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THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PREDISSEMINATION PEER REVIEW UNDER 
APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY NOAA 

FISHERIES/ALASKA FISHERIES SCIENCE CENTER AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY 
DETERMINATION OR POLICY 

Executive Summary 
This report summarizes the results of work since September 2017 to improve the Tanner crab stock 
assessment, as well as address CPT and SSC comments from previous meetings. Several alternative 
models to be evaluated for the Fall 2018 assessment are proposed for consideration by the CPT and SSC. 

Responses to recent CPT/SSC comments 

Jan. 2018 Modeling Workshop 
Comment: The CPT recommends that the author further develop the analysis (regarding trawl sampling 
efficiency to account for station-level effects) and to identify research or data needs that would be 
informative. 
Response: Time has not permitted any further work on this issue at this time. 

Comment: The CPT recommends as a next step that assessment authors do the dynamic B0 calculation 
and come forward in May with results for comparison. 
Response: The calculations necessary to compute dynamic B0 have been added to the TCSAM02 code. An 
example result is presented in this report. 

Comment: There was concern from the CPT that classification error (e.g., mature crab incorrectly 
classified as immature [on the basis of CH:CW relationships]) for the maturity relationship established 
from the 2017 data was unknown and could not be incorporated into the model. A sensitivity analysis 
would need to be performed on the 2017 data analysis to determine the possible extent of classification 
error. 
Response: Time has not permitted further work on this issue. It is unclear, however, how this analysis 
could proceed without histological verification of maturity to determine the classification error rate. Such 
data was not collected. 

Comment: The CPT recommends that assessment authors conduct a retrospective analysis (for the 
terminal year for recruitment averaging) for the May 20218 CPT meeting. 
Response: This issue is addressed in this report. 

Comment: The CPT requested for the May 2018 meeting that assessment authors evaluate the impacts 
associated with discontinuing the collection of information on legal retention status by crab observers. 
The CPT also recommended that authors outline how legal not-retained information is used or addressed 
in stock assessments. 
Response: Estimated total catch, based on at-sea crab observer sampling, is fit in the Tanner crab 
assessment model, as is landed (retained) catch. Legal retention status by crab observers is not used in 
the model. 
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Comment: The CPT recommended a further discussion on data weighting once the current methods used 
by the different authors are clear. The CPT recommended that authors use the Francis method first and 
then consider other approaches as necessary. 
Response: Re-weighting algorithms based on the Francis and McAllister-Ianelli methods for size 
composition data have been implemented in TCSAM02. Preliminary results from applying these methods 
are discussed in this report. Briefly, though, the Francis method failed to converge in 5 iterations and 
substantially down-weighted the size composition data. The McAllister-Ianelli methods successfully 
converged in 5 iterations for most size composition data, but with the effect of up-weighting several 
datasets. 

Oct. 2017 SSC Meeting 
Comment: The SSC noted that several concerns remain (with the Tanner crab assessment), such as 
parameters hitting bounds and consistent overestimation of large male abundance. The SSC recommends 
a careful diagnosis of all parameters hitting bounds in this model with specific attention to whether those 
bounds are biologically meaningful, whether a reparameterization might help, whether there is prior 
information or auxiliary data that could be informative, and whether the parameter is even estimable 
given the data and model framework. 
Response: Parameter specification in TCAM02 has been modified to incorporate parameter re-scaling 
using a control file, which will speed testing of some reparameterization schemes. Several of the 
parameters that hit their bounds are estimated on the logit-scale (e.g., those related to the size-specific 
probability of molt-to-maturity), with the arithmetic scale bounds corresponding to 0 or 1. One practical 
solution for these parameters would be to fix them rather than estimate them. Others are selectivity-
related parameters. Several alternative selectivity functions have been added as options to TCSAM02, but 
there has not been time to explore their possible use yet. 

Comment: Chronic overestimation of large males in the stock assessment was again discussed by the 
SSC. The SSC wonders whether retention could be related to temporal changes in size at maturity, as 
shell condition may affect marketability. 
Response: Selectivity and retention in the directed fishery are currently modeled as the same for new shell 
and old shell males. However, legal new shell males are generally favored over old shell crab and the 
industry has some ability to avoid continuing to fish on aggregations of old shell crab. This would suggest 
that selectivity and retention should be estimated separately for new shell and old shell males. However, 
this possibility remains to be explored. 

Comment: The SSC expressed some concern about the apparent poorer reproductive condition of female 
Tanner crab in the east compared to the west. The SSC would appreciate some analysis/discussion of the 
evidence for or against [several suggested] alternatives in next year’s assessment. 
Response: This issue has not yet been dealt with. 

Sept. 2017 CPT Meeting 
Comment: The CPT recommended that both the Francis and McAllister-Ianelli methods for re-weighting 
input sample sizes for size composition data should be evaluated. 
Response: Model scenarios that used both methods to re-weight size composition data were included in 
this report. See the response to the comment from the Modeling Workshop above. 

Comment: The CPT recommended that a full evaluation of fits to growth data needs to be undertaken 
with a range of likelihood weights to evaluate the impacts on model results. 
Response: In the 2017 assessment, it was found that increasing the weight on fitting the growth data in 
the model by a factor of 20 led to convergence issues with the model. This report includes scenarios in 
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which the weight on the growth data in the likelihood was increased by a factor of 5, which did not lead 
to convergence issues. Results are discussed more fully in the report. 

Comment: The CPT recommended considering several approaches to dealing with parameters hitting 
their bounds, including reparameterization, adding priors to poorly-estimated parameters, or simply 
reducing the number of parameters being estimated.  
Response: A flexible approach to reparameterization (via a control file) has been implemented in 
TCSAM02. Model scenarios in which several bounded parameters were transformed to logit scales for 
estimation were addressed, but this did not always eliminate the problem. Model scenarios in which 
several parameters at bounds were fixed rather than estimated were also considered. A new selectivity 
function option was implemented (a half-normal function), but scenarios that utilized it were not included 
in this report. 

Comment: The CPT recommended that lognormal priors with the median equal to the prior value should 
be evaluated for natural mortality parameters. 
Response: This has not yet been addressed. 

Comment: The CPT recommends that addressing the issue that the model overpredicts the abundance of 
large males in the NMFS trawl survey should be a priority for future assessments. 
Response: It was hoped that including male maturity ogive data in the model fitting process would 
resolve this issue, but it has not. CPT suggestions that the growth increment at terminal molt may be 
different from prior molts or that natural mortality of old males increases with age will be addressed in 
the future. 

Comment: The CPT requested that the issue of whether or not to include recruitment estimated for the 
final year in the calculation of average recruitment for BMSY should be addressed. 
Response: A retrospective analysis of recruitment patterns and averaging time periods is included in this 
report. 

Comment: A potential refinement to Model B2b would be to allow annual variation in retention during 
the 1991-1996 period only. 
Response: This suggestion has not yet been addressed. 
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1. Introduction 
Recent developments in the Tanner crab stock assessment model are discussed in Section 2. These 
developments included incorporating male maturity ogive data into the model fitting process, new growth 
parameterizations, new parameter scaling options, a new approach to “devs” vectors, a new likelihood 
component for recruitment, and the addition of dynamic B0 calculations. Other issues are discussed in 
Section 3, including a retrospective recruitment analysis to inform the time period over which to calculate 
average recruitment for use in status determination and OFL setting, results for a dynamic B0 calculation, 
bootstrapped effective sample sizes for NMFS size composition data, and NMFS survey catchability for 
males and females at small sizes. Results from a large set of potential model scenarios for the fall 
assessment are discussed in Section 4, while recommendations for a few scenarios to be carried over to 
the fall assessment are made in Section 5. 

2. Assessment model development 

2.1 Male maturity data 
For Chionoecetes spp. males, the terminal molt typically involves a change in the allometric relationship 
between carapace width (CW) and chela height (CH), with terminally-molted (“mature”) males typically 
exhibiting a much larger ratio of CH:CW than do “immature” males (i.e., those which have not undergone 
the terminal molt). For Tanner crab in Prince William Sound, Tamone et al. (2007) used additional data 
on sexual development to determine that a CH:CW ratio of 0.18 provided a good discriminant for 
maturity status across all sizes, with males exhibiting a ratio > 0.18 classified as “mature” and those 
exhibiting a ratio < 0.18 classified as “immature.”. Rugolo and Turnock (2011) used this ratio and a set of 
special collections of male CH data to develop a size-specific maturity ogive (i.e., the expected fraction of 
mature males at a given size) for new shell males in NMFS trawl surveys (Fig. 2.2.1).  

 
Fig. 2.1.1. Maturity ogive (Rugolo and Turnock, 2011) for new shell male crab used to characterize 
maturity state (immature, mature) by size. Also shown is the estimated probability of molt-to-maturity 
(pr(M2M)) estimated by the 2016 assessment model. 
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Since the Tier 3 assessment model for Tanner crab was adopted in 2012, the ogive in Fig. 2.2.1 has been 
used to determine abundance and biomass of new shell male crab by maturity state (i.e., immature, 
mature) in the NMFS surveys, while all old shell males are assumed to be post-terminal molt and thus 
“mature”, regardless of size. This approach allows one to estimate time series of abundance and biomass, 
as well as size compositions, outside the model for immature and mature new shell males separately, but 
it relies on the implicit assumption that the ogive does not change with time. Given the episodic and 
highly variable nature of recruitment to the Tanner crab stock in the EBS, this assumption cannot be true 
and is an approximation, at best. However, the classification of male maturity outside the assessment 
model by a time-invariant maturity ogive creates a conflict with the assumptions behind growth in the 
assessment model because the model estimates and applies a size-specific probability of undergoing 
terminal molt, not a maturity ogive, to determine the predicted new shell mature male component of the 
stock from the previous year’s immature male component as part of the overall population dynamics for 
Tanner crab. 
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Fig. 2.1.1. Example year-specific maturity ogives (points) and logistic-type fits from chela height data 
collected in 1990 at 1 mm resolution (top plot) and 2017 at 0.1 mm resolution (bottom plot). Symbol sizes 
scale with relative sample size. Ogives are shown using two carapace width bin sizes, 1-mm and 5-mm. 

An alternative approach would be to drop the immature/mature classification of survey data outside the 
model and use the male chela height data collected during NMFS surveys to estimate year-specific 
maturity ogives for new shell crab (see examples in Fig. 2.1.1) and to fit those in the assessment as part of 
the overall model optimization. Although chela height data is not collected every year, this would still 
provide data to inform the size-specific probability of undergoing terminal molt, which is time-invariant 
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across some time block (only one time block, the entire model period, is used in the current assessment). 
To this end, a input data file format (Table 2.2.1) and a likelihood component for year-specific maturity 
ogives based on chela heights were developed for TCSAM02. 

 

Table 2.1.1. Example format for a chela height/maturity ogive data file. 

The likelihood component for chela height/maturity ogive data assumes the observed fraction of mature 
new shell males in size bin z is binomially-distributed, thus the negative log-likelihood is given by 

−𝑙𝑙𝑙𝑙ℒ = ��−𝑤𝑤𝑠𝑠 ∙��𝑛𝑛𝑠𝑠,𝑦𝑦,𝑧𝑧 ∙ �𝑝𝑝𝑠𝑠,𝑦𝑦,𝑧𝑧 ∙ ln�𝑝𝑝�𝑠𝑠,𝑦𝑦,𝑧𝑧� + (1 − 𝑝𝑝𝑠𝑠,𝑦𝑦,𝑧𝑧) ∙ ln�1 − 𝑝𝑝�𝑠𝑠,𝑦𝑦,𝑧𝑧���
𝑦𝑦,𝑧𝑧

�
𝑠𝑠

 (2.1.1) 

where 𝑛𝑛𝑠𝑠,𝑦𝑦,𝑧𝑧 is the sample size of chela heights taken in survey s during year y in size bin z, 𝑝𝑝𝑠𝑠,𝑦𝑦,𝑧𝑧 is the 
corresponding observed fraction of mature males, 𝑝𝑝�𝑠𝑠,𝑦𝑦,𝑧𝑧 is the model-predicted value, and 𝑤𝑤𝑠𝑠 is a user-
specified weight for the survey-specific component. The model-predicted value, 𝑝𝑝�𝑠𝑠,𝑦𝑦,𝑧𝑧, is simply the ratio of 
the abundance of mature new shell males to immature males predicted for survey s during year y in size bin z. 
For diagnostic purposes, Pearson’s residuals are calculated for each observed value. 

2.2 Growth parameterizations 
Mean growth in TCSAM02 is described as linear on the log-scale using 

𝑍̅𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛼𝛼 + 𝛽𝛽 ∙ ln (𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝)] (2.2.1) 

where 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 is the pre-molt size, 𝑍̅𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the mean post-molt size, and 𝛼𝛼 and 𝛽𝛽 are estimable parameters, 
where 𝛼𝛼 is the ln-scale intercept (i.e., 𝛼𝛼 = ln (𝑍̅𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) when 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 = 1) and 𝛽𝛽 is the ln-scale slope.  

An alternative parameterization (used in the 2017 assessment) is  
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𝑍̅𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒

⎣
⎢
⎢
⎢
⎡𝑙𝑙𝑙𝑙 �

𝑍̅𝑍𝑈𝑈
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝑙𝑙𝑙𝑙 �
𝑧𝑧𝑈𝑈
𝑝𝑝𝑝𝑝𝑝𝑝

𝑧𝑧𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝�

∙ ln (𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝)

⎦
⎥
⎥
⎥
⎤

 (2.2.2) 

where 𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑍̅𝑍𝑈𝑈

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are estimable parameters representing the mean post-molt sizes corresponding to 
the (user-specified) pre-molt sizes 𝑧𝑧𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑧𝑧𝑈𝑈
𝑝𝑝𝑝𝑝𝑝𝑝, respectively. Parameter estimation using this 

formulation is thought to be more stable than that in Eq. 2.2.1 if the pre-molt sizes 𝑧𝑧𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑧𝑧𝑈𝑈

𝑝𝑝𝑝𝑝𝑝𝑝 
corresponding to the parameters are chosen to be within the range of the data. 

A second alternative parameterization has now been implemented that provides a hybrid of the two above. 
This hybrid parameterization is  

𝑍̅𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛽𝛽 ∙ ln (

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝

𝑧𝑧𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝)� (2.2.3) 

where 𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝛽𝛽 are estimable parameters and 𝑧𝑧𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝 is user-specified the pre-molt size corresponding to 
𝑍̅𝑍𝐿𝐿
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. This parameterization has the advantage that the ln-scale slope of the growth relationship (𝛽𝛽) can 

easily be constrained to be > 0 (which is the case for Tanner crab) while providing the assumed improved 
stability associated with estimating 𝑍̅𝑍𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 rather than 𝛼𝛼. 

2.3 New parameter scaling options 
Statistical inference when model parameters are estimated at their bounds, which has consistently 
occurred with the Tanner crab model for certain growth, selectivity and catchability parameters, is suspect 
(at best). One approach to addressing parameters that hit bounds is to change the scales on which those 
parameters are estimated to improve stability as, for example, estimating a parameter p which must be 
positive using a log-scale transformation (p*=ln(p)) which allows the transformed parameter (p*) to be 
estimated on −∞ < 𝑝𝑝∗ < ∞. For parameters hitting an upper or lower bound, a logit or other transform 
that maps the “arithmetic scale” bounds 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑝𝑝∗ ≤ 𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 to the “transformed scale” −∞ < 𝑝𝑝∗ < ∞ 
might be appropriate. This capability to specify a transformed scale for a parameter has now been 
implemented in TCSAM02 using the “model parameters information” (MPI) file for all parameters. 
Potential transforms include the ln-scale, logit, and probit transforms. A possible advantage to specifying 
a parameter transformation in the MPI file is that a prior for a parameter is defined on the “arithmetic” 
scale while the parameter is estimated on the transformed scale. 

2.4 A new approach to “devs” vectors 
It is possible to define a set of related model parameters in ADMB as a “parameter vector” or, if the 
parameters represent deviations from some value, as a “devs” vector (the sum of which is zero). The 
phases in which estimation is “turned on” for the individual parameters that constitute a parameter vector 
or devs vector are all the same, as are the upper and lower bounds (if the parameters are bounded). 
ADMB also allows the user to define a vector of parameter vectors (e.g., in ADMB terminology, a 
param_init_vector_vector or a param_init_bounded_vector_vector), where the number of parameter 
vectors is arbitrary and each parameter vector can have its own estimation phase, bounds on possible 
values, and index values. This allows one to implement flexible model structures such as time blocks 
without having to pre-specify the number of time blocks or the size of individual time blocks. In the 
Tanner crab model, these vector of parameter vectors are used to implement parameters governing the 
probability of molting by size bin (a parameter vector) across potentially multiple time blocks. 
Unfortunately, at this point ADMB does not implement a similar structure for devs vectors—i.e., a vector 
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of devs vectors. This is a serious drawback to developing a model in which the number of recruitment 
time blocks or fisheries, for example, is not specified a priori because recruitment deviations across one 
time period and catch rate deviations for one fleet are both typically defined using a devs vector.  

Given this lack of a “vector of devs vectors”, I developed two approaches to a “vector of devs vectors” for 
TCSAM02 based on ADMB’s param_init_bounded_vector_vector object. In the approach used in the 
2017 assessment, an n-element devs vector d was represented by an (n-1)-element bounded vector v, with 
the final the devs vector element, d(n), being given by 𝑑𝑑(𝑛𝑛) =  −∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛−1

𝑖𝑖=1  such that ∑ 𝑑𝑑(𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0 

identically. One problem with this approach is that there is no guarantee that the value of d(n) respects the 
bounds imposed on the rest of the elements. In order to achieve this, a heavy penalty was placed on values 
of d(n) that approached either bound. 

An alternative approach, now incorporated into TCSAM02, is to use an n-element bounded vector to 
represent an n-element devs vector—which assures that all elements will fall within the prescribed 
bounds. The requirement that the elements of a devs vector sum to 0 is then enforced by placing a heavy 
penalty on (∑𝑑𝑑𝑖𝑖)2 in the objective function. While this approach assures that all elements of a devs 
vector will fall within the prescribed bounds (and is simpler to implement), it reduces the effective 
number of defined parameters by 1 for each devs vector—and thus the overall model dimensionality—by 
essentially introducing a linear constraint among the elements of each vector. While linear constraints 
among parameters can lead to problems with inverting the model’s hessian matrix to estimate parameter 
uncertainties, this does not seem to be an issue with ADMB.  

Tests using the 2017 assessment model configuration comparing the old and new approaches to devs 
vectors in TCSAM02 indicate both approaches result in the same parameter estimates. 

2.5 A new likelihood component for recruitment 
Previously, a likelihood component related to recruitment variability was incorporated into the model 
objective function as prior probability functions applied to the ln-scale deviations from ln-scale mean 
recruitment defined by time block using  

−𝑙𝑙𝑙𝑙ℒ𝑅𝑅 = −�𝑤𝑤𝑘𝑘
𝑘𝑘

∙� 𝑙𝑙𝑙𝑙�𝑃𝑃𝑘𝑘�𝛿𝛿𝑖𝑖(𝑘𝑘)��
𝑖𝑖(𝑘𝑘)

 (2.5.1) 

where −𝑙𝑙𝑙𝑙ℒ𝑅𝑅 represents the total negative log-likelihood related to recruitment variability, 𝑤𝑤𝑘𝑘 is a 
multiplier on the contribution from time block k to the total, 𝛿𝛿𝑖𝑖(𝑘𝑘) represents the ln-scale deviation in year 
i from ln-scale mean recruitment in time block k, and 𝑃𝑃𝑘𝑘(⋯ ) is the prior probability function assumed to 
apply to time block k. For example, in the current (2017) assessment model recruitment is estimated using 
two time blocks: the “historical” period (1948-1974; k=1) and the “current” period (1975+; k=2), with the 
prior probability function for the ln-scale deviations defined as a normally-distributed 1-lag random walk 
function (so 𝛿𝛿(𝑖𝑖+1)(𝑘𝑘=1) − 𝛿𝛿𝑖𝑖(𝑘𝑘=1)~𝑁𝑁(0, 𝑠𝑠𝑘𝑘=12 )) in the “historical” period and a normal distribution 
(𝛿𝛿𝑖𝑖(𝑘𝑘=2)~𝑁𝑁(0, 𝑠𝑠𝑘𝑘=22 )) in the “current” period (the 𝑠𝑠𝑘𝑘2 are fixed.) 

In addition to the likelihood contribution just described based on prior probabilities for the recruitment 
deviations, a second component has now been added in the form  

−𝑙𝑙𝑙𝑙ℒ𝑅𝑅 = �𝑤𝑤𝑘𝑘
𝑘𝑘

∙ ���−ln (𝜎𝜎𝑘𝑘) +
𝛿𝛿𝑖𝑖(𝑘𝑘)
2

2 ∙ 𝜎𝜎𝑘𝑘2
�

𝑖𝑖(𝑘𝑘)

� (2.5.2) 
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where 𝜎𝜎𝑘𝑘2 is represents the ln-scale recruitment variance in time block k. This likelihood is appropriate for 
normally-distributed random variables (𝛿𝛿𝑖𝑖(𝑘𝑘)

2 ) with unknown variance (𝜎𝜎𝑘𝑘2). The 𝜎𝜎𝑘𝑘2 terms are 
parameterized using  

𝜎𝜎𝑘𝑘2 = 𝑙𝑙𝑙𝑙�1 + 𝑝𝑝𝑘𝑘2� (2.5.3) 

where the (potentially-estimable) parameter pk is the coefficient of variation of recruitment in time block 
k. 

2.6 New selectivity functions 
A new size selectivity function, based on a half-normal distribution function, was added to TCSAM02 as 
alternative to the asymptotic logistic selectivity functions previously available. The new function is 

𝑆𝑆(𝑧𝑧) = �exp �−
(𝑧𝑧 − 𝑧𝑧𝑢𝑢)2

2 ∙ 𝑤𝑤2 � 𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 𝑧𝑧𝑢𝑢

1 𝑖𝑖𝑖𝑖 𝑧𝑧 > 𝑧𝑧𝑢𝑢
 (2.6.1) 

where z represents size (CW in mm) and 𝑧𝑧𝑢𝑢 and w are estimable location and scale parameters, 
respectively. 𝑧𝑧𝑢𝑢 represents the minimum fully-selected size whereas w influences the size range over 
which S decreases as z gets smaller. 

2.7 Dynamic B0 
A function to calculate dynamic B0 was added to TCSAM02. Following model convergence, the 
population time series is recalculated by setting all fishery capture rates to zero while keeping all other 
aspects the same—in particular the recruitment time series. This allows estimation of the population 
trajectory in the hypothetical absence of fishing mortality. Using the current value of dynamic B0 as a 
basis for the calculation of BMSY may provide an alternative that is more robust to decadal-scale changes 
in recruitment than the current approach based on mean recruitment and SPR considerations. An example 
using the 2017 assessment is presented in Section 3.2  

3. Other issues 

3.1 Retrospective recruitment analysis 
At the January 2018 Modeling Workshop, the CPT requested that authors conduct a retrospective analysis 
on recruitment to help identify an appropriate period over which to calculate mean recruitment for use in 
determining B35% (i.e., the Tier 3 proxy for BMSY). The time series of estimated recruitment from a 
retrospective analysis for Tanner crab using the “assessment years” 2011-2017 are shown in Fig. 3.1.1. 
Except for assessment year 2011, recruitment estimates for an assessment year tend to be higher in the 
final 2-3 years of the time series relative to those for the same year from later assessments with more data, 
suggesting the model tends to overestimate the most recent recruitment events. 
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Fig. 3.1.1. Results for the estimated recruitment time series since 1978 (upper) and 2001 (lower) from 
retrospective model runs (2011-2017) using the 2017 assessment model configuration and data. Note that, 
as plotted here, recruits in year y enter the population in year y+1. 

To evaluate the efficacy of alternative averaging periods, the mean recruitment for each retrospective 
model run was calculated for the period 1982 to (assessment model year – lag), where lags of 0-6 years 
were evaluated (Fig. 3.1.2.). The variability in mean recruitment across the retrospective model runs does 
not change appreciably with lag, which seems to indicate there is no “optimal” lag which minimizes the 
variance in mean recruitment across the retrospective model runs. 
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Fig. 3.1.2. Results for mean recruitment averaged over the period 1982 to (assessment year-lag) from 
retrospective model runs for assessment years 2011-2017 using the 2017 assessment model configuration 
and data. 

3.2 Dynamic B0 
As noted previously, dynamic B0 calculations were incorporated into TCSAM02 earlier this year. Results 
from the base model 2018B0 (equivalent to the 2017 assessment model) are compared between the 
estimated dynamic B0 time series with no fishing mortality and the time series for MMB including 
fishing mortality in the Fig. 3.2.1. 

 
Fig. 3.2.1. Dynamic B0 (red line) and estimated MMB (green line) time series from 2018B0 (the 2017 
assessment model).The dotted black line represents B100 (the mean unfished MMB) from the OFL 
calculation using mean recruitment. 

In 2017, BMSY (B35%) using the dynamic B0 approach would have been slightly larger than that based on 
the OFL calculation using mean recruitment. 

3.3 Effective sample sizes for NMFS trawl survey size compositions 
The NMFS trawl survey typically collect size composition data from several thousand Tanner crab at 
100-150 stations each summer in the EBS. Because the crab at individual survey stations tend to be more 
similar to each other than those collected across the entire survey, the number of independent samples 
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associated with the size compositions is much smaller than the actual number of crab measured. To 
account for this lack of independence, input sample sizes for Tanner crab size compositions from the 
NMFS survey are typically set to 100-200 in the assessment model to avoid over-fitting. However, this 
choice of effective sample size is somewhat arbitrary. Here, I used a resampling approach to estimate 
empirical effective sample sizes for survey size compositions during 1988-2017 to compare with the 
values used in the assessment.  

For each survey year, observed crab were resampled using an area-stratified two-stage bootstrapping 
approach. For each survey stratum, a station s was randomly selected with replacement from those in the 
stratum. Then, ns crabs were randomly selected with replacement from the ns crab which had been 
measured at that station. This was repeated for the number of stations in the stratum and for each stratum 
to yield a “bootstrapped” version of the survey observations, after which an EBS-wide bootstrapped size 
composition was computed using area-swept, stratified survey calculations. This procedure was then 
repeated 100 times for each survey year to generate bootstrapped statistics for the size composition. 
Example results from the 2017 NMFS trawl survey are shown in Fig. 

Effective sample sizes for each year were calculated from the bootstrapped size compositions using  

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 =
∑ 𝜎𝜎𝑧𝑧2𝑧𝑧

∑ 𝑝𝑝𝑧𝑧 ∙ (1 − 𝑝𝑝𝑧𝑧)𝑧𝑧
 (3.3.1) 

where 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 is the effective sample size, 𝜎𝜎𝑧𝑧2 is the bootstrapped variance in size bin z, and 𝑝𝑝𝑧𝑧 is the 
fraction of individuals in size bin z from the original size composition. Eq. 4.3.1 is derived from the 
standard formula for the variance of a multinomial distribution. 

 

 
Fig. 3.3.1. Example bootstrapped Tanner crab size compositions, by sex and maturity state, from the 2017 
NMFS trawl survey. The dashed line indicate the original size composition while the envelopes indicate 
the mean +/- one standard deviation in each size bin. 
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Fig. 3.3.2. Effective sample sizes (solid line) for Tanner crab size compositions from the NMFS trawl 
survey estimated from 200 bootstrapped size compositions. The input sample size to the assessment 
model is indicated by the dashed line. 

 
Fig. 3.3.3. Effective sample sizes for Tanner crab size compositions from the NMFS trawl survey 
estimated from 100 bootstrapped size compositions. The input sample size to the assessment model is 
indicated by the dashed line. Reduced scale to show details in the range 0-400. 

As can be seen from Fig.s 3.3.2 and 3.3.3, the input sample size used in the assessment model (200) is 
smaller than the effective N calculated from the bootstrapping analysis in most years, except for those in 
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the mid-1990s, 2000 and 2009. It will be worth exploring whether the input sample sizes for size 
compositions from these years should be decreased relative to the nominal sample size. 

It may also be worth exploring whether or not this type of approach would be appropriate to use with 
observer sampling from the crab and groundfish fisheries. 

3.4 NMFS survey selectivity/catchability at small crab sizes 
Small (<45 mm CW) Tanner crab exhibit growth rates that are similar between the sexes. Assuming that 
natural mortality rates for small crab are not sex-specific (as in the current assessment model) and that the 
differential effect of fishing mortality on these crab is negligible, then the relative abundance of these 
small crab in the NMFS trawl survey should reflect both the sex ratio at recruitment and differences in 
survey capture probability. 

A key assumption in the current assessment model configuration is that the female-to-male sex ratio at 
recruitment is 1:1. This determines the relative scale between males and females in the population and has 
implications with regard to survey catchability and selectivity functions. In particular, the observed sex 
ratio for small crab in the NMFS survey should be equal to the relative survey capture probabilities (i.e., 
the fully-selected catchability x selectivity-at-size) for females and males. The abundance of small (< 45 
mm CW) female crab in the NMFS survey is plotted in Fig. 3.4.1 (lefthand plot) against that for males for 
all survey years, as is the sex ratio (females to males) by year (righthand plot).  

 
Fig. 3.4.1. Left: female abundance in the size range 25-45 mm CW from the NMFS survey plotted as a 
function of the corresponding male abundance. The dotted line indicates a 1:1 ratio. Right: The sex ratio 
for small crab (the ratio of abundance of small females to small males) by survey year. 

The results from both plots in Fig. 3.4.1 suggest, given the assumptions of equal sex ratio at recruitment 
and equal natural mortality rates for small crab, that the capture probabilities for small crab should be 
equal for females and males (the mean ratio is 1.07). Currently, it is not possible to place a constraint of 
this type on the sex-specific capture probabilities estimated by the assessment model, although this could 
be implemented in the future. The righthand plot in Fig. 3.4.1 also suggests that the abundance estimates 
in 1975 and 1977 may be a matter for concern, given the highly-skewed nature of the sex ratios for those 
years. 

3.5 BSFRF side-by-side survey integration 
Natural Resources Consultants (NRC) have provided data from the joint Bering Sea Research Foundation 
(BSFRF)-NMFS “side-by-side” survey experiments conducted during the past several years. Integration 
with the assessment model is underway. 
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4. Potential model scenarios for Fall, 2018 assessment 

4.1 Model datasets, model configurations and model scenarios 
The model scenarios examined for this report were various combinations of six model datasets (Table 
4.1.1) and ten model configuration options (Table 4.1.2). In all, 42 model scenarios were examined (Table 
4.1.3). 

The six model dataset configurations (Table 4.1.1) consisted of the dataset used in the 2017 assessment 
model (2018B here) and five alternatives that sequentially: 1) included fits to male maturity ogives based 
on chela height data in the parameter optimization (2018C); 2) changed how NMFS survey biomass and 
size composition data was fit (2018D); 3) included fits to the NMFS survey abundance time series, as 
well as the biomass time series (2018E); 4) increased the weight on fitting the molt increment and 
maturity ogive data by a factor of 5 (2018F); and 5) changed from fitting fishery catch biomass using 
normal likelihoods to using lognormal likelihoods (2018G). More details are provided in Appendix A. 

The base model configuration (“0”) was the configuration used for the 2017 assessment, in which the 
model is started in 1948 and the population is built up from zero using recruitment deviations (“rec devs”) 
constrained on the ln-scale by random walk priors for 1948 to 1974 (the last year without survey data) 
while normal priors are applied on the ln-scale to subsequent rec devs during 1975-2017. Separate 
parameters describing ln-scale mean recruitment are estimated in each time period, and the rec devs sum 
to zero separately across each time period. Model configuration option “1” tested an alternative approach 
to initializing the model population: the model starts in 1900 and builds the population up from zero using 
rec devs with no priors imposed, only one parameter describing ln-scale mean recruitment is estimated, 
but separate recruitment CVs are assumed to apply to the two time periods. In model configuration option 
“a”, the CV for recruitment was estimated in the 1975-2017 time period and used to calculate the value of 
the new recruitment likelihood component (described in Section 2.5). In addition, any priors on rec devs 
during this latter period were dropped. Configuration option “b” incorporated the options in “a” and also 
dropped the priors on ln-scale catch rate deviations used to constrain their size. Configuration option “c” 
incorporated the options from “b” and also eliminated the fits to the NMFS survey data during the 1975-
1981 time period and extended the “historical” recruitment time period from 1974 to 1981.  

In the base model, capture rates in the directed and bycatch fisheries in the time periods before data (catch 
data or effort data) were available to inform the model were applied using estimated ln-scale mean rates. 
Configuration option “d” eliminated the application of these rates to the population.  

In the base model, the sex- and size-specific parameters governing the probabilities of the molt to 
maturity were estimated on the logit-scale for all size bins for males and for size bins up to 130 mm CW 
for females. However, the values for the parameters in the smallest and largest bins were very close to the 
lower or upper (respectively) bounds placed on them. The values were also highly uncertain on the logit-
scale, but essentially 0 (for small sizes) or 1 (for large sizes) on the arithmetic scale. In the 2017 
assessment, it was suggested that fixing the values of the parameters at these small or large sizes rather 
than estimating them might improve overall model stability. Configuration “e” eliminated the estimation 
of these parameters in the smallest (< 45 m CW) size bins for both sexes and the largest size bins for 
males (>170 mm CW).  

As noted in Section 3.4, the sex ratios for Tanner crab in the NMFS survey data at small sizes indicate 
that the capture probabilities for small crab in the survey are probably the same for both sexes. As a first 
“cut” at addressing this concern, configuration “q” estimates a single survey catchability (Q) and 
selectivity function that applies to both males and females within each of the two survey time periods.  

Finally, configuration options “-Fr” and “-McI” apply iterative re-weighting to size composition data 
using the Francis or McAllister-Ianelli approaches (as discussed in Punt, 2017), respectively. 
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Table 4.1.1. Model datasets. 

 

Table 4.1.2. Model configuration options. 

 
The model naming convention adopted here for the 42 model scenarios is “dataset” + “model 
configuration indicators” + “iterative re-weighting options” (Table 4.1.3). Thus, scenario “2018G0bde-
Fr” is based on dataset “2018G”, model configuration options “0bde”, and iterative re-weighting option “-
Fr”. The “2018” in the scenario names will subsequently be dropped when identifying specific scenarios 
since it is common to all. 

Name Description
2018B TCSAM02 model run with the 2017 assessment data configuration.

2018B models but the parameter optimization now 
•         includes fits to the male maturity ogive data
2018C models but the parameter optimization now
•         excludes fits to NMFS survey mature biomass by sex 
•         excludes fits to NMFS survey size comp.s by sex/maturity state
•         includes fits to NMFS survey male biomass and size comp.s by shell condition
•         includes fits to the NMFS survey female biomass and size comp.s by maturity state/shell condition
2018D models but the parameter optimization now
•         includes fits to NMFS survey abundance time series, as well as biomass time series
2018E models but the parameter optimization now
•         includes increased weight (x  5) in likelihood on maturity ogive data and molt increment data
2018F models but the parameter optimization now
•         includes lognormal fits to fishery catch biomass

2018G

2018C

2018D

2018E

2018F

Indicator Description
2017 assessment model configuration:
•         model starts in 1948
•         rec devs before 1975 have random walk priors
•         rec devs after 1974 have normal priors
0 +:
•         model starts in 1900
•         no priors on rec devs
•         1 mean ln-scale recruitment parameter, separate CVs are defined for pre-1975, post-1974 time blocks
+:
•         estimate recruitment CV in 1975+ time block
•         include new recruitment likelihood component in parameter optimization
•         drop priors on rec devs in 1975+ period

b “a” + no prior on catch rate rec devs
“b” +
•         drop fits to survey data 1975-1981
•         recruitment estimated in two time blocks: model start to 1981 and 1982 to 2017.

d ln-scale mean fishery capture rates applied starting when effort or catch data are first available
probabilities of terminal molt are fixed at
•         0 for smallest size classes
•         1 for largest size classes

q estimate single survey Q, selectivity function for males and females in each time block
-Fr iteratively re-weight size comp.s using the Francis approach

-McI iteratively re-weight size comp.s using the McAllister-Ianelli approach

0

1

a

c

e
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Table 4.1.3. Model scenarios examined for this report. 

 
4.2 Model results 
Summary results from all model scenarios are shown in Table 4.2.1, including the “minimum” objective 
function value, the maximum gradient associated with the minimum, and a number of quantities related to 
quantities of management interest that are determined after the model has converged: average recruitment, 
unfished mature male biomass (B100), BMSY (i.e., B35% for this Tier 3 stock), current MMB, FOFL, FMSY, 
OFL, MSY, and the projected MMB. These latter quantities are presented for model diagnostic purposes, 
not management decisions, because they integrate the estimated population and fishery processes in a 
synthetic fashion. 

Given the large number of model scenarios addressed here, it was not possible to evaluate the models for 
convergence using parameter jittering due to time and processing constraints. Model scenarios that 
resulted in a large maximum gradient of the objective function at model “convergence” presumably did 
not convergence to that scenario’s true minimum objective function value. Scenarios B0b, C1c, D0c, D1, 
E0, and E0c exhibited maximum gradients larger than 0.01, so results from these models will not be 
examined further. 

Parameter estimates from all models are presented in Appendix B. Uncertainty estimates for the 
parameters were those reported in the model’s “std” file, which are standard deviations derived using the 
assumption that the objective function in the vicinity of the minimum is adequately described as a 
multivariate normal distribution. Scenario B0 had no non-devs parameters whose CVs were larger than 1, 
while the closely-related scenario with Francis weighting, B0-Fr, had 17. The other scenarios fell within 
this range. Across the scenarios, the parameters pLgtRet[2] (logit-scale max retention in the directed 
fishery during 2005-2009), pLgtRet[3] (logit-scale max retention in the directed fishery during 2013-

Name Description Name Description
2018B- data + “0” configuration 2018E0 2018E- data + “0“ configuration
(i.e., the 2017AM) 2018E0a 2018E0 + “a” configuration

2018B0q 2018B0 + “q” configuration 2018E0b 2018E0a + “b” configuration
2018B0-Fr 2018B0 + “-Fr” configuration 2018E0c 2018E0b + “c” configuration
2018B0-McI 2018B0 + “-McI” configuration 20180 2018E0 + “1” configuration
2018B0a 2018B0 + “a” configuration 2018E1b 2018E1 + “b” configuration
2018B0b 2018B0a + “b” configuration 2018E1c 2018E1b + “c” configuration
2018B0c 2018B0b + “c” configuration 2018F0 2018F- data + “0“ configuration
2018B1 2018B0 + “1” configuration 2018F0a 2018F0 + “a” configuration
2018B1b 2018B1 + “b” configuration 2018F0b 2018F0a + “b” configuration
2018B1c 2018B1b + “c” configuration 2018F0c 2018F0b + “c” configuration
2018C0 2018C- data + “0“ configuration 2018G0 2018F- data + “0“ configuration
2018C0a 2018C0 + “a” configuration 2018G0a 2018G0 + “a” configuration
2018C0b 2018C0a + “b” configuration 2018G0b 2018G0a + “b” configuration
2018C0c 2018C0b + “c” configuration 2018G0bd 2018G0b + “d” configuration
2018C1 2018C0 + “1” configuration 2018G0bde 2018G0bd + “e” configuration
2018C1b 2018C1 + “b” configuration 2018G0bde-Fr 2018G0bde + “-Fr” config.
2018C1c 2018C1b + “c” configuration 2018G0bde-McI 2018G0bde + “-McI” config.
2018D0 2018D- data + “0“ configuration
2018D0a 2018D0 + “a” configuration
2018D0b 2018D0a + “b” configuration
2018D0c 2018D0b + “c” configuration
2018D1 2018D0 + “1” configuration
2018D1b 2018D1 + “b” configuration
2018D1c 2018D1b + “c” configuration

2018B0
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2015), and pRCV[2] (the coefficient of variation for recruitment during the 1975-2017 period) tended to 
be consistently estimated with large uncertainty. 

Parameters whose estimated values were near or at one of the bounds placed on the parameter are 
presented in Appendix C. Model B0 had 11 parameters estimated near or at their bounds, out of 351 total. 
Most of these parameter were related to selectivity functions for the various fisheries or survey. Only 
models F0 and F0a had fewer parameters at or near their bounds (10 each). The two models that 
incorporated iterative re-weighting of size compositions using the Francis method had the highest number 
of parameters at or near their bounds (18 for B0-Fr and 39 for G0bde-Fr). Across all the model scenarios, 
parameters that were most frequently estimated at or near their bounds included pLgtRet[1] (the logit-
scale parameter for max retention in the pre-1997 time period; at its upper bound), pLgtPrM2M[1] at size 
index 32 (the logit-scale parameter for the male probability of terminal molt in the largest size bin; at its 
upper bound), pLgtPrM2M[2] at size index 1 (the logit-scale parameter for the female probability of 
terminal molt in the smallest size bin; at its lower bound), pGrBeta[1] (the shape factor for the growth 
probabilities; at its upper bound), pS1[20] (the size-at-50% selected for male bycatch in the groundfish 
fisheries during 1987-1996; at its lower bound), pS1[23], pS1[24] and pS1[27] (size-at-95 % selected 
parameters for crab bycatch in the BBRKC fishery), pS2[4] (the difference between the 95%- and 50%-
selected sizes for females in the NMFS survey after 1981; at its upper bound), pS4[1] (the descending 
slope for male bycatch in the snow crab fishery before 1997; both upper and lower limits, depending on 
scenario), and pQ[1] and pQ[3] (ln-scale catchability for males and females, respectively, prior to 1982 in 
the NMFS survey). 

Values of various components in the model objective function are compared for all scenarios in the tables 
given in Appendix D. Pertinent results are discussed on a case-by-case basis below. 
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Table 4.2.1. Summary of results for all model scenarios. Maximum gradient values > 0.01, indicating lack 
of model convergence, are highlighted in orange. OFL-related results are provided for diagnostic 
purposes only. Most objective function values are not directly comparable. 

 

4.2.1 B0 vs. B0q 
This comparison examines what the impact on model results would be if catchability and selectivity for 
the NMFS survey were the same for males and females. This change had the effect that catchability for 
males was substantially smaller in B0q across all sizes in surveys after 1981 (Fig. 4.2.1.1) whereas little 
change occurred for females. Estimated recruitment was somewhat higher in B0q compared with B0, as 
was mature male biomass—although mature female biomass was not (Fig. 4.2.1.2). The difference in 
effect on male and female mature biomass can be traced to changes in the sex-specific rates of natural 
mortality estimated in the two scenarios for mature crab (Fig. 4.2.1.3). 
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Fig. 4.2.1.1. NMFS survey capture probability functions as estimated in scenarios B0 and B0q. 

 
4.2.1.2. Recruitment and mature biomass time series as estimated in scenarios B0 and B0q. 
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Fig. 4.2.1.3. Natural mortality rates as estimated in scenarios B0 and B0q. 

The fit to survey mature biomass was degraded somewhat for both males (25 likelihood units) and 
females (6 units) in B0q compared with B0, while the fit to male survey size compositions was 
substantially degraded (162 units). In contrast, the fit to the female survey size compositions was 
substantially improved in B0q (143 units). Fits to growth data were also somewhat improved in B0q (13 
units), as were fits to the bycatch size compositions in the groundfish fisheries (12 units). Otherwise, fits 
to data components that were included in the objective function were similar between the two scenarios. 

These results reinforce the suggestion that forcing survey capture probabilities for males and females to 
be similar at small sizes, but allowing them to be different at large sizes, would improve overall model fit. 
However, these results also highlight the issue of why capture probabilities in the NMFS survey would be 
different between males and females at any in the first place, given that the survey (certainly since 1988) 
essentially covers the entire stock. One potential explanation is that the survey does not adequately cover 
mature females in deeper water near or beyond the continental shelf edge (thus resulting in lower capture 
probabilities for large females), although this idea is not strongly supported by first-look results from the 
NMFS EBS slope survey. 

4.2.2. B0-B0a-B0b-B0c 
The estimated CV for recruitment in the 1975+ time period in scenarios B0a, B0b and B0c was ~1.16, 
while the fixed value assumed in B0 was 0.5. Although the scenarios differed substantially in temporal 
trends for estimated recruitment and mature biomass prior to 1975, the temporal trends after 1975 were 
very similar for all four scenarios (Fig. 4.2.2.1). Average recruitment was somewhat smaller in B0a (198 
millions) compared with the other scenarios (~214 million), but all other management quantities were 
quite similar (Table 4.2.1). 

Removing priors on the ln-scale fully-selected fishery capture rate deviations in scenarios B0b and B0c 
led to several “spikes” in estimated capture rates in the directed fishery (“TCF”) and elevated bycatch 
rates in the BBRKC (“RKF”) fishery relative to the B0 scenario (Fig. 4.2.2.2). The spikes in the directed 
fishery appear to offset slightly prior spikes in recruitment in scenarios B0b and B0c, while the elevated 
rates in the BBRKC fishery accompany a right-shift in the estimated selectivity curves such that the size-
specific capture rates are actually quite similar across the scenarios. Removing the priors had little effect 
on estimates of capture rates of selectivity curves for the snow crab fishery and groundfish fisheries. 
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Dropping fits to the pre-1982 NMFS survey data (scenario B0c) had very little effect on model results 
(relative to B0b) after 1982. 

 
Fig. 4.2.2.1. Estimated recruitment and mature biomass time series from scenarios B0, B0a, B0b, and 
B0c. 

 
Fig. 4.2.2.2. Estimated fully-selected fishery catchability (capture) rates in the directed fishery (TCF) and 
the BBRKC (“RKF”) fisheries, from scenarios B0, B0a, B0b, and B0c.  

4.2.3 B0-B1-B1b-B1c 
Starting the model in 1900 and using independently-distributed  ln-scale recruitment deviations to “build 
up” the Tanner crab stock resulted in estimated recruitment time series for scenarios B1, B1b and B1c that 
were substantially different in character from B0 prior to 1975 (Fig. 4.2.3.1). Following 1975, the trends 
in all scenarios exhibited similar timing in fluctuations although mean recruitment in B0 was less than 
that in the B1 scenarios. Similar results hold for mature biomass (Fig. 4.2.3.2). 
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Removing priors on the ln-scale fishery capture rate deviations in B1b and B1c had similar effects to 
those in scenarios B0b and B0c. Similarly, starting the fits to the NMFS survey data in 1982 in scenario 
B1c led to almost no difference in the results from B1b. 

 
Fig. 4.2.3.1. Estimated recruitment time series for scenarios B0, B1, B1b and B1c. Lefthand plot is on the 
log-scale; righthand plot is on the arithmetic scale, but only for recent years. 

 
Fig. 4.2.3.2. Estimated mature biomass time series for scenarios B0, B1, B1b and B1c. The righthand plot 
shows recent years only. 

 

4.2.4 B0-C0-D0 
Including the maturity ogive data from the NMFS survey in the parameter optimization (scenario C0) had 
little effect on female population processes (Fig. 4.2.4.1) but did have effects on male population 
processes: the slope of the probability of male molt-to-maturity decreased somewhat in the range 75-150 
mm CW relative to B0; male growth increments were slightly smaller, and natural mortality rates for 
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mature males were larger. Changing the characteristics of the NMFS survey data fit in the parameter 
optimization (scenario D0) had little effect on the estimated probability of molt-to-maturity or growth, but 
did affect estimates of natural mortality, with those for mature crab somewhat higher still relative to C0. 
One consequence of the changes to the estimated probability of the molt to maturity for males was to 
increase FOFL and FMSY from 0.7 in B0 to 1.8 in C0 and E0 (Table 4.2.1). 

 
Fig. 4.2.4.1. The estimated probability of the molt to maturity (left), mean growth (center), and natural 
mortality rates (right) for scenarios B0, C0 and D0.  

 
Fig. 4.2.4.2. Estimated time series for recruitment and mature biomass from scenarios B0, C0, and D0. 

Including the male maturity ogive data in the parameter optimization also resulted in changes to the 
estimated survey capture probabilities, with capture probabilities generally smaller at all sizes for both 
males and females than those in scenario B0 (Fig. 4.2.4.3). This partly explains the differences in 
recruitment levels and mature biomass among the three scenarios. Fits to mature male survey size 
compositions improved by more than 170 likelihood units in scenarios C0 and D0 relative to B0, while 
fits to immature males degraded by 170. Both immature and mature female size compositions degraded 
by about 28 likelihood units. 
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Fig. 4.2.3.3. Estimated capture probabilities in the NMFS trawl survey from scenarios B0, C0 and D0. 

The actual fits to the maturity ogive data were not terribly impressive, although they did represent an 
improvement over not fitting the data. 

 
Fig. 4.2.4.4. Fits to recent male maturity ogives from NMFS survey data (data collected since 1990 is 
included in the parameter optimization). 

4.2.5 D0-E0-F0 
Fitting the time series of NMFS survey abundance in the model optimization reduced the scale of the 
estimated recruitment and mature biomass time series in scenarios E0 and F0 relative to D0 (Fig. 4.2.5.1), 
particularly early in the time series (the 1960s for recruitment, the 1970s for mature biomass). Estimated 
rates of natural mortality were slightly elevated in E0 and F0 (Fig. 4.2.5.2). Increasing the weight on 
fitting the growth data and male maturity ogive data in F0 resulted in slightly larger mean growth and 
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slightly left-shifted probabilities of terminal molt (so that males between had a slightly higher chance of 
having undergone terminal molt) relative to D0 and E0, which were almost identical. 

Including the NMFS survey abundance data in the model optimization also improved the fits to survey 
biomass data for both males and females in scenarios E0 and F0 relative to D0 (by 149 and 80 likelihood 
units, respectively) but degraded the fits to survey size compositions (by 115 units for males and 56 units 
for females; Tables D.2-3). Much of the improvement in the fits to survey biomass for scenarios E0 and 
F0 over D0 can be traced to better fits to the data for old shell crab in the late 1970s (Fig.s 4.2.5.3-4). 
There seems to be a distinct disconnect in the late 1970s between model dynamics and what is seen in the 
survey for new/old shell crab abundance and biomass, because the survey sees more new shell and fewer 
old shell crab than the model predicts. However, this does not seem to be because substantially different 
survey capture probabilities were estimated pre-1982 in the three scenarios (Fig. 4.2.5.5) The agreement 
between survey and model seems much better after 1981. In the scenarios considered in this report, the 
survey capture probabilities are independent of shell condition, which is probably appropriate if the stock 
is fully covered by the survey—as it is assumed to be for Tanner crab. One possible source for the 
disconnect prior to 1982, then, is the variable survey coverage during the 1975-1981 time period which 
could have led to different survey capture probabilities for new shell and old shell crab if these crab 
occupied different areas on the continental shelf. Survey coverage after 1981 is far more stable and covers 
the stock reasonably well, so that the assumption of equal capture probabilities for new shell and old shell 
Tanner crab in the NMFS survey after 1981 seems fairly reasonable. 

 
Fig. 4.2.5.1. Estimated time series of recruitment and mature biomass for scenarios D0, E0, and F0. 
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Fig. 4.2.5.2. Estimated natural mortality rates, probabilities of molt-to-maturity, and mean growth for 
scenarios D0, E0, and F0. 

 
Fig. 4.2.5.3. Observed NMFS trawl survey abundance time series and corresponding estimates for 
scenarios D0, E0 and F0. Note that these data are not included in the objective function for D0. 
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Fig. 4.2.5.4. Observed NMFS trawl survey biomass time series and corresponding fits for scenarios D0, 
E0 and F0. 

 
Fig. 4.2.5.5. Estimated NMFS survey capture probabilities for scenarios D0, E0 and F0. 

4.2.6 F0-G0 
Changing from normal likelihoods (scenario F0) to lognormal likelihoods (scenario G0) to express fits to 
fishery catch biomass had little impact on model results (Fig.s 4.2.7.1-3). For example, estimated time 
series for recruitment and mature biomass were nearly identical (Fig. 4.2.7.1). There were only small 
differences in estimated total catch biomass from the directed fishery for the two scenarios, as well as for 
fully-selected catchability (Fig. 4.2.7.2). Similarly, fits to survey biomass were also nearly identical (Fig,. 
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4.2.7.3). Not surprisingly, the management-related quantities for these two scenarios were very similar, as 
well (Table 4.2.1). 

 
Fig. 4.2.6.1. Estimated recruitment and mature biomass time series from scenarios F0 and G0. 

 
Fig. 4.2.6.2. Fits to total catch biomass (left) and estimates of fully-selected catch catchability (right) in 
the directed fishery for scenarios F0 and G0. 
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Fig. 4.2.6.3. Fits to NMFS survey biomass for scenarios F0 and G0. 

4.2.7 G0-G0b-G0bd-G0bde 
Dropping the priors on the ln-scale fishery capture rate “devs” (G0b) resulted in spikes in estimated 
recruitment in 1960 and 1970 that were similar in timing to spikes in scenario G0 but far exceed them in 
magnitude (Fig. 4.2.7.1). Applying mean fishery capture rates to the population dynamics only after effort 
or catch data are first available to the model (G0bd, G0bde) eliminated these early spikes in recruitment 
and made for a much smoother model startup from 1948 to 1970. Differences among the scenarios in 
timing and scale of the estimated recruitment time series were much reduced after 1975, as were 
differences in the estimated time series for mature biomass. 

The estimated probabilities of terminal molt were practically identical for these scenarios, except that 
those for the G0bde scenario were fixed at 0 below 45 mm CW (Fig. 4.2.7.2). Estimated mean post-molt 
sizes were also quite similar, but estimated rates of natural mortality were somewhat elevated for mature 
crab in scenarios G0b, G0bd, and G0bde relative to those in G0.  

Fits to retained catch biomass in all four scenarios were generally quite good, as were fits to total male 
catch biomass in the directed fishery (Fig. 4.2.7.3). Fits to total female catch biomass were less good, but 
this was not unexpected because fully-selected capture rates on females were assumed to be proportional 
to those on males (and this doesn’t appear to be the case in the early 1990s, in particular). 

It is worthwhile pointing out that average recruitment in scenarios G0b, G0bd and G0bde is ~500 million 
crab (Table 4.2.1), more than twice as much as for the baseline scenario, B0. However, virgin biomass for 
these scenarios is only about 10% larger than for B0 due to the higher rates of natural mortality estimated 
for males (fewer older crab) and left-shifted probabilities of terminal molt for males (fewer males 
reaching legal size) in these scenarios. These differences also help explain the much larger FMSY’s (> 2 x) 
obtained for these scenarios relative to B0 (Table 4.2.1). 
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Fig. 4.2.7.1. Estimated time series for recruitment and mature biomass from scenarios G0, G0b, G0bd, 
and G0bde. Note that y-axes in both plots are log-scale to encompass the full range and show details. 

 
Fig. 4.2.7.2. Estimated rates of natural mortality (left), probability of terminal molt (center), and mean 
post-molt size (right) from scenarios G0, G0b, G0bd, and G0bde. 



 
 

33 

 
Fig. 4.2.7.3. Fits to retained catch and total catch in the directed fishery for scenarios G0, G0b, G0bd, and 
G0bde. 

 
Fig. 4.2.7.4. Fits to NMFS survey biomass time series for scenarios G0, G0b, G0bd, and G0bde. 
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Fig. 4.2.7.5. Fits to NMFS survey abundance time series for scenarios G0, G0b, G0bd, and G0bde. 

4.2.8 Use of iterative re-weighting for size composition data (B0-Fr, B0-McI, G0bde-Fr, G0bde-McI) 
This set of scenarios provides an initial examination of the use of iterative re-weighting using either the 
Francis or McAllister-Ianelli approaches discussed in Punt (2017). For each iterative re-weighting 
scenario, the model was run for five additional phases after the final estimation phase (5) for the un-re-
weighted scenario. The appropriate re-weighting scheme was applied to all size composition data prior to 
the start of each additional model estimation phase for a total of five iterations.  

In both scenarios that used the Francis approach (B0-Fr and G0bde-Fr), the iterative re-weighting failed to 
converge for all of the size composition data within the five iterations allowed. As noted previously, the 
scenarios using the Francis approach resulted in the most parameters estimated at or near one of their 
bounds. Cumulative weights for the Francis approach after 5 iterations were all small (<0.05), with most 
extremely small (<0.0001), indicating that this approach was severely down-weighting all size 
composition data.  

In both scenarios that used the McAllister-Ianelli approach (B0-McI and G0bde-McI), the iterative re-
weighting converged for all fishery-related size compositions within the five iterations allowed. However, 
the resulting cumulative weighting was typically > 1 (in the range 1.5-10), indicating that this method was 
increasing the weight placed on the fishery size composition data in the objective function. As a 
consequence, negative log-likelihoods reflecting fits to fishery size compositions in B0-McI and G0bde-
McI increased by several hundred units for each fishery relative to B0 and G0bde, respectively. The 
iterative re-weighting did not converge within the allotted five iterations for the survey-related size 
compositions, although it appeared that extending the number of re-weighting iterations would improve 
convergence. In contrast to the fishery size compositions, the iterative re-weighting on the survey data 
appeared to be decreasing the weight placed on this data in the objective function. As a consequence, the 
negative log-likelihoods reflecting fits to the size compositions in B0-McI and G0bde-McI were much 
smaller (50-100 likelihood units) smaller than those in B0 and G0bde. 
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5. Recommendations for Fall 2018 Alternative Model Scenarios 
I recommend the following model configurations be evaluated for the Fall 2018 assessment: 

• 2017AM: the 2017 assessment model configuration 
• B0: the 2017 assessment model configuration with updated data for 2018 
• B1: B0 + include the male maturity ogive data in the model optimization, with the probability of 

the molt-to-maturity fixed at 0 in size bins < 45 mm CW. 
• B2: B1 + exclude NMFS survey data in the 2017AM configuration that included estimates of 

immature and mature male biomass determined outside the model using Rugolo’ and Turnock’s 
empirical maturity ogive include NMFS survey biomass and size composition data for males by 
shell condition and for females by maturity status and shell condition in the model optimization 

• B3: B2 + include aggregated NMFS survey abundance estimates in the model optimization 
• B4: B3 + use lognormal fits to fishery catch biomass in the objective function 

In scenario B1, I recommend that the probability of the molt-to-maturity should be fixed at 0 for size bins 
< 45 mm CW in B1 and subsequent scenarios. It seems highly unlikely that males classified as “mature” 
on the basis of CH:CW ratios at sizes less than 45 mm CW are truly capable of mating with adult females 
in the wild. However, the model exhibits a tendency to estimate rather large probabilities of molt-to-
maturity at very small sizes when left unconstrained. Thus, it seems prudent to fix these values to zero 
and let the model estimate probabilities in larger size bins. 

In scenario B2, I recommend dropping the fits to the NMFS survey data used in the 2017 assessment. The 
Rugolo and Turnock empirical maturity ogive was used to apportion new shell male abundance and 
biomass by size bin as immature and mature outside the model. Keeping this data in the model fitting 
process introduces some circularity. Instead, I recommend fitting male biomass and size composition data 
by shell condition (without apportioning to immature/mature status outside the model) and fitting female 
biomass and size composition data by shell condition and maturity status (since the latter is unambiguous 
in the survey data). 

In scenario B3, I recommend adding the time series of aggregated abundance estimates from the NMFS 
survey data to the model optimization. Fitting only the time series of aggregated biomass estimates from 
the NMFS survey data effectively up-weights the importance of large crab relative to small crab in the 
model optimization. Including the aggregated abundance time series in the model fitting process 
ameliorates this effect and may produce better estimates of recruitment. Although this undoubtedly leads 
to some amount of “double counting” in the model objective function, the bias this would introduce is 
probably rather small and certainly on the order of that introduced by selectively other components in the 
objective function. 
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Accompanying Supplemental Material (available online) 
The following files are provided online to provide more comprehensive results than can be presented in 
this report. 

File name Description 
OFCs.DataComponents.xlsx  Excel spreadsheet with pivot tables for the data 

components to the objective function for each 
model scenario. 

OFL.Rsults.xlsx Excel spreadsheet with pivot tables for 
management-related quantities from the OFL 
calculations for each model scenario. 

Params.Values.xlsx Excel spreadsheet with pivot tables for the 
estimated parameter values and approximate 
standard errors for each model scenario. 

Params.AtBounds.xlsx Excel spreadsheet with pivot tables for the 
parameters that were estimated at or near one of 
their bounds for each model scenario. 
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Appendix A: Alternative model datasets 

Table A.1. Dataset 2018B (the 2017 assessment model dataset). 

 

Table A.2 Dataset 2018C. Changes from 2018B are highlighted. 

  

Name component type Distribution Likelihood
abundance -- --
biomass norm2 males only
size comp.s multinomial males only
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal by sex for mature only
size comp.s multinomial by sex/maturity 
chela height data -- --

growth data EBS only gamma by sex

2017AM, 
2018B0

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey

Name component type Distribution Likelihood
abundance -- --
biomass norm2 males only
size comp.s multinomial males only
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal by sex for mature only
size comp.s multinomial by sex/maturity 
chela height data binomial binomial

growth data EBS only gamma by sex

2018C

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey
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Table A.1. Dataset 2018D. Changes from 2018C are highlighted. 

 

Table A.2 Dataset 2018E. Changes from 2018D are highlighted. 

 
  

Name component type Distribution Likelihood
abundance -- --
biomass norm2 males only
size comp.s multinomial males only
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal
size comp.s multinomial
chela height data binomial binomial

growth data EBS only gamma by sex

2018D

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey

Name component type Distribution Likelihood
abundance -- --
biomass norm2 males only
size comp.s multinomial males only
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex
abundance lognormal
biomass lognormal
size comp.s multinomial
chela height data binomial binomial

growth data EBS only gamma by sex

2018E

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey
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Table A.1. Dataset 2018F. Changes from 2018E are highlighted. 

 

Table A.2 Dataset 2018G. Changes from 2018F are highlighted. 

 
 

Name component type Distribution Likelihood components
abundance -- --
biomass norm2 males only
size comp.s multinomial males only
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance -- --
biomass norm2 by sex
size comp.s multinomial by sex 
abundance lognormal
biomass lognormal
size comp.s multinomial
chela height data binomial x  5 males only 

growth data EBS only gamma x  5 by sex

2018F

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey

Name component type Distribution Likelihood components
abundance -- --
biomass lognormal males only
size comp.s multinomial males only
abundance -- --
biomass lognormal by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal by sex
size comp.s multinomial by sex 
abundance -- --
biomass lognormal by sex
size comp.s multinomial by sex 
abundance lognormal
biomass lognormal
size comp.s multinomial
chela height data binomial x  5 males only 

growth data EBS only gamma x  5 by sex

2018G

TCF: retained catch

TCF: total catch

SCF: total catch

RKF: total catch

GTF: total catch

NMFS survey
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Appendix B: All Model Parameter Values 
This appendix includes tables of estimates for all model parameters, by model scenario. These tables are also provided as an Excel spreadsheet 
(“ParamValues.xlsx”) in the supplementary online material.  
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Table B.1. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B model 
scenarios. Values for recruitment devs are not shown. 
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Table B.2. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the 
C model scenarios. Values for recruitment devs are not shown. 
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Table B.3. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the 
D model scenarios. Values for recruitment devs are not shown. 
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Table B.4. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the 
E scenarios. Values for recruitment devs are not shown. 

  



 
 

46 

Table B.5. Estimated model parameter values and standard deviations related to growth, maturity, natural mortality and recruitment for B0 and the 
F and G model scenarios. Values for recruitment devs are not shown. 
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Table B.6. Estimated model parameter values and standard deviations related to selectivity and retention functions for the B model scenarios. 
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Table B.7. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the C model 
scenarios. 
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Table B.8. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the D model 
scenarios. 
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Table B.9. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the E model 
scenarios. 
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Table B.10. Estimated model parameter values and standard deviations related to selectivity and retention functions for B0 and the F and G model 
scenarios. 
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Table B.11. Estimated fishery and survey-related model parameter values and standard deviations for the B model scenarios. 

 

Table B.12. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the C model scenarios. 
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Table B.13. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the D model scenarios. 

 

Table B.14. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the E model scenarios. 
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Table B.15. Estimated fishery and survey-related model parameter values and standard deviations for B0 and the F and G model scenarios. 
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Appendix C: Model Parameters At Bounds 
This appendix includes tables of model parameters, by model scenario, that were estimated at their bounds. These tables are also provided as an 
Excel spreadsheet (“ParamsAtBounds.xlsx”) in the supplementary online material.  

Table C.1. Model parameters at bounds for model scenarios (“case”) B0, B0-Fr, B0-McI, B0a, B0b, B0c, B1, B1b, B1c, C0, C0a, C0b, C0c, C1, 
C1b, C1c, D0, D0a, D0b, D0c, D1, D1b, and D1c. Blue highlighting (value=1) indicates the parameter was at or near the upper bound; red 
highlighting (value=-1) indicates the parameter was at or near the lower bound. The final row gives the total number of parameters at one of their 
bounds for each model scenario. 
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Table C.2. Model parameters at bounds for model scenarios (“case”) B0, E0, E0a, E0b, E0c, E1, E1b, E1c, F0, F0a, F0c, G0, G0a, G0b, G0bd, 
G0bde, G0bde-Fr, G0bde-McI. Blue highlighting (value=1) indicates the parameter was at or near the upper bound; red highlighting (value=-1) 
indicates the parameter was at or near the lower bound. The final row gives the total number of parameters at one of their bounds for each model 
scenario. 
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Appendix D: Objective function components 
This appendix contains tables related to values of various components in the model objective function, by scenario. 
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Table D.1. Contributions from data components to the model objective function for B and C scenarios. 
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Table D.2. Contributions from data components to the model objective function for B0 and the D and E scenarios. 
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Table D.3. Contributions from data components to the model objective function for B0 and the F and G 
scenarios. 
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