Interagency Halibut DMR Workgroup¹ Recommendations for GOA and BSAI Groundfish Fisheries in 2021 and 2022

Summary

This document provides halibut DMRs for in-season management of BSAI and GOA groundfish fisheries in 2021 and 2022 (Table 1), as recommended by the interagency halibut DMR workgroup.

Other updates include:

- 1. Observer data and corresponding annual DMRs updates through 2019
- 2. Improved DMR estimates for BSAI nonpelagic trawl CPs, which now include factory-based condition assessments on vessels where deck sorting was also occurring (note that this document does not provide DMRs for deck sorted halibut.)
- 3. Changes in the presentation of historic DMRs and related data (Tables 2-4) to improve comparison among fisheries.
- 4. Updates on current research activity related to halibut DMRs
- 5. Other workgroup comments

Introduction

Halibut discard mortality rates (DMRs) are reviewed each year as part of the North Pacific Fishery Management Council's (Council) groundfish harvest specifications process and are used for in-season management of halibut prohibited species catch (PSC) relative to limits² established for GOA and BSAI groundfish fisheries. DMRs are currently specified for eleven operational groups with unique combinations of area, gear, and handling characteristics that affect halibut mortality (Figure 1). Prior to Council specification, draft DMRs are updated by an interagency workgroup that includes staff from Alaska Fisheries Information Network (AKFIN), the Council, International Pacific Halibut Commission (IPHC), and National Marine Fisheries, Service (NMFS). The workgroup's recommendations are reviewed by the Council's GOA and BSAI Groundfish Plan Teams, the Science and Statistical Committee (SSC), along with other annual BSAI and GOA SAFE documents³.

DMR Estimation Methods

A detailed description of halibut DMR estimation methods was provided at the <u>November 2016</u> <u>Groundfish Plan Team meeting</u> and those methods continue to be applied in the current update. Briefly, fishery-specific data are collected by onboard observers who sample halibut according to established protocols including physical examination of individual halibut just prior to the discarding event (see AFSC 2019 for details). Based on injury type and overall vitality, halibut are assigned to gear-specific condition categories (e.g., minor, moderate, serious, among others) that correspond to fixed mortality probabilities derived from the literature (e.g., Clark et al. 1992, Williams 1997, and Kaimmer and Trumble 1998).

Expansion from samples to hauls, trips, and ultimately the defined operational group is structurally consistent with the statistical sampling hierarchy. Expansion of discard estimates is done within each

¹ Jim Armstrong (NPFMC), Jen Cahalan (PSMFC), Jennifer Ferdinand (NMFS AFSC), Mike Fey (AKFIN), Mary Furuness (NMFS AKRO, Jason Gasper (NMFS AKRO), Ian Stewart (IPHC)

² <u>https://www.fisheries.noaa.gov/alaska/sustainable-fisheries/alaska-groundfish-harvest-specifications</u>

³ <u>https://www.fisheries.noaa.gov/alaska/population-assessments/north-pacific-groundfish-stock-assessments-and-fishery-evaluation</u>

sampling strata (e.g., full coverage or gear-specific partial coverage) before estimates are combined across strata to produce fishery-level DMRs.

Specified DMRs reflect average estimated DMRs for the two most recent complete fishing years. The appropriateness of different reference timeframes was evaluated by the workgroup and reviewed by the Plan Teams and SSC in 2016. A two-year period was chosen to keep PSC accounting consistent with recent DMR levels and fishery operational practices. Additionally, from a management/policy perspective, frequently updating applied DMRs may, in the presence of other contributing factors, provide incentives for operations to adjust handling practices to improve halibut survival.

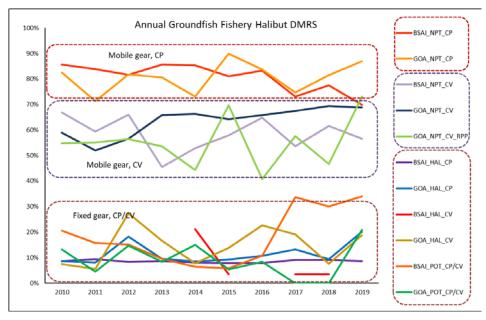


Figure 1. Annual halibut DMR estimates for fishery operational types defined for halibut PSC management in GOA and BSAI groundfish fisheries.

Workgroup recommendations:

The workgroup recommends the DMRs provided in Table 1 be used for in-season management of halibut PSC in 2021. Note that, for rulemaking purposes, groundfish harvest specifications are for two-year periods, so these DMRs would also be specified for 2022.

The workgroup recommends proxy values based on analogous fisheries where very few vessels contributed to DMR estimates (see footnotes in Table 1).

Specifically, the BSAI hook-and-line CV fishery would use the rate estimated for BSAI hook-and-line CPs. Similarly, GOA nonpelagic trawl CPs would use the rate estimated for BSAI nonpelagic trawl CPs. As indicated in Table 1, pelagic trawl DMRs are not estimated, but are instead specified at 100%.

The GOA Pot fishery DMR is 0% currently, and 10% in the update, while the BSAI pot DMR has increased to 32%. For both BSAI and GOA, there are no halibut PSC limits established for pot fisheries, and hence, these changes would not potentially affect those fisheries, but the workgroup recommends investigating potential causes for these trends.

Annual DMR estimates and additional supporting information (numbers of vessels, trips, hauls, and condition assessments for the selected operational groups are provided in Tables 2-4.

Other workgroup comments

Deck sorting

Halibut discards that follow the regulatory allowance for deck sorting on BSAI non-pelagic trawl CP vessels are not provided in the workgroup recommendations. DMRs provided here reflect hauls by BSAI non-pelagic trawl CPs where halibut are discarded as the catch is being sorted and processed from within vessel onboard factories. Nevertheless, in generating DMR estimates for 2021/2022, improvements were made to better identify data from halibut condition assessments conducted in the factories of trawl CPs and motherships that are *also* deck-sorting halibut from the catch. These data were not collected until 2018 and were not included in the 2019 update (i.e., for the current 2020 DMR specifications) due to a data labeling issue that has now been corrected. As a result, DMRs estimated for BSAI nonpelagic trawl CPs for 2018 were revised from 77.53% to the current value of 84.24%. Notably, this improvement also increased the number of halibut assessments, so the updated DMR estimates are considered to be more robust.

PSC mortalities for deck-sorted halibut are accounted for through independent processes that are not part of the Council specification cycle. Deck-sorted halibut do not enter the factory, are discarded relatively quickly, and have much lower post-capture mortality probabilities. Note that, previously, deck-sorting operations were conducted under an exempted fishing permit (EFP), but in 2020, deck sorting became a regulated option for the Amendment 80, TLAS, and CDQ fishery sectors (<u>84 FR 55044</u>).

Directed halibut fishery

Halibut DMRs needed for calculating discards in the directed halibut fishery are also not provided here. Capture rates and DMRs for those halibut are addressed independently as part of the IPHC 's stock assessment process. In characterizing commercial bycatch mortalities of halibut in regulatory areas off Alaska, the IPHC does use mortality estimates provided by the NMFS AKRO and based on these DMRs.

Electronic monitoring (EM)

With a growing number of vessels participating in the EM program, the number of vessels available for data collection by onboard observers has decreased. Halibut condition is determined for each assessed halibut using a dichotomous key developed by the IPHC that is based on having the halibut in-hand for inspection; an injury key for halibut caught on longline vessels and a viability key for halibut taken on trawl vessels. At this time, a visual key that could be used by EM reviewers has not been developed and hence condition data are not be available for vessels fishing in the EM program at this time. Note that research is currently being conducted by the IPHC and the Fishery Monitoring and Analysis (FMA) that may lead to development alternative data collections and/or DMR estimation methods (see below).

Many of the vessels participating in the EM program are also fishing halibut IFQs, and therefore since IPHC estimates post-capture halibut mortality in the directed fishery using alternative methods, DMRs are not needed for the halibut IFQ fishery. However, for catches that are not halibut IFQ fishing (halibut PSC catch), DMRs are needed in order to estimate halibut mortality and manage PSC. Halibut release method is still being recorded by EM reviewers and work will continue toward using release method to inform mortality. Table 5 provides the number of vessels participating in the EM program relative to the total number of active vessels. The provided DMR estimates did not include any EM-based data and are, instead, solely reliant on condition data collected by observers in the affected fisheries.

Future methodological improvements:

- Continue to explore the potential use of model-based estimators of DMRs based on variables expected to impact post-capture survival (hook-release method, time-out-of-water).
- Review methods used to estimate halibut mortality with particular focus on marine mammal feeding on discards.

Existing research related to halibut discard mortality

The workgroup looks forward to reporting on any research findings that could be incorporated into alternative calculations of DMR. The IPHC and FMA are currently conducting research in support of improved estimation of DMRs and halibut post-capture mortality.

1. Survivability assessment of discarded Pacific halibut in excellent condition in the directed fishery (IPHC).

Survival of discarded of Pacific halibut in the directed fishery was inferred with the use of survivorship pop-up archival transmitting tags (sPAT) tags. In an experimental test fishing experiment conducted by IPHC on a longline chartered research vessel, 79 Pacific halibut that were captured in excellent condition were tagged with sPATs and released. Only 3 out of 79 sPATs did not generate data due to attachment or transmission failures. Of the 76 tags that successfully transmitted data, 71 tags were retained on tagged fish throughout their programmed 96-day deployment period. The remaining 6 tags that successfully transmitted data were released prematurely after 43-95 days. Data from sPAT tags was analyzed for movement patterns in order to determine survivability. 71 fish were classified as alive on the basis that their tags were retained until the programmed time of satellite transmission. On the 6 prematurely released tags, 3 tags showed continuous acceleration until the final recording and these tagged fish were therefore assumed to be alive. In contrast, the 3 other prematurely released tags showed discontinuous acceleration (absent from 4-50 hours prior to tag release) and these tagged fish were therefore assumed to be dead. In summary, our estimates of mortality of Pacific halibut released in excellent condition corresponded to a 4% mortality rate. Additional studies are being conducted to investigate potential relationships between individual physiological characteristics, capture conditions, and handling practices, and final viability release classifications in discarded Pacific halibut. These studies have received funding from the Saltonstall-Kennedy Grant Program NOAA.

2. Capture of hook release method by electronic monitoring in the directed fishery (IPHC).

A three-camera electronic monitoring (EM) system was installed on a longline chartered research vessel by Archipelago Marine Research. The EM system successfully captured imagery of the hauling station, fish stripper, and work area during gear retrieval from all sets. EM footage was reviewed by analysts at the Pacific States Marine Fish Commission for Pacific halibut release method, fish condition, and skate changes. Analysis of EM data revealed an almost perfect (95%-100%) agreement between the actual release method used and that captured by EM, with careful shake, gangion cut and hook stripper being captured with an accuracy of 100%, 97% and 95%, respectively. Therefore, we can conclude that different hook release methods are almost perfectly captured by EM systems. More recent work has focused on investigating the ability to estimate individual Pacific halibut lengths from EM systems in the longline fishery. The previously captured footage has been used to generate fish lengths that are being compared to the actual measurements of Pacific halibut from the same skates of gear. These studies have received funding from the Saltonstall-Kennedy Grant Program NOAA.

3. Improving the characterization of discard mortality of Pacific halibut in the guided recreational fishery (IPHC).

As an initial step in this project, information from the charter fleet on types of gear and fish handling practices used has been collected through stakeholder meetings and on dock interviews with charter captains and operators. Results show that the guided recreational fleet predominantly uses circle hooks (75-100%), followed by jigs. Predominant hook release methods included reversing the hook (54%), or twisting the hook out with a gaff (40%), and the fish were generally handled by supporting both the head and tail (65%), while other common techniques included handling by the operculum (10%) or by the tail alone (10%). This information will inform the design of the experimental test fishing that is expected to take place in 2021 and in which DMRs will be estimated with the use of sPAT tags. In addition, fish condition and stress will also be evaluated to identify best practices intended to minimize discard

mortality of Pacific halibut in this fishery. This project has received funding from the National Fish and Wildlife Foundation.

4. Model-based discard mortality rates based on alternatives to halibut condition data (FMA).

Previous research conducted by FMA assessing whether DMRs may be estimated from models that incorporate covariates such as time out of water, haul size, fish length, and temperature showed promising results. These are covariates have previously been demonstrated to predict halibut mortality and could be collected by observers while deployed in lieu of conducting the current condition assessments. Analysis of study data supported these results; however since the dataset in this study was limited, evaluation of study designs to continue field work are currently underway. With additional data, well-trained models may provide reliable DMR estimates that can replace the need for observers to assess the condition of discarded halibut and may be applied to larger commercial fisheries.

References

- AFSC (Alaska Fisheries Science Center). 2019. 2020 Observer Sampling Manual. Fisheries Monitoring and Analysis Division, North Pacific Groundfish Observer Program. AFSC, 7600 Sand Point Way NE, Seattle, WA 98115. Current manual available at https://www.fisheries.noaa.gov/resource/document/north-pacific-observer-sampling-manual
- Clark, W. G., Hoag, S. H., Trumble, R. J., and Williams, G. H. 1992. Re-estimation of survival for trawl caught halibut released in different condition factors. Int. Pac. Halibut Comm. Report of Assessment and Research Activities 1992: 197-206.
- Kaimmer, S. M. and R. J. Trumble. 1998. Injury, condition, and mortality of Pacific halibut bycatch following careful release by Pacific cod and sablefish longline fisheries. Fish. Res. 38:131-144.
- Williams, Gregg H. 1997. Pacific halibut discard mortality rates in the 1990-1995 Alaskan groundfish fisheries, with recommendations for monitoring in 1997. Int. Pac. Halibut Comm. Report of Assessment and Research Activities 1996: 173-183.

Tables

Table 1. Halibut DMRs specified for fishery operational types defined for halibut PSC management in GOA and BSAI
groundfish fisheries in 2020 and workgroup recommendations for application in 2021 and 2022.

			Recommend	led DMRS
Area	Gear	Operation	2020	2021/2022
	Pot	All	27%	32%
	Hook-and-line	СР	9%	9%
BSAI	Hook-and-line	CV	9%ª	9%ª
	Non-pelagic trawl	Mothership / CP	75%	84%
	Non-pelagic trawl	CV	58%	59%
	Pot	All	0%	10%
	Hook-and-line	СР	11%	15%
COA	Hook-and-line	CV	13%	13%
GOA	Non-pelagic trawl	Mothership / CP	75% ^b	84% ^b
	Non-pelagic trawl	CV	68%	69%
	Non-pelagic trawl	CV-Rockfish Program	52%	60%
All	Pelagic trawl	All	100%*	100%*

^a Based on BSAI HAL CP

^b Based on BSAI NPT CP

*Fixed, not estimated

	BSAI Hook and Line CVs						
Year	Vessels	Trips	Hauls	Viabilities	DMR		
2010							
2011							
2012							
2013							
2014	1	2	5	21	21%		
2015	1	1	1	6	3%		
2016							
2017	1	1	1	2	4%		
2018	2	4	17	83	4%		
2019	1	1	5	15	11%		
				2019 Specs	4%		
				2020 Specs	9%*		
		WG r	ecom. for	2021 Specs	9%*		

Table 2. BSAI HAL and trawl vessels, trips, hauls, viability assessments and corresponding DMRs from 2010 – 2019 observer data. The bottom three rows for
each panel provide the specified DMRs based on either two year averages or interpolated values (*) from similar operations. Source: AKFIN Data.

DMR

rear	1000010	mps	Tradits	Tabilities	DIVIN
2010	33	142	1,912	8,947	9%
2011	28	169	2,258	11,619	9%
2012	30	185	2,599	13,887	8%
2013	30	258	3,435	17,189	9%
2014	28	220	2,962	11,049	8%
2015	29	264	2,889	10,239	8%
2016	29	244	2,245	7,138	8%
2017	27	222	1,929	6,332	9%
2018	23	141	1,063	3,615	9%
2019	20	126	693	1,921	9%
				2019 Specs	8%
				2020 Specs	9%
		WG r	ecom. for	2021 Specs	9%
	BS	Al Nonpe	lagic Trav	vl CPs	
Year	Vessels	Trips	Hauls	Viabilities	DMR
2010	21	134	1,717	7,375	86%
2011	22	108	801	2,363	84%
2012	16	67	600	1,410	82%
2013	19	93	892	2,868	86%
1					

BSAI Hook and Line CPs

Trips Hauls Viabilities

Year Vessels

BSAI NOIPElagic ITawi CFS									
Year	Vessels	Trips	Hauls	Viabilities	DMR				
2010	21	134	1,717	7,375	86%				
2011	22	108	801	2,363	84%				
2012	16	67	600	1,410	82%				
2013	19	93	892	2,868	86%				
2014	20	66	535	1,928	85%				
2015	10	22	186	463	81%				
2016	14	96	881	3,685	83%				
2017	11	61	517	2,003	73%				
2018	20	165	1,049	2,426	84%				
2019	20	164	1,097	2,875	83%				
				2019 Specs	78%				
				2020 Specs	75%				
		WG r	ecom. fo	r 2021 Specs	84%				

	BSAI Nonpelagic Trawl CVs						
Year	Vessels	Trips	Hauls	Viabilities	DMR		
2010	28	89	411	2,151	67%		
2011	25	117	514	2,972	59%		
2012	35	127	430	2,228	66%		
2013	24	129	459	2,090	45%		
2014	22	169	581	2,780	53%		
2015	34	146	446	1,977	58%		
2016	43	162	652	2,611	65%		
2017	46	152	567	2,860	54%		
2018	39	133	438	2,045	62%		
2019	44	118	563	2,151	57%		
				2019 Specs	59%		
				2020 Specs	58%		
		WG r	ecom. for	2021 Specs	59%		

	GOA Nonpelagic Trawl CVs						
Year	Vessels	Trips	Hauls	Viabilities	DMR		
2010	2	7	27	180	7%		
2011	1	2	9	18	5%		
2012	2	6	42	127	27%		
2013	11	33	165	801	17%		
2014	10	36	123	398	8%		
2015	19	26	97	449	14%		
2016	19	24	69	324	23%		
2017	14	20	80	367	19%		
2018	18	21	74	284	8%		
2019	18	20	52	243	19%		
				2019 Specs	21%		
				2020 Specs	13%		
		WG r	ecom. for	2021 Specs	13%		

Table 3. GOA HAL and trawl vessels, trips, hauls, viability assessments and corresponding DMRs from 2010 – 2019 observer data. The bottom three rows for
each panel provide the specified DMRs based on either two year averages or interpolated values (*) from similar operations. Source: AKFIN Data.

	GOA Hook and Line CPs							
Year	Vessels	Trips	Hauls	Viabilities	DMR			
2010	13	23	243	1,735	9%			
2011	9	24	345	2,281	8%			
2012	5	18	75	343	18%			
2013	8	14	121	740	10%			
2014	9	21	321	1,546	9%			
2015	8	29	430	1,784	9%			
2016	9	19	203	1,493	11%			
2017	10	25	258	1,781	13%			
2018	4	6	32	239	9%			
2019	7	13	54	253	20%			
				2019 Specs	12%			
				2020 Specs	11%			
		WG r	ecom. for	2021 Specs	15%			

GOA Nonpelagic Trawl CPs						
Year	Vessels	Trips	Hauls	Viabilities	DMR	
2010	4	14	170	569	83%	
2011	8	18	201	903	71%	
2012	5	8	78	591	82%	
2013	6	18	167	424	81%	
2014	2	12	73	164	73%	
2015	1	1	1	1	90%	
2016	7	13	76	232	84%	
2017	5	38	424	2,367	75%	
2018	4	25	114	709	83%	
2019	5	40	359	1,669	86%	
				2019 Specs	79%	
				2020 Specs	75%*	
		WG r	recom. for	2021 Specs	84%*	

GOA Nonpelagic Trawl CVs						
Year	Vessels	Trips	Hauls	Viabilities	DMR	
2010	31	106	410	2,256	59%	
2011	29	76	247	1,558	52%	
2012	36	138	443	2,726	57%	
2013	27	48	111	533	66%	
2014	21	35	99	487	66%	
2015	19	33	66	346	64%	
2016	36	94	239	1,433	66%	
2017	28	59	144	778	68%	
2018	25	46	105	641	69%	
2019	44	118	563	2,151	57%	
				2019 Specs	67%	
				2020 Specs	68%	
		WG r	ecom. for	2021 Specs	69%	

Table 4. **BSAI and GOA POT and GOA Rockfish Program trawl** vessels, trips, hauls, viability assessments and corresponding DMRs from 2010 – 2019 observer data. The bottom three rows for each panel provide the specified DMRs based on either two year averages or interpolated values (*) from similar operations. Source: AKFIN Data.

BSAI Pot CPs and CVs								
Year	Vessels	Trips	Hauls	Viabilities	DMR			
2010	25	62	236	616	21%			
2011	32	87	348	1,259	16%			
2012	26	78	428	15%				
2013	21	45	259	491	10%			
2014	20	52	264	498	6%			
2015	24	78	310	723	6%			
2016	24	66	245	424	11%			
2017	14	33	191	335	34%			
2018	22	34	101	197	30%			
2019	19	28	73	140	34%			
				2019 Specs	22%			
	2020 Specs 32							
	WG recom. for 2021 Specs 32							

GOA Pot CPs and CVs							
Year	Vessels	Trips	Hauls	Viabilities	DMR		
2010	11	23	40 179		13%		
2011	16	51	200	1,067	4%		
2012	15	67	228	1,070	15%		
2013	26	56	163	363	8%		
2014	17	31	68	179	15%		
2015	32	82	210	895	5%		
2016	37	62	158 732		8%		
2017	20	25	50 168		0%		
2018	9	11	20	69	0%		
2019	11	16	40	82	21%		
2019 Specs					4%		
2020 Specs					0%		
WG recom. for 2021 Specs				10%			

GOA Nonpelagic Trawl Rockfish Pgm CVs							
Year	Vessels	Trips	Hauls	Viabilities	DMR		
2010	14	33	54	113	55%		
2011	14	19	33	106	55%		
2012	15	33	63	156	56%		
2013	16	28	50	124	54%		
2014	12	16	23	58	44%		
2015	10	17	30	94	70%		
2016	16	46	108	375	41%		
2017	17	47	99	400	58%		
2018	14	23	57	246	47%		
2019	14	19	29	73	73%		
				2019 Specs	49%		
	2020 Specs						
WG recom. for 2021 Specs					60%		

AREA- GEAR	SECTOR	2015	2016	2017	2018	2019
	СР	31	32	29	26	24
BSAI-HAL	CV	17	13	13	13	11
Total BSAI HA	AL.	48	45	42	39	35
	СР	12	12	11	7	7
GOA-HAL	CV	333	326	289	283	275
Total GOA H	AL	345	338	300	290	282
То	otal All Areas HAL	393	383	342	329	317
EM All Areas HAL % EM All Areas HAL		16 4.10%	33 8.60%	61 17.80%	93 28.30%	187 59.00%
AREA- GEAR	SECTOR	2015	2016	2017	2018	2019
BSAI-POT	CP,CV	51	59	69	82	86
GOA-POT	CP,CV	116	119	129	79	90
То	tal All Areas POT	461	457	429	369	372
-	EM All Areas POT EM All Areas POT	0 0.00%	0 0.00%	25 5.80%	1 0.30%	51 13.70%

Table 5. Total vessels associated with operational groupings and vessels in the electronic monitoring (EM) pool.