# Norton Sound Red King Crab SAFE2016

Jan 12 2016

Toshihide "Hamachan" Hamazaki,
Jie Zheng
Alaska Department of Fish & Game
Division of Commercial Fisheries

# NSRKC Stock Assessment Model Modeling process Available Data & model fit



# NSRKC Stock Assessment Model Modeling process Available Data & model fit

#### 5 months Length Prop Abundance **Natural** Trawl survey Pot survey Mortality ST. CPUE Winter fishery Dec - May July 01 Feb 01 **Abundance** Abundance Summer fishery Jun - Sept Length Prop Survey selectivity Molting, Growth Trawl Survey Catch selectivity Fishery: Retain Recruitment **Discards Natural** Mortality Tag recovery 7 months

## NSRKC Stock Assessment Model Molting and Growth Transition



#### **Data Sets**



Tagging: 1980s: Legal Crabs only, 1990s: mostly sublegal (winter pot), 2012: legal, sublegal

#### **Model Assumptions**

- Length classes: 74 123 mm above 10 mm interval, 6 length classes
- New and Old Shells: Constant and identical selectivity, catchability, and molting probability
- M: 0.18 for length classes 1-5, and 0.648 for class 6
- Discards mortality = 0.2
- Fishery harvests occur instantly:
  - Winter fishery: Feb 01: Nov May
  - Summer fisher: July 01: Jun Sept
- Trawl survey selectivity: constant and identical for NMFS (1976-1991) and ADFG (1996-2015)
- Winter catch selectivity: winter pot survey selectivity constant and identical
- Commercial catch selectivity: constant and identical from 1977-2015

#### Responses to CPT and SSC

- No model modification-improvement requests
- Incorporate results from data-weighting workshop.
  - Waiting for CPT's guidelines.
- Provide retrospective estimates of spawning stock biomass and the appropriate statistics (e.g., Mohns' rho).
  - Calculated Mohn's rho. Guidelines needed.

#### Major changes in assessment model

#### Alternative Models Considered

- 1. Jan. 2015 crab assessment model with updated data
- 2. Estimate M multiplier (ms) for > 123mm
- 3. Estimate M equal for all length classes
- 4. Estimate M for  $\leq 123$  mm and ms for > 123mm
- Expand length classes 64 134 mm (from 6 to 8 classes)
- 6. Reduce length class interval from 10 to 5 mmm
- 7. All combinations above = 15 alternative models

#### Major changes in assessment model

| Scenario    | Length<br>Range | Length<br>Interval | M    | ms<br>(> 123mm) |
|-------------|-----------------|--------------------|------|-----------------|
| 0 (Default) | 74-124          | 10                 | 0.18 | 3.6             |
| 1           |                 |                    | 0.18 | Est             |
| 2           |                 |                    | Est  | 1.0             |
| 3           |                 |                    | Est  | Est             |
| 4           | 64-134          | 10                 | 0.18 | 3.6             |
| 5           |                 |                    | 0.18 | Est             |
| 6           |                 |                    | Est  | 1.0             |
| 7           |                 |                    | Est  | Est             |
| 8           | 74-124          | 5                  | 0.18 | 3.6             |
| 9           |                 |                    | 0.18 | Est             |
| 10          |                 |                    | Est  | 1.0             |
| 11          |                 |                    | Est  | Est             |
| 12          | 64-134          | 5                  | 0.18 | 3.6             |
| 13          |                 |                    | 0.18 | Est             |
| 14          |                 |                    | Est  | 1.0             |
| 15          |                 |                    | Est  | Est             |

#### **Summary of Alternative Model Scenarios**

| Model | Number  | Total | TSA  | St.   | TLP   | WLP  | CLP  | OBS  | REC  | TAG  |
|-------|---------|-------|------|-------|-------|------|------|------|------|------|
|       | of      |       |      | CPUE  |       |      |      |      |      |      |
|       | Paramet |       |      |       |       |      |      |      |      |      |
|       | ers     |       |      |       |       |      |      |      |      |      |
| 0     | 59      | 310.9 | 9.7  | -21.7 | 124.5 | 44.6 | 59.7 | 33.5 | 12.0 | 48.6 |
| 1     | 60      | -0.1  | -0.1 | 0.0   | -0.3  | 0.0  | 0.4  | 0.0  | 0.1  | -0.2 |
| 2     | 60      | 13.3  | -0.4 | 0.5   | -4.4  | 0.3  | 12.5 | 0.9  | -0.8 | 4.7  |
| 3     | 61      | -0.2  | -0.1 | 0.0   | -0.9  | -0.2 | 0.8  | 0.1  | -0.1 | 0.1  |
| 4     | 61      | -18.0 | 0.3  | 0.6   | -22.5 | -2.3 | -1.6 | -3.6 | 0.3  | 10.8 |
| 5     | 62      | -18.0 | 0.3  | 0.6   | -22.5 | -2.3 | -1.5 | -3.6 | 0.3  | 10.8 |
| 6     | 62      | 3.1   | 0.2  | 0.7   | -21.2 | 0.6  | 10.0 | -2.1 | -0.6 | 15.5 |
| 7     | 63      | -18.3 | 0.2  | 0.6   | -21.9 | -2.4 | -1.8 | -3.9 | 0.4  | 10.6 |
| 8     | 60      | 42.3  | 0.1  | -0.4  | -5.1  | -0.9 | 3.7  | -3.0 | -0.4 | 48.1 |
| 9     | 61      | 42.2  | 0.1  | -0.4  | -5.4  | -1.0 | 4.1  | -3.0 | -0.4 | 48.2 |
| 10    | 61      | 55.4  | -0.2 | 0.0   | -7.8  | 1.7  | 11.5 | -1.4 | -1.0 | 52.6 |
| 11    | 62      | 41.9  | 0.1  | -0.4  | -6.2  | -0.8 | 4.0  | -2.7 | -0.5 | 48.4 |
| 12    | 64      | 43.9  | 0.6  | 0.4   | -22.6 | 0.2  | 2.9  | -5.5 | 0.3  | 67.7 |
| 13    | 65      | 43.9  | 0.6  | 0.4   | -22.6 | 0.2  | 2.9  | -5.5 | 0.3  | 67.7 |
| 14    | 65      | 67.5  | 0.5  | 0.5   | -19.9 | 4.4  | 13.7 | -3.7 | -0.4 | 72.3 |
| 15    | 66      | 43.4  | 0.5  | 0.3   | -22.4 | -0.3 | 3.2  | -5.9 | 0.3  | 67.5 |

#### **Summary of Alternative Model Scenarios**

| Model | M    | ms   | MMB(2016) | OFL  |
|-------|------|------|-----------|------|
| 0     | 0.18 | 3.6  | 5.99      | 0.85 |
| 1     | 0.18 | 3.42 | 5.78      | 0.82 |
| 2     | 0.42 | 1    | 6.15      | 1.74 |
| 3     | 0.21 | 2.96 | 6.03      | 0.78 |
| 4     | 0.18 | 3.6  | 5.88      | 0.77 |
| 5     | 0.18 | 3.56 | 5.87      | 0.77 |
| 6     | 0.4  | 1    | 5.81      | 1.42 |
| 7     | 0.14 | 4.61 | 6.54      | 0.81 |
| 8     | 0.18 | 3.6  | 6.50      | 0.86 |
| 9     | 0.18 | 3.45 | 6.46      | 0.85 |
| 10    | 0.41 | 1    | 6.63      | 1.64 |
| 11    | 0.22 | 2.78 | 6.54      | 1.02 |
| 12    | 0.18 | 3.6  | 6.17      | 0.76 |
| 13    | 0.18 | 3.60 | 6.17      | 0.76 |
| 14    | 0.39 | 1    | 6.16      | 1.33 |
| 15    | 0.14 | 4.82 | 6.05      | 0.59 |

#### Alternative model summary

- 1. Estimate M for > 123mm

  Little change in model fit (current assumption works)
- 2. Estimate M equal for all length classes Lower model fit (Higher M)
- 3. Estimate M for ≤ 123 mm and ms for > 123mm
  Little change in model fit: Model estimates of M and ms are similar to current assumption.
- 4. Expand length classes 64 134 mm (from 6 to 8 classes) Better model fit. (less model fit to tag recovery data)
- 5. Reduce length interval from 10 to 5 mmm
  Less model fit. (less model fit to tag recovery data)
- 6. All combinations above = 15 alternative models MMB estimates are similar among all models. (5.87-6.63)

#### **Candidate Models**

| Model | Number  | Total | TSA  | St.   | TLP   | WLP  | CLP  | OBS  | REC  | TAG  |
|-------|---------|-------|------|-------|-------|------|------|------|------|------|
|       | of      |       |      | CPUE  |       |      |      |      |      |      |
|       | Paramet |       |      |       |       |      |      |      |      |      |
|       | ers     |       |      |       |       |      |      |      |      |      |
| 0     | 59      | 310.9 | 9.7  | -21.7 | 124.5 | 44.6 | 59.7 | 33.5 | 12.0 | 48.6 |
| 1     | 60      | -0.1  | -0.1 | 0.0   | -0.3  | 0.0  | 0.4  | 0.0  | 0.1  | -0.2 |
| 2     | 60      | 13.3  | -0.4 | 0.5   | -4.4  | 0.3  | 12.5 | 0.9  | -0.8 | 4.7  |
| 3     | 61      | -0.2  | -0.1 | 0.0   | -0.9  | -0.2 | 0.8  | 0.1  | -0.1 | 0.1  |
| 4     | 61      | -18.0 | 0.3  | 0.6   | -22.5 | -2.3 | -1.6 | -3.6 | 0.3  | 10.8 |
| 5     | 62      | -18.0 | 0.3  | 0.6   | -22.5 | -2.3 | -1.5 | -3.6 | 0.3  | 10.8 |
| 6     | 62      | 3.1   | 0.2  | 0.7   | -21.2 | 0.6  | 10.0 | -2.1 | -0.6 | 15.5 |
| 7     | 63      | -18.3 | 0.2  | 0.6   | -21.9 | -2.4 | -1.8 | -3.9 | 0.4  | 10.6 |
| 8     | 60      | 42.3  | 0.1  | -0.4  | -5.1  | -0.9 | 3.7  | -3.0 | -0.4 | 48.1 |
| 9     | 61      | 42.2  | 0.1  | -0.4  | -5.4  | -1.0 | 4.1  | -3.0 | -0.4 | 48.2 |
| 10    | 61      | 55.4  | -0.2 | 0.0   | -7.8  | 1.7  | 11.5 | -1.4 | -1.0 | 52.6 |
| 11    | 62      | 41.9  | 0.1  | -0.4  | -6.2  | -0.8 | 4.0  | -2.7 | -0.5 | 48.4 |
| 12    | 64      | 43.9  | 0.6  | 0.4   | -22.6 | 0.2  | 2.9  | -5.5 | 0.3  | 67.7 |
| 13    | 65      | 43.9  | 0.6  | 0.4   | -22.6 | 0.2  | 2.9  | -5.5 | 0.3  | 67.7 |
| 14    | 65      | 67.5  | 0.5  | 0.5   | -19.9 | 4.4  | 13.7 | -3.7 | -0.4 | 72.3 |
| 15    | 66      | 43.4  | 0.5  | 0.3   | -22.4 | -0.3 | 3.2  | -5.9 | 0.3  | 67.5 |

#### **Author Preferred Candidate Models**

Models 0, 1, 5, 13

- Better model fit:
  - Trawl, Discards, Winter pot survey length comp
  - But, worsen tag recovery

Retrospective Mohn's rho

Model 0: -0.482 : Appendix C1

Model 1: -0.556 : Appendix C2

Model 5: 0.115 : Figure 17

Model 13: 0.926 : Figure 18

**Author recommended Model:** 

Model 5: the lowest Mohn's rho



## Selectivity



## Fit to Trawl survey data



### ST CPUE

#### Summer commercial standardized cpue



## Residual Analyses



### Com Harvest Length Composition



## Winter Pot Length Composition



## Trawl, Discards Length Composition



Discards length: observed vs predicted



## Tag recovery composition



## Fit to Length Composition



## **Effective Sample size**





## **Retrospective Analyses**



Andre's Retrospective Analyses of CPT adopted model MMB from 2009-16 SAFE



#### OFL & ABC

- B<sub>MSY Proxy</sub>
  Average MMB from 1980-2016 = 4.53 million lb
- MMB
   MMB (2016) = 5.87 (SD 1.12) million lb
- MMB > B<sub>MSY Proxy</sub> : Tier 4a
- $F_{OFL} = M = 0.18$
- OFL<sub>r</sub> (Retained Legal: Summer 2016)
   = (1-exp(-F<sub>OFL</sub>))Legal Biomass (July 01 2016)
- Legal Male Biomass (Feb 01, 2016): 4.65 (SD 0.89)
- Legal Male Biomass (July 01, 2016) = 4.65\*exp(-0.42M) = 4.31
- OFL<sub>r</sub> = 4.31\*(1-exp(-0.18)) = 0.710 million lb
- ABC = 0.80FL<sub>r</sub> = 0.568 million lb = 0.26 Metric ton