# Update on work for EBS pollock assessment 

Jim Ianelli
AFSC

## SSC Recommendations

- Ongoing genetic studies to determine the relationship between pollock in the NBS and EBS, and nearby GOA and AI regions.
- The 2019 BSAI GPT recommendation to revisit and evaluate the treatment of variance parameters within the assessment, with particular attention to those that are fixed.
- Efforts to quantify pollock movement and abundance along the US-Russia EEZ boundary.
- Geostatistical analyses of combined trawl and acoustic data to provide a single time-series, statistically accounting for the overlap between these data, for informing stock trends.


## The SSC provides the following additional recommendations:

- Exploration of young-of-year pollock density and quality estimates from NMFS BASIS surveys to inform pollock recruitment.
- Consideration of whether the observed sensitivity in the SRR to prior specification should constitute an increased risk level specification within the assessment or population dynamicsrelated considerations. This could provide a clearer justification for the use of the Tier 3 calculation as the basis for harvest specification.
- Given the time-varying specification of fishery selectivity within the assessment model and the large change in the estimated 2021 FOFL between the 2019 and 2020 assessments, the authors should provide a retrospective comparison of the selectivity assumed in projections to that estimated with the addition of new data.
- Consideration of whether risk table specifications should account for the importance of pollock as a key forage species in the EBS ecosystem to better justify the use of a Tier 3 ABC determination as a precautionary measure for this Tier 1 stock.
- Given the apparent disappearance of the second and large mode in fishery length compositions as the 2020 B-season progressed, exploration of within-season spatial variation in fishery length composition would be useful in evaluating whether these larger pollock simply moved out of the area of fishing effort, or died as a result of natural or fishing mortality.


## Ongoing genetic

 studies to determine the relationship between pollock in the NBS and EBS, and nearby GOA and AI

- Results by the assessment deadline (sometime in October)
- IcWGS was conducted on 600 walleye pollock from throughout their range in Alaska
- Analyses are underway



## The 2019 BSAI GPT

 recommendation to revisit and evaluate the treatment of variance parameters ...Alternative weightings of indices will be evalued in the coming assessment including variance specification

Efforts to quantify pollock movement and abundance along the USRussia EEZ boundary.

|  | Contents lists available at ScienceDirect | - |
| :---: | :---: | :---: |
|  | Deep-Sea Research Part II |  |
| Environmental impacts on walleye pollock (Gadus chalcogrammus) distribution across the Bering Sea shelf |  |  |
| ${ }^{a}$ NOAA Alaska Fisheries Science Center, Seattle, WA, USA <br> ${ }^{6}$ Russian Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), Vladivostok, Russia <br> ${ }^{\text {c }}$ NOAA Pacific Marine Environmental Lab, Seattle, WA, USA <br> ${ }^{\mathrm{d}}$ University of Washington, Cooperative Institute for Climate, Ocean and Ecosystem Studies, Seattle, WA, USA |  |  |
| Received: 15 October 2020 Accepted: 28 February 2021 |  |  |
| DOI: 10.1111/1365-2664.13914 |  |  |
| RESEARCH |  | Ecology ${ }^{\text {a }}$ |
| Estimating spatiotemporal availability of transboundary fishes to fishery-independent surveys |  |  |
|  |  |  |

## ICES Journal of Marine Science

Geostatistical analyses of combined trawl and acoustic data to provide a single time-series...

Incorporating vertical distribution in index standardization accounts for spatiotemporal availability to acoustic and bottom trawl gear for semi-pelagic species

Cole C. Monnahan (DD ${ }^{1,2 *}$, James T. Thorson (D) ${ }^{1}$, Stan Kotwicki © ${ }^{1}{ }^{1}$, Nathan Lauffenburger ${ }^{1}$ James N. lanelli ${ }^{1}$, and Andre E. Punt (iD ${ }^{2}$

Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA 98115, USA ${ }^{2}$ School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
*Corresponding author: e-mail: cole.monnahan@noaa.gov.
Monnahan, C. C., Thorson, J. T., Kotwicki, S., Lauffenburger, N., lanelli, J. N., and Punt, A. E. Incorporating vertical distribution in index standardization accounts for spatiotemporal availability to acoustic and bottom trawl gear for semi-pelagic species. - ICES Journal of Marine Science, doi:10.1093/icesjms/fsab085.

Received 12 August 2020; revised 7 Abril 2021: accented 12 Abril 2021.

## Exploration of young-of-year pollock density and quality estimates from NMFS BASIS surveys to inform pollock recruitment

- No further work on including these data has been developed
- Yasumiishi's copepod index examined

Consideration of whether the observed sensitivity in the SRR to prior specification should constitute an increased risk level specification within the assessment or population dynamics related considerations. This could provide a clearer justification for the use of the Tier 3 calculation as the basis for harvest specification.

- Alternative impacts as specified through ACLIM research activities is underway. No conclusions as of yet...

Given the time-varying specification of fishery selectivity within the assessment model and the large change in the estimated 2021 FOFL between the 2019 and 2020 assessments, the authors should provide a retrospective comparison of the selectivity assumed in projections to that estimated with the addition of new
data.

- Further study supports the inclination to make 2021 ABC recommendations (below $\max (A B C)$ ) given the tendency towards smaller (younger) pollock in 2021
- Alternative diagnostics on how selectivity has changed retrospectively will be attempted

Consideration of whether risk table specifications should account for the importance of pollock as a key forage species in the EBS ecosystem to better justify the use of a Tier 3 ABC determination as a precautionary measure for this Tier 1 stock.

Work on this limited

CEATTLE notes importance as prey

Seeking further advice!

Given the apparent disappearance of the second and large mode in fishery length compositions as the 2020 B-season progressed, exploration of within-season spatial variation in fishery length composition would be useful in evaluating whether these larger pollock simply moved out of the area of fishing effort, or died as a result of natural or fishing mortality.

- Patterns of 2020 and 2021 size composition suggest that the larger (older) age-classes are less abundant in the catch
- Resolution on shifts in the relative year-class strengths are affected vs new recruitment is an important area of research/support given available data


## Some being considered for EBS pollock

- Recruitment is related to temperature
- Survival to age 3 related to large copepods
- Natural mortality can be drawn reasonably from CEATTLE
- Growth increment is related to temperature


## Recruitment is related to temperature

## Temperature moderated recruitment

Hindcast eastern Bering Sea summer sea surface temperature


From Bering Sea high resolution 10K regional ocean model
(Kearney et al. 2020. Geosci.
Model Dev., 13: 597-650)

Courtesy Paul Spencer

## Temperature moderated recruitment

Hypothesis:

- Pollock recruitment declines at high temperatures

Support:

- Mueter et al. (2011)
- Spencer et al. (2016)

Implementation within pollock assessment model:

$$
R_{t}=f\left(S S B_{t-a}\right) e^{\propto+x_{1} S S T_{t-a}+x_{2} S S T_{t-a}^{2}} e^{\varepsilon_{t}}
$$

Courtesy Paul Spencer


## Stock-recruit relationship

## Climate-enhanced model

- Minor impact on recruits and spawning biomass
- Due to extensive age composition data
- Curves similar (at average temperature)
- However, as temperature increases, the expected recruitment substantially decreases
- This would affect estimated reference points and harvest recommendations.



## Survival to age 3 related to large copepods

## Copepod index affects survival to age 3

## Hypothesis:

- Pollock age 0 survival affected by large zooplankton abundance


## Support:

- Yasumiishi, Eisner, Kimmel (ref)

Implementation within pollock assessment model:

As a form of "data" related to age 3 model abundance<br>As yet, lacks linkage within assessment to mortality



## Large copepod for age-0 pollock

From Yasumiishi, Eisner, and Kimmel

- Index sums Calanus marshallae/glacialis (copepodite stage 3 (C3)-adult), Neocalanus spp. (C3-adult), and Metridia pacifica (C4-adult),



Copepod index fit


Copepod index on age 3 abundance


1990199219941996199820002002200420062008201020122014201620182020

## Natural mortality can be drawn reasonably from CEATTLE

## Apply CEATTLE results for natural mortality

## Hypothesis:

- Pollock mortality varies over time and age due to predator diets


## Support:

- Holsman et al. (various)

Implementation within pollock assessment model:

Matrix of natural mortality (years and ages) pre-specified
Does it improve fits to the assessment data?

## CEATTLE

- M matrix

Year x age

## A suite of pollock models with some climate enhancements

## Models crossed w/ some indicators

Name
base
With CE
CEATTLE M
CEATTLE M CE
Copepod index
Copepod index+CE
Copepod index $+\mathrm{CE}+\mathrm{M}$


## Fits to indices, root mean squared errors

$\left.\begin{array}{lrrrrrrr} & & & & \text { Copepod } \\ \text { Component } & \text { base } & \text { With CE } & \text { CEATTLE_M } & \text { CEATTLE_M_CE } & \text { Cope+CE } \\ \text { index }\end{array}\right)$

## Negative log-posterior (NLL) by model (columns)

| Component | base | With CE | CEATTLE_M | CEATTLE_M_CE | Copepod <br> index | Cope+ <br> CE | Cope+CE <br> + CE_M |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BTS NLL | 25.7 | 25.8 | 26.8 | 25.8 | 25.5 | 25.5 | 26.6 |
| ATS NLL | 8.7 | 8.5 | 8.2 | 8.5 | 11.6 | 11.4 | 11.5 |
| AVO NLL | 10.1 | 9.7 | 9.5 | 9.7 | 10.3 | 9.9 | 9.6 |
| Copepod NLL | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 48.0 | 46.5 |
| Fish Age NLL | 148.8 | 148.9 | 150.3 | 148.9 | 147.5 | 147.8 | 149.0 |
| BTS Age NLL | 146.4 | 147.1 | 145.8 | 147.1 | 147.5 | 148.0 | 147.4 |
| ATS Age NLL | 25.0 | 24.7 | 25.4 | 24.7 | 24.5 | 24.4 | 24.6 |
| Data NLL | 380.1 | 379.8 | 389.3 | 379.8 | 433.9 | 433.8 | 440.2 |
| Total NLL | 593.3 | 588.0 | 626.4 | 588.0 | 649.2 | 644.0 | 679.6 |

## Negative log-posterior (NLL) by model (columns)

Relative to "Base" (but w/o copepod in totals)

| Component | base | With CE | CEATTLE_M | CEATTLE_M_CE | Copepod <br> index | Cope+ <br> CE | Cope+CE <br> + CE_M |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| BTS NLL | 0.0 | 0.1 | 1.1 | 0.1 | -0.2 | -0.2 | 0.9 |
| ATS NLL | 0.0 | -0.2 | -0.4 | -0.2 | 3.0 | 2.8 | 2.8 |
| AVO NLL | 0.0 | -0.4 | -0.6 | -0.4 | 0.2 | -0.2 | -0.5 |
| Copepod NLL | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 48.0 | 46.5 |
| Fish Age NLL | 0.0 | 0.1 | 1.4 | 0.1 | -1.3 | -1.0 | 0.1 |
| BTS Age NLL | 0.0 | 0.6 | -0.6 | 0.6 | 1.1 | 1.6 | 1.0 |
| ATS Age NLL | 0.0 | -0.3 | 0.4 | -0.3 | -0.5 | -0.6 | -0.4 |
| Data NLL | 0.0 | -0.3 | 9.2 | -0.3 | 5.8 | 5.7 | 13.6 |
| Total NLL | 0.0 | -5.3 | 33.2 | -5.3 | 7.9 | 2.8 | 39.9 |

## Comparing these model configurations

- Stock-recruit relationship plots


Model

- base
- With CE


Model

- base
- Copepod index


Female spawning biomass (kt)

Model

- base
- Copepod + CE



## Model

- base
- Copepod + CE
- Copepod index
- With CE


## Preliminary conclusion

Climate enhanced recruitment model improves fit

- This was also shown to be the case for the posterior predictive loss approach (next slide from Paul)
Current M-matrix from CEATTLE degraded fit
- Needs revisiting/cross checking
- Reference point calculations affected
- Projection mode?


## Model selection and prediction of new data?

## Posterior Predictive Loss (PPL; Gelfand and Gnosh 1998)

Based on decision theory, and a loss function

$$
P P L=\mathcal{L}\left(\tilde{y}_{i}, \hat{y}_{i}\right)+w \mathcal{L}\left(y_{i}, \hat{y}_{i}\right)
$$

$\tilde{y}_{i}=$ Replicate data drawn from posterior predictive distribution of the data

Squared error loss function
$\mathcal{L}(x, y)=(x-y)^{2}$

## Goodness of fit to observed data

Precision of estimation (i.e., how well the model fits new data not used in model
fitting)

Herring CPUE (by weight)

## Fishery conditions

- Catch rates of pollock and selected bycatch species
- B-season through August

Sablefish CPUE (by weight)

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0.00100- \\ & 0.00075- \end{aligned}$ |  |  |  |
| $0.00050-$ |  |  |  |
| $0.00025-$ |  |  |  |
| $0.00000-$ |  |  |  |
| 1990 | 2000 | 2010 | 2020 |

Chinook salmon CPUE (by number)


Chum CPUE (by number)


Pollock CPUE (by weight)


June-August
Pollock fishery CPUE by area (E and W of 170)


Weight frequency (by haul)


NOAA FISHERIES




## Body mass-at-age

- Can it be considered w/ an environmental index?


## Start with body mass at age



Age



| Fishery | 1990 | 0.290 .480 .60 .3 | 0.730 .840 | 0.871 .01 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ${ }^{0.7} 0.7810$ | 0.98 1.03 | 1.21 |  |
|  |  |  | 0.75 0.951 0.71 0.71 0 | ${ }^{1.04} 1.21$ | 1.23 <br> 1.35 |  |
| data... |  | $\begin{array}{llll}0.38 & 0.5 & 0.70 \\ 0.738\end{array}$ | 0.84 0 0.86 | 0.99 1.22 | 1.31 |  |
|  |  |  | 0.79 <br> 0.95 <br> 0.959 <br> 0.98 <br> 1 | 0.95 1.02 | ${ }^{1.24}$ |  |
|  |  | 0.370 .590 .63 | 0.620 .781 | 1.031 .17 | 1.25 |  |
| Started with domestic fishery | 2000 | $\begin{array}{lllll}0.4 & 0.51 \\ 0.046 \\ 0.35 & 0.53 \\ 0.63\end{array} 0.70$ | $\begin{array}{lll}0.7 & 0.73 \\ 0.73 \\ 0.78 \\ 0.7\end{array}$ | 0.89 1.04 | 1.25 1.01 1 |  |
|  |  |  | ${ }^{0.79} 0.968$ | [0.99 1.06 | ${ }_{1.12}$ |  |
|  |  | 0.390 .510 .670 | $0.790 .91 \quad 1$ | 1.031 .1 | 1.09 | Anomaly |
|  | $\stackrel{\stackrel{\rightharpoonup}{\varpi}}{\underset{\sim}{\infty}}$ |  | 0.770 0.968 0.76 0.89 |  | ${ }_{1}^{1.2}$ |  |
|  |  |  | 0.74 0.88 <br> 0  | 0.95 0.06 | ${ }_{1}^{1.1}$ | 0.2 |
|  |  | 0.31 0 | 0.750 .85 0.78 0.85 0.96 0 |  | ${ }_{1}^{1.11}$ | 0.0 |
|  |  | ${ }^{0.33} 0.580 .650$ | 0.77 0.91 | 1.05 1.12 | ${ }^{1.28}$ | -0.2 |
|  |  |  | ${ }_{0}^{0.88} 1$ | 1.1311 .4 | 1.49 |  |
| (for pollock) | 2010 |  | - |  |  |  |
|  |  |  |  | ${ }_{1.17}^{1.1 .31}$ | ${ }_{52}$ |  |
|  |  | ${ }^{0.2909040 .560 .}$ | 0.781 .181 | 1.281 .43 |  |  |
|  |  |  | 0.750 .89 <br> 0.99 <br> 0.79 <br> 0.79 | (1.151.31 <br> 0.89 <br> 1.15 |  |  |
|  |  | $0.410 .53{ }^{0.56}$ | ${ }_{0}^{0.65} 0.73$ | 0.80 .94 | 1.04 |  |
|  |  | $\begin{array}{llll}0.4 & 0.5 & 0.65\end{array}$ | 0.690 .75 | 0.830 .89 |  |  |
|  |  | 0.38 0 | 0.730 .810 0.76 0.88 0.8 0 | 0.85 0.9 |  |  |
|  | 2020 |  |  |  |  |  |
|  |  | 4 6 | 6 | 8 | 10 |  |
|  |  |  | Age |  |  |  |

# Eastern Bering Sea 

Anomaly
-0.2

## Survey data

|  | 0.17 | 0.35 | 0.43 | 0.67 | 1.02 | 1.12 | 1.2 | 1.38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.24 | 0.36 | 0.49 | 0.58 | 0.73 | 1.07 | 1.13 | 1.02 |
|  | 0.26 | 0.36 | 0.48 | 0.62 | 0.76 | 1.02 | 1.22 | 1.41 |
| 1990 | 0.26 | 0.41 | 0.51 | 0.65 | 0.78 | 0.93 | 1.43 | 1.13 |
|  | 0.18 | 0.36 | 0.46 | 0.64 | 0.72 | 0.85 | 1.01 | 1.29 |
|  | 0.26 | 0.35 | 0.43 | 0.53 | 0.71 | 0.8 | 0.9 | 1 |
|  |  |  |  |  |  |  |  |  |
|  | 0.3 | 0.36 | 0.46 | 0.52 | 0.6 | 0.75 | 0.85 | 1 |

Eastern Bering Sea

Anomaly
0.4
0.2
0.0
$-0.2$


## Fishery weight-at-age

## Hypothesis:

- Pollock weight-at-age in fishery has year and cohort effects

Support:

- SAFE reports for EBS and GOA pollock


## Implementation within pollock assessment model:

Modeled as random effects outside of model to get year and cohort effect variances

Those variances then used within model to estimate year and cohort effects as fixed

Future consideration: can cohort and year effects be effectively modeled as driven by the environment and/or density dependence?

## Basic model for body mass-at-age

$$
\begin{array}{rlr}
\hat{w}_{t a}=\bar{w}_{a} e_{t}^{v} & a=1, t \geq 1964 \\
\hat{w}_{t a} & =\hat{w}_{t-1, a-1}+\Delta_{a} e_{t}^{\psi} & a>1, t>1964 \\
\Delta_{a} & =\bar{w}_{a+1}-\bar{w}_{a} & a<A \\
\bar{w}_{a} & =\alpha\left\{L_{1}+\left(L_{2}-L_{1}\right)\left(\frac{1-K^{a-1}}{1-K^{A-1}}\right)\right\}^{3} &
\end{array}
$$

where the fixed effects parameters are $L_{1}, L_{2}, K$, and $\alpha$ while the random effects parameters are $v_{t}$ and $\psi_{t}$.

$$
n l l_{i}=0.5 \sum_{a t} \frac{\ln \left(w_{a t} / \hat{w}_{a t}\right)^{2}}{2 \sigma_{w_{a t}}^{2}} \quad \text { Draft }
$$



Weight-at-age CV

| 1970 | 0.17 | 0.14 | 0.12 | 0.1 | 0.08 | 0.07 | 0.06 | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.15 | 0.17 | 0.16 | 0.14 | 0.12 | 0.11 | 0.09 | 0.08 |
|  | 0.15 | 0.14 | 0.14 | 0.14 | 0.12 | 0.11 | 0.1 | 0.09 |
|  | 0.15 | 0.14 | 0.12 | 0.12 | 0.12 | 0.11 | 0.1 | 0.09 |
|  | 0.15 | 0.13 | 0.12 | 0.11 | 0.11 | 0.11 | 0.1 | 0.09 |
|  | 0.15 0.14 0.14 | 0.14 0.12 | 0.12 | 0.11 | 0.1 | 0.1 | 0.1 0.08 | 0.09 0.09 |
|  | 0.14 0.14 | 0.12 0.13 | 0.1 0.1 | 0.09 0.09 | 0.08 0.08 | $\begin{aligned} & 0.08 \\ & 0.08 \end{aligned}$ | 0.08 0.07 | 0.09 0.08 |
|  | 0.13 | 0.09 | 0.1 | ${ }_{0} 0.07$ | 0.08 | ${ }_{0}^{0.08}$ | 0.05 | O.05 |
| 1980 | 0.11 | 0.1 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 |
|  | 0.09 | 0.08 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04 |
|  | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 |
|  | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
|  | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 0.04 |
|  | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
|  | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 |
|  | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 |
|  | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
|  | 0.05 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 1990 | 0.06 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
|  | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
|  | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
| $\begin{aligned} & \grave{\pi} \\ & \underset{\sim}{1} \end{aligned}$ | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | ${ }^{0.02}$ | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 2000 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.04 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 2010 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |  |
|  | 0.03 0.02 | 0.02 0.01 | 0.01 0.02 | 0.01 0.01 | 0.01 0.01 | 0.01 0.01 | 0.01 0.01 | 0.01 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.08 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 2020 |  | 0.12 | 0.09 | 0.08 | 0.06 | 0.06 | 0.05 | 0.04 |
|  |  |  | $\begin{aligned} & 0.12 \\ & n 12 \end{aligned}$ | $0.11$ | $\begin{aligned} & 0.09 \\ & 011 \end{aligned}$ |  |  |  |
|  | 0.17 0.17 | $\begin{aligned} & 0.16 \\ & 0.16 \end{aligned}$ | 0.15 0.15 | 0.12 0.14 | 0.11 0.12 | $\begin{aligned} & 0.09 \\ & 0.11 \end{aligned}$ | $\begin{aligned} & 0.08 \\ & 0.09 \end{aligned}$ | 0.07 0.08 |

## certainty propogation

Year-effect on growth increment

## CV <br> 0.16 0.12 0.08 0.04



## Draft

Weight-at-age CV

| 1970 | 0.17 | 0.14 | 0.12 | 0.1 | 0.08 | 0.07 | 0.06 | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.15 | 0.17 | 0.16 | 0.14 | 0.12 | 0.11 | 0.09 | 0.08 |
|  | 0.15 | 0.14 | 0.14 | 0.14 | 0.12 | 0.11 | 0.1 | 0.09 |
|  | 0.15 | 0.14 | 0.12 | 0.12 | 0.12 | 0.11 | 0.1 | 0.09 |
|  | 0.15 | 0.13 | 0.12 | 0.11 | 0.11 | 0.11 | 0.1 | 0.09 |
|  | 0.15 | 0.14 | 0.12 | 0.11 | 0.1 | 0.1 | 0.1 | 0.09 |
|  | 0.14 | 0.12 | 0.1 | 0.09 | 0.08 | 0.08 | 0.08 | 0.09 |
|  | 0.14 | 0.13 | 0.1 | 0.09 | 0.08 | 0.08 | 0.07 | 0.08 |
|  | 0.13 | 0.09 | 0.09 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 |
| 1980 | 0.11 | 0.1 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 |
|  | 0.09 | 0.08 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04 |
|  | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 |
|  | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
|  | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.04 | 0.04 |
|  | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
|  | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 |
|  | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 |
|  | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
|  | 0.05 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 1990 | 0.06 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
|  | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
|  | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 2000 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |  |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.04 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 2010 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.08 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 0.17 | 0.12 | 0.09 | 0.08 | 0.06 | 0.06 | 0.05 | 0.04 |
| 2020 | 0.17 | 0.16 | 0.12 | 0.11 | 0.09 | 0.07 | 0.07 | 0.06 |
|  | 0.17 | 0.16 | 0.15 | 0.12 | 0.11 | 0.09 | 0.08 | 0.07 |
|  | 0.17 | 0.16 | 0.15 | 0.14 | 0.12 | 0.11 | 0.09 | 0.08 |

## certainty propogation

Year-effect on growth increment


> Draft

Temperature and year-effect growth increment


## Summary

- New data for 2021:

Bottom trawl survey
Combined NBS+EBS
Age compositions (EBS only)
Acoustic vessels of opportunity (AVO)
Fishery 2020 age composition
Fishery updated weight-at-age

- Model

Standard from 2020
Some alternatives for reference point sensitivities

