# Preliminary age structured assessment model of the Pacific cod stock in the Aleutian Islands 2019

Ingrid Spies, Grant G. Thompson, Steve Barbeaux, and James N. Ianelli

# Cod catch in the Bering Sea and Aleutian Islands, 1964-2019



### Cod catch in the Aleutian Islands, 1964-2019



# Catch (black line) with Tier 5 ABC and OFL, 1990-2018



# The initial age structured model presented by Grant Thompson in 2012

- a single season,
- one fishery,
- Al-specific weight-length parameters,
- 1 cm length bins to 150cm,
- fishery selectivity constant over time,
- forced asymptotic fishery selectivity,
- survey samples age 1 fish at true age 1.5,
- ageing bias not estimated,
- catchability (q) tuned to match value from archival tagging data relevant to GOA/AI survey net.

# Summary of SSC, Plan Team comments to initial model(s).

- In 2013 the SSC supported a model with the development of two models 1. fixed M fixed and q fixed at 1 and freely estimated selectivity. 2. M fixed, q estimated with a prior, and asymptotic survey selectivity.
- In 2014 the Plan Team recommended only data from 1991 onward.
- In 2015 the Plan Team did not consider any of the age structured models credible but encouraged further work on an age-structured model.

### Model features (2019)

- One fishery, one gear type, one season per year (single sex).
- Single growth curve: length at age, weight at age.
- Internal estimation of fishing mortality, catchability, and selectivity parameters, growth.
- Parameters constant over time (annually varying recruitment and fishing mortality).
- Recruitment mean with normally distributed deviations.
- An ageing error matrix for ages 1 through 10.
- Logistic age-based selectivity for both the fishery and survey.
- Natural mortality was fixed in the model, and estimated with input from likelihood profiles performed using the model.
- Survey catchability estimated within the model as a constant multiplier on survey selectivity (fishery catchability fixed at 1).

# Length frequencies for Pacific cod caught in the Aleutians by fishery (1990-2018) and survey (1991-2018)



# Proportion of fishery lengths taken by month for each gear type, 1990-2018



# Length frequency by age of cod collected from surveys from 1990-2018



#### Data used in the model

| Source                 | Type             | Years                                                                                                     |
|------------------------|------------------|-----------------------------------------------------------------------------------------------------------|
| Fishery                | Catch biomass    | 1990-2018*                                                                                                |
| Fishery                | Size composition | 1990-2018                                                                                                 |
| AI bottom trawl survey | Biomass estimate | 1991, 1994, 1997, 2000, 2002, 2004,                                                                       |
| AI bottom trawl survey | Age composition  | 2006, 2010, 2012, 2014, 2016, 2018<br>1991, 1994, 1997, 2000, 2002, 2004,<br>2006, 2010, 2012, 2014, 2016 |

# Age data used in the model (2018 data will be available for 2019).

| Year | Number aged |
|------|-------------|
| 1991 | 919         |
| 1994 | 1,174       |
| 1997 | 845         |
| 2000 | 828         |
| 2002 | 1,270       |
| 2004 | 775         |
| 2006 | 754         |
| 2010 | 673         |
| 2012 | 598         |
| 2014 | 557         |
| 2016 | 681         |
|      |             |

- Growth estimated from length and age data from Al surveys from 1991 to 2016.
- All otoliths were aged after 2007, as there was a shift in our understanding of the first two checks deposited at early ages in Pacific cod.
- Prior to 2007 they were thought to be true annuli, but subsequently determined not to be.

### Length at age

Stratified otolith collections are typically adjusted for survey length frequencies for which there is typically much more data, which are assumed to be a better representation of length frequencies in the population than lengths of the aged fish.

$$P(Age|Length) = P(Length|Age) * P(Age)/P(Length)$$

There are 489,000 length observations from surveys 1991-2016.

| Input data                | $S_{inf}$ | K                    | $t_0$    |
|---------------------------|-----------|----------------------|----------|
| Corrected Length at age   | 106.3310  | $0.18587 \\ 0.15883$ | -0.07247 |
| Uncorrected length at age | 124.93646 |                      | -0.09981 |

Length frequencies for Pacific cod caught in the Aleutians by fishery (1990-2018) and survey (1991-2018)



# Otolith sampling methodology for Al surveys 1991-2018

| Year | Otolith sampling method                                        |
|------|----------------------------------------------------------------|
| 1991 | Stratified random                                              |
| 1994 | Sub-sampled from original random sample and stratified by size |
| 1997 | Stratified by size                                             |
| 1997 | Stratified random                                              |
| 1997 | Selectively sampled                                            |
| 1997 | Sub-sampled from original random sample and stratified by size |
| 2000 | Stratified by size                                             |
| 2002 | Stratified by size                                             |
| 2004 | Sub-sampled from original random sample and stratified by size |
| 2006 | Stratified sex/length/area                                     |
| 2010 | Stratified sex/length/area                                     |
| 2012 | Stratified sex/length/area                                     |
| 2014 | Stratified sex/length/area                                     |
| 2016 | Randomly selected                                              |
| 2016 | Stratified sex/length/area                                     |
| 2018 | Randomly selected                                              |

Raw lengths at age and vonBertalanffy growth curves (corrected vs. not for population length frequencies)



### Length-weight relationship for Al Pacific cod



### Length – age conversion matrix for Al Pacific cod



#### Maturity estimation

- Stark (2007) 129 female fish from Unimak Pass in February 2003.
  - 50% maturity at 4.88 years, 58 cm.
- 2,098 observer records of maturity at length collected since 2008 during January-March.
  - Maturity at length relationship fit to the data.
  - Converted to maturity at age using length age
  - conversion matrix.

$$Maturity_{age} = \frac{1}{1 + e^{-(A + B*age)}}$$

| Year | Number of records |
|------|-------------------|
| 2008 | 1185              |
| 2009 | 35                |
| 2010 | 156               |
| 2011 | 80                |
| 2012 | 151               |
| 2013 | 61                |
| 2014 | 128               |
| 2015 | 78                |
| 2016 | 79                |
| 2017 | 42                |
| 2018 | 26                |
| 2019 | 77                |

# Proportion mature by age, using Stark (2007) and observer maturity at length data



# Model estimates of selectivity for survey and fishery



Likelihood profile for natural mortality for fishery length, recruitment, survey biomass, and age likelihood components.



#### MCMC estimate of M: 0.67



### Estimation of M, natural mortality

- Fishery data ~0.3
- Survey data >>0.4
- MCMC: 0.67.

- Current Tier 5 methodology uses M=0.34.
- To balance the data and current methods, I started with M=0.4.

# Model estimates for total (age 1+) biomass, FSB 1990-2019. Reference points for B40% and B35% are shown.



### Total biomass and female spawning biomass for 2012 age structured Al assessment.



Figure 2.2.12—Biomass time trends (age 0+ biomass, female spawning biomass, survey biomass) of EBS Pacific cod as estimated by Model 3. Spawning biomass and survey biomass show 95% CL



### Results – fit to age frequencies



Fit to Aleutian Islands survey biomass



Retrospective plot of female spawning biomass. Retrospective runs obtained by removing 2 years of data at a time through



Relative differences in estimates of spawning biomass between 2018 model and retrospective model run 2018 -2008.



Catches, and Tier 5 estimates of ABC, OFL, and 2019 ABC, OFL



# Phase plane diagram from 2012 Al age structured model



# Phase plane diagram from 2012 Al age structured model



Figure 2.2.15—Trajectory of fishing mortality and female spawning biomass as estimated by Model 3, 1977-present (magenta square = 2012). These results are from SS, and are not exactly comparable to results obtained by the standard projection program.

### Summary of results

|                                       | As estimated or specified |      | As estimated or recommended |           |
|---------------------------------------|---------------------------|------|-----------------------------|-----------|
|                                       | last year for:            |      | this year for:              |           |
| Quantity                              | 2018                      | 2019 | 2019                        | 2020      |
| M (natural mortality rate)            | -                         | -    | 0.4                         | 0.4       |
| Tier                                  | -                         | -    | 3b                          | 3b        |
| Projected total (age 1+) biomass (t)  | -                         | -    | 127,419 t                   | 127,751 t |
| Projected female spawning biomass (t) | -                         | -    | 35,939 t                    | 34,348 t  |
| $B_{100\%}$                           | -                         | -    | 96,132 t                    | 96,132 t  |
| $B_{40\%}$                            | -                         | -    | 38,453 t                    | 38,453 t  |
| $B_{35\%}$                            | -                         | -    | 33,646 t                    | 33,646 t  |
| $F_{OFL}$                             | -                         | -    | 0.880                       | 0.880     |
| $maxF_{ABC}$                          | -                         | -    | 0.686                       | 0.686     |
| $F_{ABC}$                             | -                         | -    | 0.686                       | 0.686     |
| OFL                                   | -                         | -    | 27,343 t                    | 24,645 t  |
| maxABC                                | -                         | -    | 22,620 t                    | 20,331 t  |
| ABC                                   | -                         | -    | 22,620 t                    | 20,331 t  |
| Status                                | 2016                      | 2017 | 2017                        | 2018      |
| Overfishing                           | -                         | -    | No                          | n/a       |
| Overfished                            | -                         | -    | n/a                         | No        |
| Approaching overfished                | -                         | -    | n/a                         | No        |

<sup>\*</sup>Projections are based on annual catches of 20,414 t for 2019 and the 2019 ABC for 2020.



### Results – likelihood components

| Likelihood Component | Value   |
|----------------------|---------|
| Recruitment          | 5.695   |
| Survey age           | 105.412 |
| Survey biomass       | 16.138  |
| Catch                | 0.002   |
| Fishery length       | 41.82   |
| Total                | 169.066 |

# Coefficient of variation fitted to age, based on raw data (black points)

