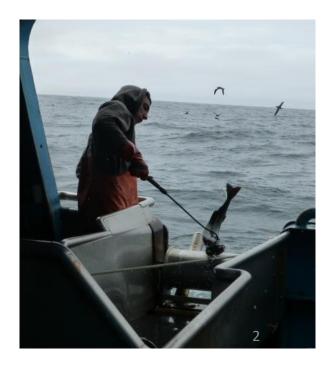
Sablefish Growth

Katy B. Echave, AFSC/ABL



Page 1 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Background

"Consider including time-varying or cohortspecific maturity curves, and/or **weight-at-age relationships** if supported by data."

December 2020, SSC

Background

- Last update to growth in the assessment was in 2008 (Hanselman et al. 2007)
 - Updated growth information was divided into 2 time periods based on a change in sampling design: 1981-1993 and 1996 2004

Parameter name	Valu	Source	
Time period	1960 - 1995	1996 - current	
Maturity-at-length - females	$m_a = 1/(1+e)$	Sasaki (1985)	
Maturity-at-length - males	$m_a = 1/(1+e)$	Sasaki (1985)	
Maturity-at-age - females	$m_a = 1/(1+e^{-C})$	Sasaki (1985)	
Length-at-age – females	$\overline{L}_a = 75.6(1 - e^{-0.208(a+3.63)})$	$\overline{L}_a = 80.2(1 - e^{-0.222(a+1.95)})$	Hanselman et al. (2007)
Length-at-age - males	$\overline{L}_a = 65.3(1 - e^{-0.227(a+4.09)})$	$\overline{L}_a = 67.8(1 - e^{-0.290(a+2.27)})$	Hanselman et al. (2007)
Weight-at-age - females	$\ln \hat{W}_a = \ln(5.47) + 3.02$	$l\ln(1-e^{-0.238(a+1.39)})$	Hanselman et al. (2007)
Weight-at-age – males	$\ln \hat{W}_a = \ln(3.16) + 2.96$	Hanselman et al. (2007)	

 Several above avg. year classes (density dependence?) and warming conditions have occurred since last update of growth

Objectives

Have there been temporal changes in sablefish growth?

If so, are they significant and should they be accounted for in the assessment?

Temporal Change: Annual LVB growth curves

Fit to randomly collected age-weight-length data from 1996 2019 LL surveys, using non linear least squares.

Length at age

$$L_a = L_{\infty} \left(1 - e^{-K(a-t_0)} \right) + \varepsilon_a$$

Length-weight

$$\widehat{W} = \alpha L^{\beta} \varepsilon$$

Weight at age

$$\ln \widehat{W}_a = \ln W_{\infty} + \beta \ln \left(1 - e^{-K(a - t_0)}\right) + \varepsilon_a$$

(Von Bertalanffy 1938)

- 2. Perform *K* means cluster analysis on annual growth parameters (Kaufman and Rousseeuw 1990).
- Years that are clustered in the same group have similar growth.

Step 1. Determine the recommended number of clusters to be used by calculating the average silhouette width.

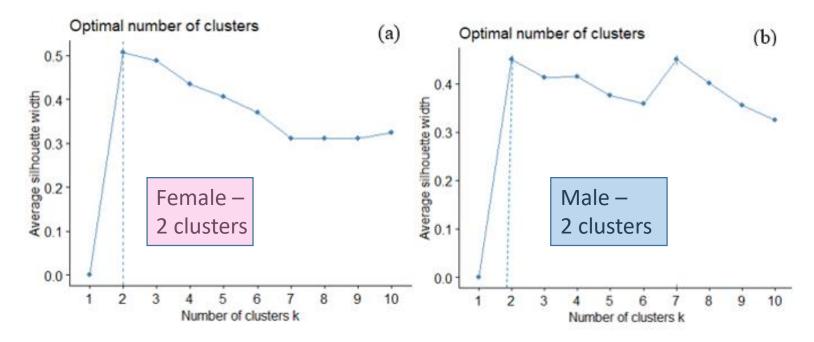


Figure 1.1. Calculated average silhouette width (y axis) per number of clusters (x axis) for females (a) and males (b). Dotted lines represent recommended number of clusters.

Step 2. *Define the clusters* using the Hartigan-Wong algorithm (1979)

(4)
$$W(C_k) = \sum_{x_{i \in C_k}} (x_i - \mu_k)^2$$

Each observation (x_i) is assigned to a given cluster C_k such that the sum of squares distance of the observation to their assigned cluster centers (μ_k) is minimized

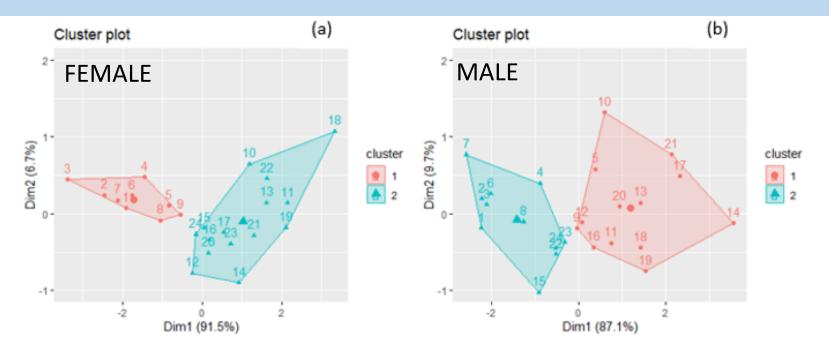


Figure 1.2. Final cluster groupings of annual growth curves for female (a) and male (b) sablefish in Alaska waters. 1996 = 1, 1997 = 2, 1998 = 3, and so on.

<u>Female:</u> Cluster 1: 1996-2004 Cluster 2: 2005-2019

Male:

Cluster 1:1996-1999, 2001-2003, **2010**, **2017-2019** Cluster 2: **2000**, 2004-2009, 2011-2016

Temporal Change: Results

The following were the time periods tested for significant growth changes for both males and females.

- 2 CLUSTERS/TIME PERIODS
- 1996 2004
- 2005 2019

Growth Model Testing

General Model: Separate parameter estimates for each time period.

$$L_a = L_{\infty}[Year](1 - e^{-K[Year](t - t_0[Year])})$$

One parameter in common between time periods:

Common L_{∞} Model Common K Model Common t_0 Model

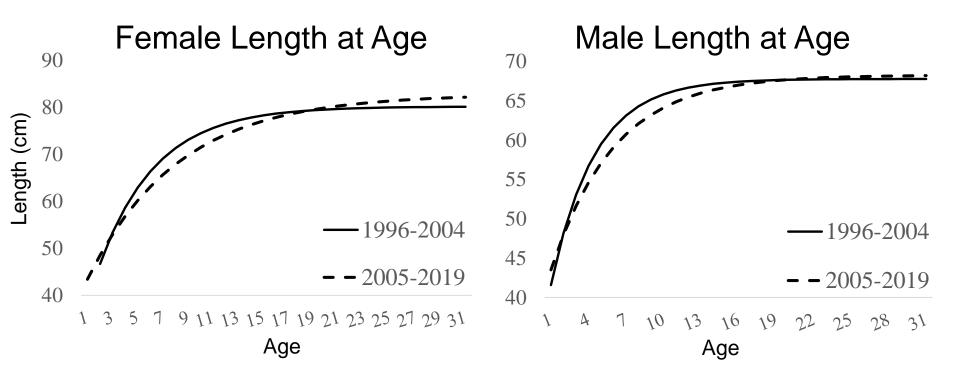
Two parameters in common between time periods:

Common L_{∞} and K Model Common L_{inf} and t_0 Model Common K and t_0 Model

Common Model: Same parameter estimates for all time periods:

$$L_a = L_{\infty}(1 - e^{-K(t-t_0)})$$

Galucci and Quinn II, Ritz and Streibig 2008

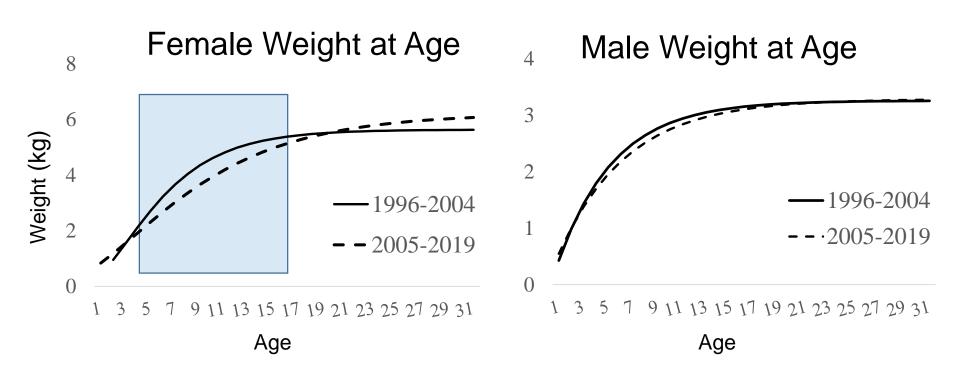

Length Model Results

Model	df	AIC:	AIC:
		Female	Male
General Model	7	99,457*	77,213*
Common L_∞ Model	6	99,504	77,218
Common t_0 Model	6	99,615	77,265
Common K Model	6	99,668	77,305
Common L_{∞} and K Model	5	99,747	77,350
Common L_∞ and t_0 Model	5	99,617	77,268
Common K and t_0 Model	5	99,684	77,375
Common Model	4	100,158	77,739

Length Model Results

	Females			Males		
	1996-2004	2005-2019		1996-2004	2005-2019	
L∞	80.2 (0.221)	82.8 (0.29)		67.8 (0.12)	68.3 (0.13)	
k	0.22 (0.005)	0.14 (0.002)		0.29 (0.008)	0.20 (0.004)	
t。	-1.9 (0.119)	-4.3 (0.13)		-2.3 (0.16)	-4.1 (0.15)	
n	5,767	9,591		4,889	8,503	

Length Model Results


Weight Model Results

Model	df	AIC: Female	AIC: Male
General Model	7	44,475*	24,359
Common W_{∞} Model	6	44,566	24,358*
Common t_0 Model	6	44,570	24,378
Common K Model	6	44,740	24,445
Common W_{∞} and K Model	5	44,820	24,534
Common W_{∞} and t_0 Model	5	44,595	24,830
Common K and t_0 Model	5	44,795	24,531
Common Model	4	45,264	24,962 15

Weight Model Results

	Ferr	nales	Males			
	1996-2004 2005-2019		1996-2004	2005-2019		
W_{∞}	5.6 (0.05)	6.2 (0.08)	3.3 (0.02)	3.2 (0.02)		
k	0.24 (0.005)	0.14 (0.003)	0.34 (0.01)	0.23 (0.005)		
t _o	-1.34 (0.07)	-4.23 (0.08)	-1.53 (0.09)	-3.25 (0.15)		
n	5,767	9,591	4,889	8,503		

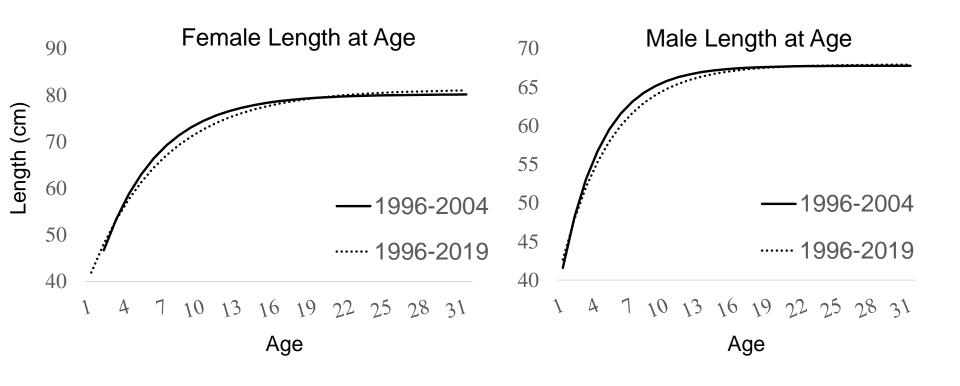
Weight Model Results

Results

There have been temporal changes in the growth of both male and female sablefish: an obvious change occurred after 2004 for females, and a less obvious change around this time for males.

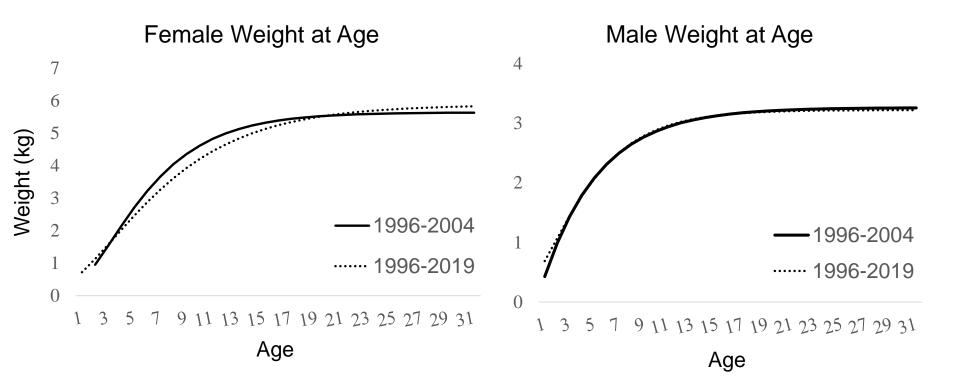
Sablefish are growing to a larger maximum size, but at a slower rate, which translates to smaller sized fish during the critical early ages when fish are reaching maturity.

However....Final Recommendation


Recommend updating size at age parameters with all available post-1996 data: 1981-1993 1996-2019

Final Recommendation – Length at Age

		1981-1993	1996-2004	2005-2019	1996-2019
	L_∞	75.5 (0.460)	80.2 (0.221)	82.8 (0.29)	81.2 (0.19)
Female	k	0.208 (0.018)	0.22 (0.005)	0.14 (0.002)	0.17 (0.003)
	t _o	-3.62 (0.523)	-1.9 (0.119)	-4.3 (0.13)	-3.28 (0.09)
	n	31	5,767	9,591	15,358
L∞		65.2 (0.341)	67.8 (0.12)	68.3 (0.13)	67.9 (0.09)
Male	k	0.2 (0.029)	0.29 (0.008)	0.20 (0.004)	0.23 (0.003)
Male	t _o	-4.09 (0.936)	-2.3 (0.16)	-4.1 (0.15)	-3.3 (0.11)
	n	30	4,889	8,503	13,392 20


Final Recommendation – Length at Age

Final Recommendation – Weight at Age

		1996-2004	2005-2019	1996-2019
	W_{∞}	5.6 (0.05)	6.2 (0.08)	5.87 (0.04)
Female	k	0.24 (0.005)	0.14 (0.003)	0.17 (0.002)
	t _o	-1.34 (0.07)	-4.23 (0.08)	-2.98 (0.06)
	n	5,767	9,591	15,358
	W∞	3.3 (0.02)	3.2 (0.02)	3.2 (0.01)
Male	k	0.34 (0.01)	0.23 (0.005)	0.27 (0.002)
	t _o	-1.53 (0.09)	-3.25 (0.15)	-2.41 (0.07)
	n	4,889	8,503	13,392

Final Recommendation – Weight at Age

Final Recommendation

$$\underbrace{1981 - 1993} \underbrace{1996 - 2019}_{\underline{Length-at-Age: Female}} \\ L_a = 75.5(1 - e^{-0.208(a+3.62)}) + \varepsilon_a \qquad L_a = 81.2(1 - e^{-0.17(a+3.28)}) + \varepsilon_a \\ \underbrace{\underline{Length-at-Age: Male}}_{La} \\ L_a = 65.2(1 - e^{-0.2(a+4.09)}) + \varepsilon_a \qquad L_a = 67.9(1 - e^{-0.23(a+3.3)}) + \varepsilon_a \\ \underbrace{\underline{Weight-at-Age: Female}}_{\ln \widehat{W}_a} = \ln(5.87) + 3.02\ln(1 - e^{-0.17(a+2.98)}) + \varepsilon_a \\ \underbrace{\underline{Weight-at-Age: Male}}_{\ln \widehat{W}_a} = \ln(3.2) + 3.02\ln(1 - e^{-0.27(a+2.41)}) + \varepsilon_a$$

