Sablefish assessment 2019

1) New data in hand
2) 2020 outlook
3) Apportionment update
4) Tag-recovery website rollout

Longline survey 2019

Longline survey 2019

BSAI Sablefish longline survey RPN

Longline survey 2019

GOA Sablefish longline survey RPN

The youth are the future

Age compositions 2018

Source
Fishery
Survey

Looks normal

Catch and limits

\square Catch $\square \mathrm{ABC} \square \mathrm{OFL}$

Unavoidable

Bering Sea

\square Catch $\square \mathrm{ABC} \square \mathrm{OFL}$

Better together?

Bering Sea/Aleutian Islands

\square Catch $\square \mathrm{ABC} \square \mathrm{OFL}$

Sablefish November 2019

1) No new models
2) Sensitivity runs
3) Apportionment Preliminary Results
4) Ecosystem and Socioeconomic Profile
5) Risk Table

Preliminary evaluation of alternative sablefish apportionment strategies

Kari Fenske, Dana Hanselman, Curry Cunningham

Overview

- Why we are looking at this
- How we have approached the analyses - methods
- What were are finding (so far)
- What we need from PT

Sablefish apportionment - context

- ABC apportionment fixed at 2013 proportions since 2014
- 2000-2013 apportionment method
- Examine performance of 10 sablefish ABC apportionment methods

Methods

- 6-area OM - simulates the population
- can simulate spatial dynamics in fleet or fish behavior via
- catchability, selectivity, fish movement
- 1-area EM - the assessment model

Methods - OM Simulates population in two periods

Conditioning period (1977-2018)

Forward Projection period (2019-2029+)

- Deterministic conditioning period
- Same across simulations
- Input recruitment, catch
- Intended to closely match Management EM
- Stochastic forward projecting portion which runs for years 2019-2029
- Lognormal recruitment (sigma=0.8)
- Lognormal sample for indices, multinomial/Dirichelet multinomial sample age comps

Methods - OM-EM feedback

Conditioning period population 1977-2018

> OM: Input apportioned ABC from previous year's EM, estimate F

OM: Extract EM output \& ABC, apply
 apportionment method

OM: Calculate population abundance using F, in put M, move fish

Run OM-EM feedback loop for 100 sims, and 30 years (2019 onward)

EM is similar to 'Management' model

Pass data file to ADMB and run EM

OM: Sample population for indices, age comps; build data file

Apportionment types

1. Equal: Each region receives $1 / 6$ of the $A B C$.
2. Fixed: The apportionment proportions from the 2013 assessment that have been applied as fixed proportions for 2014-2018.
3. Equilibrium: Based on the stationary distribution of the movement rates.
4. NPFMC: A 5-yr exponentially weighted moving average of fishery and survey indices; survey weight is 2 x fishery weight.
5. Exp_survey_wt: Similar to 'NPFMC' option but using survey index only.
6. Exp_fishery_wt: Similar to 'NPFMC' option but using fishery index only.
7. Non-Exp_NPFMC: A 5-yr moving average of fishery and survey indices.
8. Partial_fixed: BS and AI receive 10% of the $A B C$ each, WG, CG, WY, and EY are apportioned based on NPFMC method.
9. Age_based: Based on the proportions of fish at age of 50% maturity in each area i.e. areas with greater proportion of fish at age of 50% maturity or greater will be apportioned a greater proportion of ABC.
10. Term_LLsurv: Terminal year of longline survey (no exponential weighting).
11. All_to_one: All ABC taken out of a single area, as an extreme example.

Caveats and important OM details

- The NPFMC Tier 3 harvest control rules are still in place and used for determining $A B C$ in the $E M$, we are only simulating different methods for apportioning $A B C$ to management areas.
- We assume $A B C=T A C$ and 100% of apportioned $A B C$ is caught in each region.
- We do not correct for whale depredation in the ABC or survey index.
- Movement rates (between 6 areas) are input
- Recruitment for the 2014 year class has been reduced in the conditioning period from 150 million fish to 50 million to improve EM convergence and reduce crashing.
- Recruitment draws for the forward projecting period are also capped at 50 million.

Conditioning period OM results

Biomass with recruitment change

Biomass without recruitment change

Conditioning period OM results Spawning biomass

Conditioning period OM results Catch

Conditioning period OM results Recruitment

Recruitment with 2014 year class artificially reduced

Recruitment without reduction in 2014

Conditioning period OM results Recruitment bv area

Conditioning period OM results

All 50 simulated recruitment time series'

A few individual time series

Results

- Using the proportion of survey biomass in each management area to allocate quota performed best for maximizing system yield when true spatial structure was unknown...outperforming equal and recruitment-based allocation.
- However, all methods of quota allocation sometimes led to unintended depletion within management units.

Fisheries Research, December 2019:
Overcoming challenges of harvest quota allocation in spatially structured populations

Katelyn M.Bosley, Daniel R.Goethel, Aaron M.Berger, Jonathan J.Deroba, Kari H.Fenske, Dana H.Hanselman, Brian J.Langseth, Amy M.Schueller

Comparing apportionment types

Compare apportionment types for their performance relative to:

Sustainability
Variability
Economic/Yield

All figures and tables are for illustrative purposes only

Comparing apportionment types

Sustainability: Depletion SSB $_{\text {end_year }} /$ SSB $_{1977}$

Comparing apportionment types

Sustainability: Depletion: SSB $_{\text {end_year }} /$ SSB $_{1977}$

Median Ranges
0.44-0.46

Comparing apportionment types

Economics/Yield and Other

- Mean ABC by area
- Mean age by area
- Mean value of catch by area

Issues and ongoing work

- Non-convergence and crashing, may be the source of outliers in current output
- Working on removing crashed/non-converged runs from summary analyses
- Still coding in some of the performance metrics
- Still validating OM

Seeking feedback

- Longer runs (more years) tend to crash more - how many years of forward projecting is enough? Plan is for 30 years.
- Addressing high 2014 recruitment - reduce or not?
- Any caveats you can't live with?
- What's the end goal? What do we want out of these analyses? What do you want to be deciding in November and what can we show to help?

Food for thought:

Early evidence (and other research) suggests

- Movement rates are high, our HCR works as intended, and those things dominate apportionment biologically...
- Economic considerations are an important issue
- There's not likely to be a 'golden ticket' here that will solve everything for sablefish (allocation issues, high recruitment (lots of small fish, few big fish), uncertainty in spawning locations and importance in preserving regional spawning potential, etc)...apportionment is just one piece.

These outputs will be tools for the Council and SSC to weigh and to choose based on what's important to them.

Fin.

AFSC Groundfish Tag Website

A preview of the tag database website: default opening page

AFSC Groundfish Tagging

e
 NOAA FSHERTES

Handling of Confidential Fishery Data

 An acknowledgment of the masking of confidential recovery data opens EVERY time website is opened
Tag Map Tab: Multi Tag

Ability to query Release, Recovery, or Release/Recovery tag data, by species, year range, \& area for multiple tags

afSC Groundfish Tagging

Tag Map
Filters for Tagmap

Single Tag	Multi Tag	
Recovery - Release \& Recovery		
Year Range		
1971 - 2019 -		
Species		
Toggle AllGreenland TurbotLingcodPacific Sleeper SharkRougheye RockfishSablefish (Adult release)Sablefish (Juvenile release)Salmon SharkSpiny DogfishShortspine Thornyhead		
Areas		
- Toggle All Bering Sea Aleutian Islands \checkmark Western Gulf \checkmark Central Gulf \checkmark West Yakutat - East Yakutat/Southeast \checkmark British Columbia - West Coast		
Reset Map	Search	
Click on tag icon for more detailed information.		
To ensure that fishing locations remain confidentia! the information in the maps of this web site have been generalized to generic center locations of a $20 \times 20 \mathrm{sq} . \mathrm{kr}$ grid as per		

Tag Map Tab: Multi Tag

Can then click on an icon to retrieve a tag's release or recovery information

AFSC Groundfish Tagging

FSHERES

Tag Map Tab: Single Tag

Single Tag - more informative for quick release info once a tag has been recovered

AFSC Groundfish Tagging

Filters for Tagmap	
Single Tag	Multi Tag

Graphs Tab

Click on a region's icon to display release data graphically by species and year range

afSC Groundfish Tagging

θ
 FSHERIES

Graphs Tab

Click on a region's icon to display recovery data graphically by species, year range, and release area

afsc Groundfish Tagging

NOAA
FSHERES

Tables Tab

Six tables displaying tagging data in various formats

AFSC Groundfish Tagging

Tag Map	Graphs	Tables	About

Total number of sablefish	Table 1: Total Releases by Year			
releases by year.	Total number of tag releases by year.			
Show CSV	Year	Adults	Juveniles	Total
	2018	3,605	284	4,665
	2017	3,322	410	4,621
	2016	3,351	985	5,148
	2015	2,529	1,134	4,558
	2014	2,736	123	3,605
	2013	2,589	703	4,534
	2012	2,998	497	4,418
(1) Table 2: Releases and Recoveries by	2011	4,358	943	6,405
Year	2010	3,739	227	5,239
(1) Table 3: Percentage of Recoveries	2009	3,389	312	4,678
(1) Table 4: Distance Traveled				
(1) Table 5: Percentage of Recoveries by	2008	3,295	459	4,449
Time	2007	3,827	161	4,859
(1) Table 6: Distance Traveled by Time	2006	3.929	84	4.716

Tables Tab: Table 3

Example Table 3: showing the \% of SST recovered in each management area from each release area

AFSC Groundfish Tagging

NOAAA
FSHERIES
Tag Map Graphs Tables About
(C) Table 1: Total Releases by Year
(2) Table 2: Releases and Recoveries
by Year
© Table 3: Percentage of Recoveries

Percentage of
shortspine thornyhead
shortspine thornyhead $~$ v
recovered by management area
Show CSV

Percentage of fish recovered by management area.

Release Area	Total Number of Fish	Recovery Area								
		BS	AI	WG	CG	WY	EY	BC	WC	OUT
BS	4	75\%	25\%	0	0	0	0	0	0	0
AI	16	0	100\%	0	0	0	0	0	0	0
WG	19	5\%	0	79\%	16\%	0	0	0	0	0
CG	119	0	0	< 1%	80\%	3\%	3\%	2\%	0	0
WY	56	0	0	0	11\%	59\%	14\%	11\%	0	0
EY	69	0	0	0	0	0	71\%	22\%	0	0
BC	0	0	0	0	0	0	0	0	0	0
WC	0	0	0	0	0	0	0	0	0	0
OUT	0	0	0	0	0	0	0	0	0	0

Tables Tab: Table 6

Example Table 6: average distance traveled by adult sablefish by the number of yrs @ liberty

AFSC Groundfish Tagging

NOAA
FSHERIES

Trag Map Graphs Tables About

Table 1: Total Releases by Year
(D) Table 2: Releases and Recoveries by
(1) Table 3: Percentage of Recoveries
(1) Table 4: Distance Traveled
(ㄷ) Table 5: Percentage of Recoveries by Time

Table 6: Distance Traveled by Time
The average distance (nm) traveled
sablefish (adult release)
by number of years at liberty
Table 6: Distance Traveled by Time

The average distance (nm) traveled by number of years at liberty.		
Number of years at liberty Avg distance traveled (nm) Count $0-1$ 580 6,072 $2-3$ 371 9,355 $4-5$ 553 5,633 $6-7$ 672 4,047 $8-10$ 706 3,928 $11-20$ 652 4,580 $21+$ 736 1,253		

Table Tab: Table export

Tables can be exported to CSVs

We're hoping to get this live as soon as possible!

Comments, suggestions, concerns - please email or call Katy Echave katy.echave@noaa.gov 9077896006

OM movement rates

To
EY WY CG WG BS AI

	EY	0.74	0.08	0.15	0.03	0.00	0.00
	WY	0.14	0.19	0.48	0.15	0.02	0.02
튼	CG	0.11	0.19	0.49	0.16	0.03	0.02
\underline{L}	WG	0.04	0.12	0.32	0.29	0.12	0.11
	BS	0.01	0.03	0.09	0.22	0.63	0.03
	AI	0.00	0.01	0.05	0.11	0.05	0.78

General result

Harvest control rule dominates

Using max gradient to remove runs

If MGC < 1.0

Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed	Age_based	Term_LLsurv All_to_one	
0.46	0.5	0.48	0.48	0.48	0.36	0.56	0.44	0.5	0.34	0.1

If MGC < 0.1

Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed Age_based	Term_LLsurv All_to_one		
0.38	0.28	0.3	0.24	0.24	0.14	0.26	0.22	0.3	0.16	0.08

If MGC <0.001

Interesting that the only two with some good simulations are the two apportionment methods we've been using!

Comparing apportionment types

Sustainability: Biological reference point SSB $_{\text {end_year }} / B_{40}$

Comparing apportionment types

Sustainability: Biological reference point SSB $_{\text {end_vera }} / B_{40}$

Range
0.956-1.017

Comparing apportionment types

Sustainability

- Depletion: SSB $_{\text {end_year }} /$ SSB $_{1977}$
- SSB $_{\text {end_year }} / \mathrm{B}_{40}$
- Mean percent difference between OM SSB proportions by area and apportioned ABC proportions by area
- Low percent difference means apportionment more closely matches underlying population.

Comparing apportionment types

Variability

- Mean percent change in ABC from year to year
- For all areas combined
- For each management area

Equal				0
Fixed 0				
Equilibrium				
NPFMC				12.1
Exp_survey_wt				2.7
Exp_fishery_wt				15.4
Non-Exp_NPFMC				2.8
Partial_fixed				5.7
Age_based				9.2
Term_LLsurv				
All_to_one				0
MC Partial_fixed		Age_based	Term_LLsurv	All_to_one
5.8	1.0	- 19.7		
0.0	1.0	- 4.2		
2.5	15.9	- 7.8		
3.4	1.3	- 4.3		
3.3	6.0	- 10.2		
1.6	9.3	- 8.8		0.0

