BSAI skate complex

Olav A. Ormseth
Alaska Fisheries Science Center
NPFMC Groundfish Plan Team meeting, November 2018

overview

1) responses to Plan Team \& SSC comments
2) skate complex overview \& status
3) spatial distribution: Alaska \& big skate
4) incidental catches of skates
5) Alaska skate assessment
6) other skates assessment
7) harvest recommendations
8) alternative BMSY proxies for Alaska skate?

responses to comments

SSC 2016: "Re-evaluate the use of trawl survey data to apportion longline. The assessment uses trawl survey species composition to apportion Alaska skate from other skates caught in the longline fishery. Trawl species composition from a survey maybe quite different from species composition in the longline fishery. Speciation in the observer data has improved since the Ormseth and Matta (2007) paper referenced in the assessment. The author should compare the observer data from the longline fishery to the trawl survey catch to evaluate this assumption."

PT 2017: "The Team recommends that the author work with FMA and AKRO staff to investigate species composition."

PT 2017: "The Team requests that the author examine exploitation rates by species for the complex, in particular the endemic species in the Aleutian Islands (leopard and butterfly skates)."

Response: The assessment now uses observer data to estimate species composition of all BSAI skate catches, and the new estimates are used in the Alaska skate model and to estimate exploitation rates for all BSAI skate species.

responses to comments

PT 2018: "The Team recommends that, although this method appears to be a major improvement, the issue of how species composition may be affected by depth should be examined before the method is adopted. This could be addressed by a simple look at the observer data to see if depth-related differences in species composition exist. The November assessment should therefore include an examination of skate stratification by depth in the observer data."
SSC 2018: "The SSC agrees with the Team and recommends that, although this method appears to be an improvement, further investigation of how species composition is affected by depth should be examined before the method is adopted."

Response: Species composition of skates is highly stratified by depth, as described at length in the introductory section. Depth information is available for the observer data, but not for catch data from the CAS. The new method relies on identical stratification in both the observer and CAS datasets, so depth cannot be used as a stratum. NMFS statistical areas are largely depth-stratified and therefore serve as a reasonable proxy for depth. The majority (> 90\%) of skate catches occur in the catcher-processor (CP) sector, which has 100% observer coverage. As a result area-specific species composition from the observer data is consistently matched with are-specific catch estimates. In addition because there are species composition data from every haul there is actually no need for stratification beyond harvest sector and gear type, although the CP data were stratified by area to provide the highest spatial resolution.

responses to comments

Response continued: In the catcher vessel (CV) sector, because observer coverage is partial there is often a mismatch between area availability of species composition versus catch data (i.e. there is often catch data for an area with no corresponding species composition data). In the original analysis this problem was solved by not using area stratification and accepting a certain amount of error in the result (see Appendix 2). After discussions at the September Plan Team meeting, this decision was revisited and a solution was found by creating larger geographical strata for both datasets by aggregating statistical areas. Aggregations were based on similarity in depth and correspondence with observed skate distributions. This allowed complete matching between the datasets with a couple of minor exceptions. The result is improved, albeit only slightly different, estimates of skate species composition.

responses to comments

PT 2016: "Investigate appropriate Bmsy proxies for skates and relate the values to current harvest recommendations, for example, most elasmobranchs have Bmsy >= B50\%, less productive species have been documented to have Bmsy=B79\%. The BSAI skate species are likely between these two extremes."

Response: Alternative reference points for Alaska skate were explored using "proj". Results were not included in this report but will be presented to the Plan Team in November for discussion.

PT 2016: "Examine the utility of including IPHC and AFSC longline survey indices in both Model 14.2 and the random effects model for the Tier 5 species."

Response: Data from these surveys are limited to the EBS slope and Aleutian Islands, and depths greater than 200 m . In addition, species composition in the AFSC longline survey is only available starting in 2009 and Bering, Aleutian, and Alaska skate (3 of the most important species) are still reported in aggregate. Due to these limitations the surveys were not considered to be useful for inclusion in either the Stock Synthesis or RE modeling efforts. However, data from the AFSC longline survey has been included in the Tier 5 assessment section to provide additional information regarding trends in skate abundance.

responses to comments

PT 2016: "Expand on appendix 2 of the SAFE document by reconciling more explicitly the differences between the results of the 2013 and 2014 assessments with respect to the substantial decreases in FOFL and 2015 spawning biomass and the substantial increase in 2015 OFL."

Response: This analysis was not completed in time for inclusion in this report.

SSC 2016: "The assessment should incorporate relevant information pertaining to the relationship between water temperature and recruitment. Development time for some skate species is influenced by water temperature (i.e., warmer water results in shorter development periods). This may functionally affect recruitment trends and variability." Response: Previous versions of this report have discussed this issue, particularly in regard to embryo development time and the potential for temperature-driven changes in development time to influence apparent yearclass size (i.e. embryos deposited in different years may, as a result of different growth rates, emerge from eggcases at the same time). At this time however there is no realistic way to incorporate this possible effect into the Alaska skate assessment model. In addition, recruitment in the model is not linked to spawning biomass (i.e. it considers only deviations from an average level of recruitment).

BSAI species composition

BSAI biomass distribution

skate complex biomass - trawl surveys

skate complex abundance - AFSC longline survey

Alaska skate EBS/NBS distribution

movement of big skate into SEBS

movement of big skate into SEBS

BSAI skate catch - by area

BSAI skate catch - by target fishery

revised skate composition analysis

BSAI skate catch - species composition

BSAI skate catch species composition

Alaska skate assessment

- same model as in 2016 (14.2), no alternative models
- uses Stock Synthesis 3.23
- begins in 1950; most data begin 1999
- devs from average recruitment (h fixed at 1)
- fixed par: $M, L / W, L_{50 \%}, \sigma R, q$
- double-normal selectivity
- no age comps; age-length 2003, 2007-2009, 2015

Alaska skate assessment - catch

- 2 fisheries (longline \& trawl)
- 1954-1996: derived from "Other Species" catch
- 1997-2006: skate-specific catch, survey species composition
- 2007-2018: skate-specific catch, observer species composition

AK skate assessment

- results very similar to 2016 run
- fits not quite as good, mainly due to worse survey fit
- model estimates dome-shaped selectivity for survey and both fleets

model number	14.2	14.2
Description	2016 run	$\mathbf{2 0 1 8}$ run
likelihood components		
survey	-13.9165	-7.56
length comps	100.518	117.81
LAA	156.543	158.94
recruitment	-41.0821	-42.35
total	202.087	226.86
\# of parameters estimated	91	94
ln (Rzero)	10.12	10.11
CV	0.004	0.037
unfished spawning biomass_	334,622	331,810
CV	0.043	0.040
unfished recruitment	24,738	24,585
CV	0.040	0.037
RMSE_survey	0.141	0.147
\% within survey CI	70.6%	63.9%
correlation obs-pred	0.764	0.761
mean longline input N	77.3	77.8
mean longline eff N	1000.4	884.2
mean longline effN/N	12.94	11.54
mean trawl input N	54.7	53.8
mean trawl eff N	705.4	896.9
mean trawl effN/N	12.89	17.00
mean survey input N	200.0	200.0
mean survey eff N	887.6	870.1
mean survey effN/N	4.44	4.35
mean LAA N	223.8	223.8
mean LAA eff N	2976.2	3035.3
mean LAA eff N/N	13.30	14.32

AK skate model fits -

length at age

AK skate model fits - survey length comp

length comps, whole catch, SURV

- model has trouble fitting largest mode...except in 2018

AK skate model fits - LL length comp

AK skate model fits - trawl length comp

AK skate model - selectivity

AK skate model fits - survey biomass

AK skate model retrospective analysis

AKSK model results - spawning biomass

AKSK model results - recruitment

AKSK model results - fishing mortality

AKSK model results - numbers at age

AKSK model results - phase plane

AK skate - harvest recs

Quantity	As estimated or specified last year for: 2018 2019		As estimated or recommended this year for: 2019* 2020*	
M (natural mortality rate)	0.13	0.13	0.13	0.13
Tier	3a	3a	3a	3a
Projected total (age 0+) biomass (t)	506,921	487,035	504,551	481,653
Female spawning biomass (t) Projected				
Projected B	110,180 180,556	$\begin{aligned} & 110,159 \\ & 180556 \end{aligned}$	115,957 177,761	$\begin{aligned} & 114,010 \\ & 177761 \end{aligned}$
$\mathrm{B}_{40 \%}$	72,222	72,222	71,105	71,105
$\mathrm{B}_{35 \%}$	63,195	63,195	62,217	62,217
$\mathrm{F}_{\text {OfL }}$	0.092	0.092	0.094	0.094
$\mathrm{maxF}_{\text {ABC }}$	0.079	0.079	0.081	0.081
$\mathrm{F}_{\text {ABC }}$	0.079	0.079	0.081	0.081
OFL (t)	39,162	37,365	39,173	36,965
maxABC (t)	33,731	32,183	33,730	31,829
ABC (t)	33,731	32,183	33,730	31,829
Status	As determined last year for: 20162017		As determined this year for:	
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n/a	No	n/a	No

"other skates" assessment

- change in RE methodology
- old: aggregate single "other skate" model run for each survey
- new: separate run for each species in each survey
- uncommon species run in aggregate as "minor species" group
- individual results aggregated to get biomass estimate for complex
- Alaska/leopard skate survey biomass "corrected" for species ID issues
- analysis of abundance trends \& exploitation rates

"other skate" biomass - EBS shelf

"other skate" biomass - EBS slope

"other skate" biomass - EBS slope

"other skate" biomass - Aleutian Islands

"other skate" biomass - Aleutian Islands

"other skate" exploitation rates

	2010	2012	2016
Alaska	0.035	0.050	0.041
Aleutian	0.040	0.043	0.026
Bering	$\mathbf{0 . 1 1 9}$	$\mathbf{0 . 1 3 3}$	$\mathbf{0 . 1 8 8}$
big	$\mathbf{0 . 1 7 9}$	$\mathbf{0 . 8 1 2}$	$\mathbf{0 . 1 0 9}$
butterfly	0.001	0.000	0.000
Commander	0.047	0.036	0.033
deepsea	0.000	0.000	0.001
longnose	0.000	$\mathbf{0 . 1 5 5}$	0.000
mud	0.086	0.042	0.022
roughtail	0.009	0.004	0.002
whiteblotched	0.017	0.029	0.045
whitebrow	0.012	0.019	0.014

- for all species: used survey biomass estimates in 2010, 2012, 2016
- Bering \& big skate > 0.1; further explored using RE output

Bering skate exploitation rates

			2007	2008	2009	2010	2011	2012	2013	2014	2015
Bering		biomass	13,312	13,498	13,939	14,082	14,053	14,315	14,514	14,704	14,726
	BSAI	catch	742	2,270	1,662	1,762	1,870	1,832	1,741	2,303	3,123
		exploitation rate	$\mathbf{0 . 0 5 6}$	$\mathbf{0 . 1 6 8}$	$\mathbf{0 . 1 1 9}$	$\mathbf{0 . 1 2 5}$	$\mathbf{0 . 4 4 6}$	3,058			
			$\mathbf{0 . 1 3 3}$	$\mathbf{0 . 1 2 8}$	$\mathbf{0 . 1 2 0}$	$\mathbf{0 . 1 5 7}$	$\mathbf{0 . 2 1 2}$	$\mathbf{0 . 1 6 6}$	$\mathbf{0 . 1 9 7}$		

- rates generally higher than 0.1
- but:
- biomass is increasing
- new year class(es) coming in
- M higher than 0.1 ?
- retention rate lower than for other skate species

Bering skate length comps

survey
fishery

big skate exploitation rates

big	BSAI	biomass	2,493	3,124	3,837	3,890	3,957	3,472	4,438	5,949	10,153	12,105	15,346
		catch	422	316	348	729	612	1,102	1,331	1,396	1,210	1,307	1,776
		exploitation rate	0.169	0.101	0.091	0.187	0.155	0.317	0.300	0.235	0.119	0.108	0.116
big	GOA	biomass	41,449	42,080	42,921	44,893	47,669	45,684	44,091	44,683	45,680	41,448	37,975
		catch	1,594	1,418	2,082	2,517	2,312	2,006	2,520	1,671	1,519	2,100	1,510
		exploitation rate	0.038	0.034	0.049	0.056	0.048	0.044	0.057	0.037	0.033	0.051	0.040
big	$\begin{array}{r} \text { BSAI + } \\ \text { GOA } \end{array}$	biomass	43,943	45,204	46,758	48,783	51,626	49,155	48,529	50,632	55,833	53,553	53,321
		catch	2,016	1,734	2,429	3,246	2,924	3,108	3,851	3,067	2,728	3,407	3,286
		exploitation rate	0.046	0.038	0.052	0.067	0.057	0.063	0.079	0.061	0.049	0.064	0.062

- EBS big skates likely part of GOA population
- combined BSAI+ GOA exploitation <0.1

harvest recommendations

other skate harvest recommendations				
	As estimated or specified last year for:			
	2018	As estimated or recommended this year for: Quantity		2019

aggregate harvest recommendations for the BSAI complex					
	As estimated or			As estimated or	
	specified last year for:	recommended this year for:			
	2018	2019	2019	2020	
Quantity	49,063	46,583	51,152	48,944	
ABL (t)	41,144	39,008	42,714	40,813	

alternative BMSY proxies for Alaska skate

1) used 'proj' model
2) manipulated proxy levels for OFL and ABC, also future catch
3) ran model to get OFL, ABC, FOFL, FABC for different proxies

- $\mathrm{B}_{\text {MSY }}=\mathrm{B}_{35 \%}-\mathrm{B}_{80 \%}$ in 5% increments

4) analyzed biomass projections for three catch scenarios
a) catch $=$ max ABC except 2018-2020 (alt 2)
b) constant F : $F=$ average F 2014-2018 (alt 3)
c) constant catch: catch in all years set at 2018 level

harvest specs for alternative BMSY proxies

biomass projections

