
fining Measurable Objectives bas n the Council's Overarching Goal

Abundance-Based Management of Pacific Halibut PSC limits

Public Workshop

February 2, 2017

ncil ed arching

Analytical tools

ed arching Our job: help develop management alternatives and evaluate whether they meet Council goals

Analytical tools

ncil ed arching Our job: help develop management alternatives and evaluate whether they meet Council goals

Performance metrics to evaluate whether alternative are likely to achieve the Council goals

v do we define the performance metrics needed for evaluation?

cil defined rching goals

Performance metrics to evaluate whether alternatives ar likely to achieve the Council goals

Changing Goals to Objectives

User participation can help change goals to objectives

Changing Goals to Objectives

- User participation can help change goals to objectives
- Objectives for natural resources must have:
 - 1. An outcome (what you want)
 - 2. A time frame (when you want the outcome)
 - 3. A probability (tolerance for failure)

Changing Goals to Objectives

- User participation can help change goals to objectives
- Objectives for natural resources must have:
 - 1. An outcome (what you want)
 - 2. A time frame (when you want the outcome)
 - 3. A probability (tolerance for failure)
- These 3 elements change Goals to Measurable Objectives
- Objectives may be in conflict with one another; this is typical

nging Goals to Objectives: Example

Goal: Be a healthier person

Measurable Objective:

- 1. Outcome: Lose x pounds
- 2. Time Horizon: Evaluate over the next z months
- 3. Probability: y% chance of success of losing x pounds after z months

nging Goals to Objectives: Example

Goal: Be a healthier person

Measurable Objective:

- 1. Outcome: Lose x pounds
- 2. Time Horizon: Evaluate over the next z months
- 3. Probability: y% chance of success of losing x pounds after z months

nging Goals to Objectives: Example

Oo you want to lose weight?

easurable	Threshold	Time Frame	Probability/R
ojective			tolerance

nanging Goals to Objectives: Example

Goal: Maintain a Healthy Fish Stock

Measurable Objective:

- 1. Outcome: Spawning stock greater than 20% of unfished bioma
- 2. Time Horizon: Evaluate over x years
- 3. Probability: A 95% probability of spawning stock greater than 20% of unfished biomass after x years

valuating Alternatives

ulation analysis can be used to evaluate alternative management ategies against defined objectives

	Alternatives							
	Α	В	С	D	E	F		
Conservation								
Average biomass	XX	XX	XX	XX	XX	XX		
Biomass above value	Probability	Probability	Probability	Probability	Probability	Proba		
Yield								
Average yield	XX	XX	XX	XX	XX	XX		
Variability in yield	XX	XX	XX	XX	XX	XX		
Catch above a value	Probability	Probability	Probability	Probability	Probability	Proba		

re should be flexibility provided to avoid ecessarily constraining the groundfish fisher icularly when halibut abundance is high

- nat is the minimum catch to prosecute the groundfish fisher there a desired minimum catch?
- e there market constraints that should be considered?
- what level of lost yield are you economically harmed?
- foregone yield (unrelated to TAC negotiations) something to nsider?
- w does Flatfish Flexibility factor into the considerations abo
- nat incentives exist or can be developed to minimize bycatc

ide for some stability in PSC limits on an rannual basis

- nat % change in PSC limits interannually disrupts groundfish anning and management activities?
- what % change in PSC limits interannually is 4CDE directed
- libut fishery planning affected?
- Il incentives to minimize bycatch be reduced if PSC limits juquickly from one year to next?

but spawning stock biomass should be prote ecially at lower levels of abundance

- nat is a useful measure for the impact on spawning biomass ould a maximum level of impact on spawning biomass be ecified?
- there a desired minimum abundance/biomass of spawning libut?
- there a target spawning abundance/biomass?
- there a threshold spawning abundance/biomass?
- ould precautionary action be taken when below the thresh
- d when below the minimum?

vide for directed halibut fishing operations [in Bering Sea]

there a minimum FCEY to prosecute the directed halibut fisl 4CDE?

there a target FCEY in 4CDE?

e there market constraints for the directed fishery in 4CDE to build be considered?

ould the directed halibut fishery O32 (or O26) catch limit be eater than a specific proportion of the total O32 (or O26) ca

nit in 4CDE?

but PSC limits should be indexed to halibut ndance

es PSC limit increase and decrease with halibut abundance the PSC limit continuous, or does it have floors and/or ceiling there a range over which PSC will index with abundance? Ould size compositions of indices be considered?