihoods

Lowest Likelihood values were the same for 0a, 1a and 1b.
The male transition parameter in M odel 1b converged to the same value and the fixed value in models 0 a and 1 a .

Figure 18. M odel Oa total Likelihood by jitter number for runs that wrote the standard deviation fi 4 of the 100 runs converged to the lowest likelihood. Stabilizes M odel 0.

M odel 1a. Total Likelihood by jitter number for runs that wrote the standard deviation file.

M odel 1b. Total Likelihood by jitter number forter runs ansition fixed. M ain differences male growth parameters.

1 odel Oa. Parameters and gradients.

ParName	Value	
Male slope (b1) growth	2.01894	0.008872
rec_devf(1985)	1.629	0.005677
Male intercept(a1) growth	-17.2445	0.004437
rec_ devf(1984)	1.0313	0.002093
rec_devf(1983)	0.802609	0.001845
Male slope (b2) growth	1.15535	0.00158
fmort_ dev(1997)	0.339361	-0.00127
fmort_dev(1998)	0.390948	0.001238
fmort_dev(1991)	1.49895	0.001193
Mmult_imat	1.65734	-0.00114
fmort_dev(1990)	1.21565	-0.00108
rec_devf(1987)	1.61367	0.00107

Fishing mortality for male directed fishery for models $0,1,2,3$ and 4. and 1 are exactly the same. The jitter run with the lowest likelihood and lowest gradient was used for each M

Fishing mortality for female directed fishery discards for models $0,1,2,3$ and 4. un with the lowest likelihood and lowest gradient was used for each M odel.

Population Male Mature Biomass

Population male mature biomass for models $0,1,2,3$ and 4 . The jitter run with the lihood and lowest gradient was used for each M odel.

Survey Male Mature Biomass

M odel fit to survey male mature biomass for models $0,1,2,3$ and 4. run with the lowest likelihood and lowest gradient was used for each M odel.

Female Snow Crab Growth

Estimated growth for female crab for models $0,1,2,3$ and 4. run with the lowest likelihood and lowest gradient was used for each M odel.

Male Snow Crab Growth

Estimated growth for male crab for models $0,1,2,3$ and 4.
1,2 and 4 are similar and have a lower transition point than M odel 3. un with the lowest likelihood and lowest gradient was used for each M odel.

1 odels $4,4 a, 4 b, 4 c$

Female fishing mortality estimates in the directed fishery for Models $0,4,4 a, 4 b$ and $4 c$.

emale discard mortality models $0,4,4 a, 4 b$ and $4 c$

. M ale fishing mortality estimates in the directed fishery for M odels $0,4,4 a, 4 b$ and $4 c$.

Population Male Mature Biomass

Population male mature biomass for models $0,4,4 a, 4 b$ and $4 c$. Ending biomass for models are the same. M odel 4 the lowest and M odel 0 the highest.

Model 4 a - jitter all parameters 500 runs

 ittering the subset of 35 parameters and 100 runs was adequate to fir e lowest likelihood run?odel 4 a - all 325 parameters were jittered and 500 runs done.
sults show that for M odel 4 a jittering 35 parameters and 100 runs was equate. The percentage of runs at the lowest likelihood was similar. ice jittering all parameters was setup, all subsequent runs have all timated parameters jittered and 100 runs conducted.

M odel 4a. all 325 parameters jittered 500 runs (473 wrote std file). 91 runs had lowest likelihood of 6277.2 nodel 4a with 16 of 100 jitter runs at the lowest likelihood - 35 parameters jittered). Four runs had likelihood an 12,000 and wrote the std file, not included here. Range of likelihoods were the same as for the 35 jitter runs (6277.2 to 6321.72).

Models 8 and 8a

Remove lowest length bin ($25-29 \mathrm{~mm}$)
One linear segment for growth estimated separately for males and females
Modified from M odel 4a
Is this a more stable model?

M odel 8. Wt=2 (sd=0.5) on growth like. 43 runs with lowest likelihood of 6490.11. ($w t=1, s d=0.7,24$ runs at lowest likelihood).

Female Snow Crab Growth

Figure 87. Female growth for models $0,4 \mathrm{a}, 8$ and 8 a .

Male Snow Crab Growth

Male growth for models $0,4 \mathrm{a}, 8$ and 8 a .

Population Male Mature Biomass

Population male mature biomass for models $0,4 \mathrm{a}, 8$ and 8 a .

Model 0 and Model Ob estimated grounfish discard catch.
and 9 - estimation of average F for groundfish bycatch

Figure 100. Fit to groundfish discard biomass for M odel 4 a and Model 9.

Population Male Mature Biomass

Figure 99. Model 4 a and M odel 9 population male mature biomass. Ending biomass for M odel 4a was 242,895 t and for M odel 9 245,232 t.

Models 10, 11

Removing priors on probability of maturing
Model 10 - males
M odel 11 - males and females

Population Male Mature Biomass

Population male mature biomass estimates for Models 4a, 9, 10 and 11.

6. Female probability of maturing Models $4 a, 9,10$ and 11 .

7. Male probability of maturing Models $4 \mathrm{a}, 9,10$ and 11. Estimates for Models 4 a and 9 ame and Models 10 and 11 are the same.

Female Snow Crab Growth

Female growth. Models 4a, 9 and 10 are the same. M odel 11 has lower slope.

Male Snow Crab Growth

M ale growth for M odels 4a, 9, 10 and 11 .

Model 12 - increase weight on smoothness of female probability of maturing
M odel 13 - estimate the female 50\% selectivity parameter for fishery

Sensitivity to weight on growth likelihood

- M odel 14 - weight on growth likelihood for males increased from 1 ($\mathrm{sd}=0.7$) to 2 ($\mathrm{sd}=0.5$)
- M odel 15 - weight on growth likelihood for females increased from 1 ($s d=0.7$) to $2(\mathrm{sd}=0.5)$
- M odel 16 - weight on growth likelihood for both males and females increased from 1 ($\mathrm{sd}=0.7$) to $2(\mathrm{sd}=0.5)$

Population Male Mature Biomass

Comparison of population male mature biomass between M odels $11,12,13,14,15$ and 16.

Figure 121. Comparison of female probability of maturing for M odels 11-16. M odels 13 and 14 are the same. M odels 15 and 16 are the same.

. Comparison of male probability of maturing for M odels 11-16.

Female Snow Crab Growth

M odels 13 and 14 are same.

Male Snow Crab Growth

Comparison of male growth for M odels $11,12,13,14,15$ and 16. $, 12,13$, and 15 are all estimated the same. M odels 14 and 16 estimate males higher at larger sizes than other models.

5. Comparison of summary fit to female directed fishery discard length frequency Is $11,12,13,14,15$ and 16.

M odels 14, 15 and 16 altered estimates of growth, however, did not introduce significant stability to the model (4,1 and 4 runs at lowest likelihood)
Better fit to growth data results in higher likelihood for survey length data

Models 17, 17a and 17b

Population Male Mature Biomass

Population mature male biomass comparison between models 13, 17, 17a and 17b.

Survey Male Mature Biomass

3. Model fit to mature male biomass comparison between models 13, 17, 17a and 17b.

Population Female Mature Biomass

Population mature female biomass comparison between models 13, 17, 17a and 17b.

Survey Female Mature Biomass

5. Model fit to mature female biomass comparison between models 13, 17, 17a and 17b.

Models 13, 17, 17a, 17b

Estimated q						
			Model			
		13	17	$17 a$	$17 b$	
survey period 1 1978-1981 males	1.00	2.09	2.04	1.00		
survey period 2 1982-1988 males	0.75	0.96	0.93	0.76		
survey period 3 1989-present males	0.62	0.72	0.69	0.64		
Female multiplier on male survey q	0.87	0.94	0.92	0.88		
study area 2009 NM FS male	0.37	0.41	0.40	0.38		
study area 2009 NM FS female	0.34	0.36	0.36	0.35		
study area 2010 NM FS male	1.00	2.46	1.00	2.24		
study area 2010 NM FS female	1.08	0.64	1.17	0.61		

1 odel 18c - Reducing sample sizes on length data

| | Immatur
 e females | mature
 females | immatu
 re
 males | mature
 males | Retained | Total | Groundfish | Female
 discard |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Model 13
 input N | 200 | 200 | 200 | 200 | 200 | 200 | 50 | 40 |
| Input N to
 Model 18c
 (iteration
 1) | 5.57 | 14.10 | 16.83 | 19.45 | | 34.63 | 15 | 15 |
| iteration 2 | 3.26 | 14.82 | 8.45 | 14.36 | 16.26 | 34.88 | 15 | 15 |
| 3 | 3.41 | 14.27 | 7.03 | 11.94 | 15.81 | 33.06 | 15 | 15 |
| $\mathbf{4}$ | 3.44 | 14.29 | 6.94 | 11.49 | 15.61 | 33.08 | 15 | 15 |
| $\mathbf{5}$ | 3.45 | 14.32 | 6.94 | 11.42 | 15.57 | 33.08 | 15 | 15 |
| $\mathbf{6}$ | 3.45 | 14.32 | 6.94 | 11.41 | 15.57 | 33.08 | 15 | 15 |
| $\mathbf{7}$ | 3.45 | 14.32 | 6.94 | 11.41 | 15.57 | 33.08 | 15 | 15 |

1 odel 18c - Reducing sample size on length composition data

Population Male Mature Biomass

Population mature male biomass comparison between models 13 and 18c.

Population Female Mature Biomass

. Population mature female biomass comparison between models 13 and 18c.

Survey Male Mature Biomass

. Fit to mature male biomass comparison between models 13 and 18c.

Survey Female Mature Biomass

1. Fit to mature female biomass comparison between models 13 and 18 c

Recruitment

2. Recruitment estimates for models 13 and 18c. for immature crab, differences in growth and probability of maturing

4. Probability of maturing for males for M odels 13 and 18 c .

5. Probability of maturing for females for M odels 13 and 18 c.

6. Fit to male discard biomass in the directed fishery for M odels 13 and 18c.

Female Snow Crab Growth

7. Fit to female growth for Models 13 and 18 c .

Male Snow Crab Growth

8. Fit to male growth for M odels 13 and 18c.

M odel 18c parameters

Male q	13	18 c
Survey period 1	1	1
Survey period 2	0.75	0.89
Survey period 3	0.62	0.69
Female q		
Survey period 1	0.87	1.63
Survey period 2	0.65	1.45
Survey period 3	0.54	1.12
immature M	0.38	0.13
male M	0.27	0.24

143. Observed and predicted mean length for immature females (top left), e females (bottom left), immature males(top right) and mature males (bottom right) odels 13 and 18c. M ean length values are used in the estimation of Francis effective N.

Model Stability

M odel can be stabilized by fixing some growth parameters (models $0 \mathrm{a}, 1 \mathrm{a}$ and 1 b) or estimating single linear growth (models 8 and 8 a) Conflicts in the data for estimation of growth (survey length data want lower growth than growth data) increase instability M ore flexible model such as the snow crab model, where we are estimating a complex growth function, survey qs, natural mortalities, probability of maturing, etc., increases instability.

Number of jitter runs with the lowest likelihood (100 runs per model)

Finding the lowest likelihood is most important - use jittering Small gradients can occur for many likelihood values Gradient is not necessarily a good indicator of convergence- just because you have a small gradient doesn't mean you have the lowest likelihood
Within runs at the lowest likelihood parameter estimates and results with max gradients up to about 0.06 are the same
Select model with the lowest likelihood and lowest gradient from the jittered runs
Problems with parameters - look at parameters values by likelihood to see which parameters change the most
Examine parameters with highest gradients

For the snow crab model appears that 100 jitter runs are adequate, however, if there are only a few runs with the lowest likelihood woulc recommend doing more runs to make sure.
35 key parameters jittered gave same results as all parameters - once setup jittering all parameters same as doing 35 parameters

jeptember M odel Scenarios?

del scenarios for September - 0, 1, 4a, 9, 11 and 13.
uld introduce more stability by fixing some growth parameters and reasing weight on growth likelihood (depending on M odel scenario). ther sensitivity analysis?
d correlation between parameter values to the jittering. M ay increase number of runs that write the std file and/or converge to lowest lihood.

End

Parameter bounds

