Norton Sound Red King Crab SAFE2016

Jan 122016

Toshihide "Hamachan" Hamazaki, Jie Zheng
Alaska Department of Fish \& Game
Division of Commercial Fisheries

NSRKC Stock Assessment Model
 Modeling process
 Available Data \& model fit

NSRKC Stock Assessment Model
 Modeling process
 Available Data \& model fit

NSRKC Stock Assessment Model
Molting and Growth Transition

Does not molt \longrightarrow
Molt \& Grow \longrightarrow

Data Sets

Tagging: 1980s: Legal Crabs only, 1990s: mostly sublegal (winter pot), 2012: legal, sublegal

Model Assumptions

- Length classes: 74-123 mm above 10 mm interval, 6 length classes
- New and Old Shells: Constant and identical selectivity, catchability, and molting probability
- M: 0.18 for length classes $1-5$, and 0.648 for class 6
- Discards mortality = 0.2
- Fishery harvests occur instantly:
- Winter fishery: Feb 01: Nov - May
- Summer fisher: July 01: Jun - Sept
- Trawl survey selectivity: constant and identical for NMFS (19761991) and ADFG (1996-2015)
- Winter catch selectivity: winter pot survey selectivity constant and identical
- Commercial catch selectivity: constant and identical from 19772015

Responses to CPT and SSC

- No model modification-improvement requests
- Incorporate results from data-weighting workshop.
- Waiting for CPT's guidelines.
- Provide retrospective estimates of spawning stock biomass and the appropriate statistics (e.g., Mohns' rho).
- Calculated Mohn's rho. Guidelines needed.

Major changes in assessment model

- Alternative Models Considered

1. Jan. 2015 crab assessment model with updated data
2. Estimate M multiplier (ms) for $>123 \mathrm{~mm}$
3. Estimate M equal for all length classes
4. Estimate M for $\leq 123 \mathrm{~mm}$ and ms for $>123 \mathrm{~mm}$
5. Expand length classes $64-134 \mathrm{~mm}$ (from 6 to 8 classes)
6. Reduce length class interval from 10 to 5 mmm
7. All combinations above $=15$ alternative models

Major changes in assessment model

Scenario	Length Range	Length Interval	M	ms $(>123 \mathrm{~mm})$
0 (Default)	$74-124$	10	0.18	3.6
1			0.18	Est
2			Est	1.0
3		10	0.18	Est

Summary of Alternative Model Scenarios

Model	Number of Paramet ers	Total	TSA	St. CPUE	TLP	WLP	CLP	OBS	REC	TAG
0	59	310.9	9.7	-21.7	124.5	44.6	59.7	33.5	12.0	48.6
1	60	-0.1	-0.1	0.0	-0.3	0.0	0.4	0.0	0.1	-0.2
2	60	13.3	-0.4	0.5	-4.4	0.3	12.5	0.9	-0.8	4.7
3	61	-0.2	-0.1	0.0	-0.9	-0.2	0.8	0.1	-0.1	0.1
4	61	-18.0	0.3	0.6	-22.5	-2.3	-1.6	-3.6	0.3	10.8
5	62	-18.0	0.3	0.6	-22.5	-2.3	-1.5	-3.6	0.3	10.8
6	62	3.1	0.2	0.7	-21.2	0.6	10.0	-2.1	-0.6	15.5
7	63	-18.3	0.2	0.6	-21.9	-2.4	-1.8	-3.9	0.4	10.6
8	60	42.3	0.1	-0.4	-5.1	-0.9	3.7	-3.0	-0.4	48.1
9	61	42.2	0.1	-0.4	-5.4	-1.0	4.1	-3.0	-0.4	48.2
10	61	55.4	-0.2	0.0	-7.8	1.7	11.5	-1.4	-1.0	52.6
11	62	41.9	0.1	-0.4	-6.2	-0.8	4.0	-2.7	-0.5	48.4
12	64	43.9	0.6	0.4	-22.6	0.2	2.9	-5.5	0.3	67.7
13	65	43.9	0.6	0.4	-22.6	0.2	2.9	-5.5	0.3	67.7
14	65	67.5	0.5	0.5	-19.9	4.4	13.7	-3.7	-0.4	72.3
15	66	43.4	0.5	0.3	-22.4	-0.3	3.2	-5.9	0.3	67.5

Summary of Alternative Model Scenarios

Model	M	$m s$	MMB(2016)	OFL
0	0.18	3.6	5.99	0.85
1	0.18	$\mathbf{3 . 4 2}$	5.78	0.82
2	$\mathbf{0 . 4 2}$	1	6.15	1.74
3	$\mathbf{0 . 2 1}$	$\mathbf{2 . 9 6}$	6.03	0.78
4	0.18	3.6	5.88	0.77
5	0.18	$\mathbf{3 . 5 6}$	5.87	0.77
6	$\mathbf{0 . 4}$	1	5.81	1.42
7	$\mathbf{0 . 1 4}$	$\mathbf{4 . 6 1}$	6.54	0.81
8	0.18	3.6	6.50	0.86
9	0.18	$\mathbf{3 . 4 5}$	6.46	0.85
10	$\mathbf{0 . 4 1}$	1	6.63	1.64
11	$\mathbf{0 . 2 2}$	$\mathbf{2 . 7 8}$	6.54	1.02
12	0.18	3.6	6.17	0.76
13	0.18	$\mathbf{3 . 6 0}$	6.17	0.76
14	$\mathbf{0 . 3 9}$	1	6.16	1.33
15	$\mathbf{0 . 1 4}$	$\mathbf{4 . 8 2}$	6.05	0.59

Alternative model summary

1. Estimate M for $>123 \mathrm{~mm}$ Little change in model fit (current assumption works)
2. Estimate M equal for all length classes

Lower model fit (Higher M)
3. Estimate M for $\leq 123 \mathrm{~mm}$ and ms for $>123 \mathrm{~mm}$ Little change in model fit: Model estimates of M and ms are similar to current assumption.
4. Expand length classes $64-134 \mathrm{~mm}$ (from 6 to 8 classes) Better model fit. (less model fit to tag recovery data)
5. Reduce length interval from 10 to 5 mmm Less model fit. (less model fit to tag recovery data)
6. All combinations above $=15$ alternative models MMB estimates are similar among all models. (5.87-6.63)

Candidate Models

Model	Number of Paramet ers	Total	TSA	St. CPUE	TLP	WLP	CLP	OBS	REC	TAG
0	59	310.9	9.7	-21.7	124.5	44.6	59.7	33.5	12.0	48.6
1	60	-0.1	-0.1	0.0	-0.3	0.0	0.4	0.0	0.1	-0.2
2	60	13.3	-0.4	0.5	-4.4	0.3	12.5	0.9	-0.8	4.7
3	61	-0.2	-0.1	0.0	-0.9	-0.2	0.8	0.1	-0.1	0.1
4	61	-18.0	0.3	0.6	-22.5	-2.3	-1.6	-3.6	0.3	10.8
5	62	-18.0	0.3	0.6	-22.5	-2.3	-1.5	-3.6	0.3	10.8
6	62	3.1	0.2	0.7	-21.2	0.6	10.0	-2.1	-0.6	15.5
7	63	-18.3	0.2	0.6	-21.9	-2.4	-1.8	-3.9	0.4	10.6
8	60	42.3	0.1	-0.4	-5.1	-0.9	3.7	-3.0	-0.4	48.1
9	61	42.2	0.1	-0.4	-5.4	-1.0	4.1	-3.0	-0.4	48.2
10	61	55.4	-0.2	0.0	-7.8	1.7	11.5	-1.4	-1.0	52.6
11	62	41.9	0.1	-0.4	-6.2	-0.8	4.0	-2.7	-0.5	48.4
12	64	43.9	0.6	0.4	-22.6	0.2	2.9	-5.5	0.3	67.7
13	65	43.9	0.6	0.4	-22.6	0.2	2.9	-5.5	0.3	67.7
14	65	67.5	0.5	0.5	-19.9	4.4	13.7	-3.7	-0.4	72.3
15	66	43.4	0.5	0.3	-22.4	-0.3	3.2	-5.9	0.3	67.5

Author Preferred Candidate Models

Models 0, 1, 5, 13

- Better model fit:
- Trawl, Discards, Winter pot survey length comp
- But, worsen tag recovery

Retrospective Mohn's rho
Model 0: -0.482 : Appendix C1
Model 1: -0.556 : Appendix C2
Model 5: 0.115 : Figure 17
Model 13: 0.926 : Figure 18
Author recommended Model:
Model 5: the lowest Mohn's rho

Selectivity

Fit to Trawl survey data

ST CPUE

Summer commercial standardized cpue

Residual Analyses

Residuals Histogram, Q-Q Plot, Predicted vs. Residual

Com Harvest Length Composition

commercial harvest length: observed vs predicted

Winter Pot Length Composition

Winter pot length: observed vs predicted

Trawl, Discards Length Composition

Trawl length: observed vs predicted

Tag recovery composition

Fit to Length Composition

Effective Sample size

MMB Feb 01

Retrospective Analyses

Andre's Retrospective Analyses of CPT adopted model MMB from 2009-16 SAFE

OFL \& ABC

- $\mathrm{B}_{\text {MSY Proxy }}$
- Average MMB from 1980-2016 $=4.53$ million lb
- MMB
- $\mathrm{MMB}(2016)=5.87$ (SD 1.12) million lb
- $\mathrm{MMB}>\mathrm{B}_{\text {MSY Proxy }}$: Tier 4a
- $F_{O F L}=M=0.18$
- $\mathrm{OFL}_{\mathrm{r}}$ (Retained Legal: Summer 2016) $=\left(1-\exp \left(-F_{\text {OFL }}\right)\right)$ Legal Biomass (July 01 2016)
- Legal Male Biomass (Feb 01, 2016) : 4.65 (SD 0.89)
- Legal Male Biomass (July 01, 2016) $=4.65^{*} \exp (-0.42 \mathrm{M})=4.31$
- $\mathrm{OFL}_{\mathrm{r}}=4.31^{*}(1-\exp (-0.18))=0.710$ million lb
- $\mathrm{ABC}=0.80 \mathrm{FL}_{\mathrm{r}}=0.568$ million $\mathrm{lb}=0.26$ Metric ton

