Sablefish assessment 2019

New data in hand
 2) 2020 outlook
 3) Apportionment update
 4) Tag-recovery website rollout

Longline survey 2019

Longline survey 2019

BSAI Sablefish longline survey RPN

Longline survey 2019

GOA Sablefish longline survey RPN

The youth are the future

Looks normal

Unavoidable

Better together?

Sablefish November 2019

No new models
 Sensitivity runs

3) Apportionment Preliminary Results4) Ecosystem and Socioeconomic Profile5) Risk Table

Preliminary evaluation of alternative sablefish apportionment strategies

Kari Fenske, Dana Hanselman, Curry Cunningham

Overview

- Why we are looking at this
- How we have approached the analyses methods
- What were are finding (so far)
- What we need from PT

Sablefish apportionment - context

- ABC apportionment fixed at 2013 proportions since 2014
- 2000-2013 apportionment method
- Examine performance of 10 sablefish ABC apportionment methods

Methods

- 6-area OM simulates the population
 - can simulate spatial dynamics in fleet or fish behavior via
 - catchability, selectivity, fish movement
- 1-area EM the assessment model

Methods – OM Simulates population in two periods

- Deterministic conditioning period
 - Same across simulations
 - Input recruitment, catch
 - Intended to closely match Management EM
- Stochastic forward projecting portion which runs for years 2019-2029
 - Lognormal recruitment (sigma=0.8)
 - Lognormal sample for indices, multinomial/Dirichelet multinomial sample age comps

Methods – OM-EM feedback

Conditioning period population 1977-2018

OM: Input apportioned ABC from previous year's EM, estimate F

OM: Extract EM output & ABC, apply apportionment method OM: Calculate population abundance using F, input M, move fish

Run OM-EM feedback loop for 100 sims, and 30 years (2019 onward)

EM is similar to 'Management' model

Pass data file to ADMB and run EM OM: Sample population for indices, age comps; build data file

Apportionment types

- 1. Equal: Each region receives 1/6 of the ABC.
- 2. Fixed: The apportionment proportions from the 2013 assessment that have been applied as fixed proportions for 2014-2018.
- 3. Equilibrium: Based on the stationary distribution of the movement rates.
- 4. NPFMC: A 5-yr exponentially weighted moving average of fishery and survey indices; survey weight is 2x fishery weight.
- 5. Exp_survey_wt: Similar to 'NPFMC' option but using survey index only.
- 6. Exp_fishery_wt: Similar to 'NPFMC' option but using fishery index only.
- 7. Non-Exp_NPFMC: A 5-yr moving average of fishery and survey indices.
- 8. Partial_fixed: BS and AI receive 10% of the ABC each, WG, CG, WY, and EY are apportioned based on NPFMC method.
- 9. Age_based: Based on the proportions of fish at age of 50% maturity in each area i.e. areas with greater proportion of fish at age of 50% maturity or greater will be apportioned a greater proportion of ABC.
- 10. Term_LLsurv: Terminal year of longline survey (no exponential weighting).
- 11. All_to_one: All ABC taken out of a single area, as an extreme example.

Caveats and important OM details

- The NPFMC Tier 3 harvest control rules are still in place and used for determining ABC in the EM, we are only simulating different methods for apportioning ABC to management areas.
- We assume ABC=TAC and 100% of apportioned ABC is caught in each region.
- We do not correct for whale depredation in the ABC or survey index.
- Movement rates (between 6 areas) are input
- Recruitment for the 2014 year class has been reduced in the conditioning period from 150 million fish to 50 million to improve EM convergence and reduce crashing.
- Recruitment draws for the forward projecting period are also capped at 50 million.

Conditioning period OM results

Biomass with recruitment change

Conditioning period OM results Spawning biomass

Year

Conditioning period OM results Catch

Year

Conditioning period OM results Recruitment

Recruitment with 2014 year class artificially reduced

Recruitment without reduction in 2014

Conditioning period OM results Recruitment by area

Conditioning period OM results

Results

- Using the proportion of survey biomass in each management area to allocate quota performed best for maximizing system yield when true spatial structure was unknown...outperforming equal and recruitment-based allocation.
- However, all methods of quota allocation sometimes led to unintended depletion within management units.

Fisheries Research, December 2019:

Overcoming challenges of harvest quota allocation in spatially structured populations

Katelyn M.Bosley, Daniel R.Goethel, Aaron M.Berger, Jonathan J.Deroba, Kari H.Fenske, Dana H.Hanselman, Brian J.Langseth, Amy M.Schueller

Compare apportionment types for their performance relative to:

- Sustainability
- Variability
- Economic/Yield

All figures and tables are for illustrative purposes only

Sustainability: Depletion SSB_{end_year}/SSB₁₉₇₇

Year

Sustainability: Depletion: SSB_{end_year}/SSB₁₉₇₇

Economics/Yield and Other

- Mean ABC by area
- Mean age by area
 - Mean value of catch by area

Issues and ongoing work

- Non-convergence and crashing, may be the source of outliers in current output
 - Working on removing crashed/non-converged runs from summary analyses
- Still coding in some of the performance metrics
- Still validating OM

Seeking feedback

- Longer runs (more years) tend to crash more how many years of forward projecting is enough? Plan is for 30 years.
- Addressing high 2014 recruitment reduce or not?
- Any caveats you can't live with?
- What's the end goal? What do we want out of these analyses? What do you want to be deciding in November and what can we show to help?

Food for thought:

Early evidence (and other research) suggests

- Movement rates are high, our HCR works as intended, and those things dominate apportionment biologically...
- Economic considerations are an important issue
- There's not likely to be a 'golden ticket' here that will solve everything for sablefish (allocation issues, high recruitment (lots of small fish, few big fish), uncertainty in spawning locations and importance in preserving regional spawning potential, etc)...apportionment is just one piece.

These outputs will be tools for the Council and SSC to weigh and to choose based on what's important to them.

Fin.

AFSC Groundfish Tag Website

A preview of the tag database website: default opening page

AFSC GROUNDFISH TAGGING

Filters for Tagmap GEND Multi Tag ingle Tag Status Release Recovery Release & Recovery Year Range 2019 - 2019 -Species Toggle All Greenland Turbot Lingcod Pacific Sleeper Shark Central Gulf Rougheye Rockfish Sablefish (Adult release) Sablefish (Juvenile release) Salmon Shark Aleutian Islands Spiny Dogfish Sugar. British Columbia Shortspine Thornyhead Areas Toggle All Bering Sea Aleutian Islands Western Gulf Central Gulf West Yakutat Eact Vakutat/Southoact Reset Map Search Click on tag icon for more detailed information. To ensure that fishing locations remain confidential, the

To ensure that insing locations remain continential, the information in the maps of this web site have been generalized to generic center locations of a 20 x 20 sq. km. grid as per NOAA/NMFS regulations.

<u>Handling of Confidential Fishery Data</u> An acknowledgment of the masking of confidential recovery data opens EVERY time website is opened

<u>Tag Map Tab: Multi Tag</u> Ability to query Release, Recovery, or Release/Recovery tag data, by species, year range, & area for multiple tags

Tag Map Tab: Multi Tag Can then click on an icon to retrieve a tag's release or recovery information

Tag Map Tab: Single Tag Single Tag – more informative for quick release info once a tag has been recovered

Graphs Tab

Click on a region's icon to display release data graphically by species and year range

AFSC GROUNDFISH TAGGING

information in the maps of this web site have been generalized to generic center locations of a 20 x 20 sq. km. grid as per NOAA/NMFS regulations.

Tag Map

Graphs

Tables

About

Graphs Tab

Click on a region's icon to display recovery data graphically by species, year range, and release area

AFSC GROUNDFISH TAGGING

About

Filters for All Graphs

Graphs

Recovery

ag Map

Year Range

- 1971 2019 Species
- 0 - - -
- Greenland Turbot
 Lingcod
- Pacific Sleeper Shark
- Rougheye Rockfish
- Sablefish (Adult release)
- Sablefish (Juvenile release)
- Salmon Shark
- Spiny Dogfish
- Shortspine Thornyhead

Release Area

- Bering Sea
- Aleutian Islands
- O Western Gulf
- Central Gulf
- West Yakutat
- East Yakutat/Southeast
- British Columbia
- West Coast

Reset Graph

Geodesic lines will appear originating from the chosen release area out to each of the recovery areas. These lines will be scaled to represent the relative total migration from your search.

Search

Click on the Management Area centroids to display a graph delineating the fish by sex and size.

To ensure that fishing locations remain confidential, the information in the maps of this web site have been generalized to generic center locations of a 20 x 20 sq. km. grid as per NOAA/NMFS regulations.

Tables Tab

Six tables displaying tagging data in various formats

AFSC GROUNDFISH TAGGING Tables Tag Map Table 1: Total Releases by Year Total number of Table 1: Total Releases by Year ▼ tag sablefish releases by year. Total number of tag releases by year. Show CSV Adults Year Iuveniles Total 2018 3,605 284 4,665 2017 3,322 410 4,621 2016 3.351 985 5,148 2015 2,529 1,134 4,558 2014 2,736 123 3,605 2013 2.589 703 4,534 2012 2,998 497 4,418 2011 4,358 943 6,405 Table 2: Releases and Recoveries by Year 2010 3,739 227 5,239 Table 3: Percentage of Recoveries 2009 3,389 312 4,678 Table 4: Distance Traveled 2008 3,295 459 4,449 Table 5: Percentage of Recoveries by 2007 3,827 161 4,859 Time • 2006 3 9 2 9 84 4.716 Table 6: Distance Traveled by Time

Tables Tab: Table 3

Example Table 3: showing the % of SST recovered in each management area from each release area

AFSC GROUNDFISH TAGGING

🕑 Table 1: Total Releases by Year
Table 2: Releases and Recoveries by Year
○ Table 3: Percentage of Recoveries
Percentage of
Percentage of shortspine thornyhead •

Tables

Percentage of fish recovered by management area.

					Reco	overy Are	ea			
Release Area	Total Number of Fish	BS	AI	WG	CG	WY	EY	BC	WC	OUT
BS	4	75%	25%	0	0	0	0	0	0	0
AI	16	0	100%	0	0	0	0	0	0	0
WG	19	5%	0	79%	16%	0	0	0	0	0
CG	119	0	0	< 1%	80%	3%	3%	2%	0	0
WY	56	0	0	0	11%	59%	14%	11%	0	0
EY	69	0	0	0	0	0	71%	22%	0	0
BC	0	0	0	0	0	0	0	0	0	0
WC	0	0	0	0	0	0	0	0	0	0
OUT	0	0	0	0	0	0	0	0	0	0

Areas: Bering Sea (BS), Aleutian Islands (AI), Western Gulf (WG), Central Gulf (CG), West Yakutat (WY), East Yakutat/Southeast (EY), British Columbia (BC), West Coast (WC), Outside Reporting Areas (OUT)

Table 4: Distance Traveled

Table 5: Percentage of Recoveries by Time

Tables Tab: Table 6

Example Table 6: average distance traveled by adult sablefish by the number of yrs @ liberty

AFSC GROUNDFISH TAGGING

● Table 1: Total Releases by Year

Tables

 Table 2: Releases and Recoveries by Year 	Table 6: Distanc
Table 3: Percentage of Recoveries	The average distance (nm) tra
	Number of years at liberty
Table 5: Percentage of Recoveries by Time	0 - 1
⊙ Table 6: Distance Traveled by Time	2 - 3
The average distance (nm) traveled	4 - 5
of sablefish (adult release)	6 - 7
by number of years at liberty.	8 - 10
Show CSV	11 - 20
	21+

Table 6: Distance Traveled by Time

The average distance (nm) traveled by number of years at liberty.

Number of years at liberty	Avg distance traveled (nm)	Count
0 - 1	580	6,072
2 - 3	371	9,355
4 - 5	553	5,633
6 - 7	672	4,047
8 - 10	706	3,928
11 - 20	652	4,580
21+	736	1,253

Table Tab: Table export

Tables can be exported to CSVs

Image: A state Image:	toSa	ive 🦲) Off	9 9) - C	- -						DistanceTra	veled-sable	fish-adult-	release-15686	96643 - Exc	el					ر 🛦	on Jeans	F -	- 0	þ
ClipboardFontFontAlignmentNumberNumberStylesCellsEditingPOSSIBE DATA LOSSemi-transponderValueSetingSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueNumberStylesSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingValueSetingSetingSetingValueValueValueSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSetingSeting </th <th></th> <th>Hor</th> <th>ne I</th> <th>nsert</th> <th>Page I</th> <th>Layout F</th> <th>Formulas</th> <th>Data</th> <th>Review</th> <th>View He</th> <th>elp Tea</th> <th>т рт</th> <th>ell me wha</th> <th>t you war</th> <th>nt to do</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ß</th> <th>Share</th> <th>🖓 Cor</th> <th>nmer</th>		Hor	ne I	nsert	Page I	Layout F	Formulas	Data	Review	View He	elp Tea	т рт	ell me wha	t you war	nt to do								ß	Share	🖓 Cor	nmer
A B C D E F G H I J K L M N O P Q R S T U V A B C D E F G H I J K L M N O P Q R S T U V		È Coj S For															s Cell Styles •			at ∑ A ↓ F	Clear ≠ Fi	lter • Selec) & t •			
A B C D E F G H I J K L M N O P Q R S T U V V V A	POS						e lost if you	save this wo	orkbook in th	e comma-de	elimited (.c	sv) format. To	preserve th	ese feature	es, save it in ar	Excel file fo	ormat.	Don't show a	again !	Save As						
And Send Send And And <th< td=""><td>A</td><td></td><td></td><td></td><td></td><td></td><td>E</td><td>F</td><td>G</td><td>н</td><td>I.</td><td>J</td><td>К</td><td>L</td><td>М</td><td>N</td><td>0</td><td>Р</td><td>Q</td><td>R</td><td>S</td><td>Т</td><td>U</td><td>V</td><td>N</td><td>v</td></th<>	A						E	F	G	н	I.	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	N	v
All* 985 1 755.939 1,201 0 7720.54 814 0 759.213 638 1 7359.112 530 0 7043.221 346 0 6826.579 0 0 0 0 Female 871 1 7529.016 1,017 1 7700.17 635 0 7455.485 486 1 7298.609 382 1 6917.901 313 0 6807.712 0 0 0 0 0				BS				AI		Release A				CG			WY			EY			BC			
Female 871 1 7529.016 1,017 1 7700.17 635 0 7455.485 486 1 7298.609 382 1 6917.901 313 0 6807.712 0 0 0			Avg	Mir	n	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	
																										223
Male 795 1 7555.939 1,013 1 7703.128 685 1 7569.249 418 1 7334.989 347 0 6917.345 304 0 6813.376 0 0 0 0 Image:																										274
DistanceTraveled-sablefish-adul • •	•		Distar	ceTrav	eled-sa	blefish-ad	dul (+)									•							-		

We're hoping to get this live as soon as possible!

Comments, suggestions, concerns – please email or call Katy Echave

katy.echave@noaa.gov

907 789 6006

OM movement rates

From

			Т	ō		
	EY	WY	CG	WG	BS	ΑΙ
EY	0.74	0.08	0.15	0.03	0.00	0.00
WY	0.14	0.19	0.48	0.15	0.02	0.02
CG	0.11	0.19	0.49	0.16	0.03	0.02
WG	0.04	0.12	0.32	0.29	0.12	0.11
BS	0.01	0.03	0.09	0.22	0.63	0.03
ΑΙ	0.00	0.01	0.05	0.11	0.05	0.78

General result

Harvest control rule dominates

OFV convergence

Convergence • 0 • 1

Using max gradient to remove runs

If MGC < 1.0

Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed	Age_based	Term_LLsurv	All_to_one
0.46	0.5	0.48	0.48	0.48	0.36	0.56	0.44	0.5	0.34	0.1

If MGC < 0.1

Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed	Age_based	Term_LLsurv	All_to_one
0.38	0.28	0.3	0.24	0.24	0.14	0.26	0.22	0.3	0.16	0.08

If MGC < 0.001

Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed	Age_based	Term_LLsurv	/ All_to_one
0	0.02	0	0.02	0	0	0	0	0	0	0
	\checkmark		$\overline{}$							

Interesting that the only two with some good simulations are the two apportionment methods we've been using!

Sustainability: Biological reference point SSB_{end_year}/B₄₀

Sustainability: Biological reference point SSB_{end_year}/B₄₀

Sustainability

- Depletion: SSB_{end_year}/SSB₁₉₇₇
- SSB_{end_year}/B₄₀
- Mean percent difference between OM SSB proportions by area and apportioned ABC proportions by area
 - Low percent difference means apportionment more closely matches underlying population.

Va	ria	bil	lity

- Mean percent change in ABC from year to year
 - For all areas combined
 - For each management area

Equal	0
Fixed	0
Equilibrium	0
NPFMC	12.1
Exp_survey_wt	2.7
Exp_fishery_wt	15.4
Non-Exp_NPFMC	2.8
Partial_fixed	5.7
Age_based	9.2
Term_LLsurv	
All_to_one	0

	Equal	Fixed	Equilibrium	NPFMC	Exp_survey_wt	Exp_fishery_wt	Non-Exp_NPFMC	Partial_fixed	Age_based	Term_LLsurv	All_to_one
BS	0.0	0.0	0.0	20.7	4.3	23.3	5.8	1.0	19.7		
AI	0.0	0.0	0.0	5.6	1.2	10.2	0.0	1.0	4.2		
WGOA	0.0	0.0	0.0	10.1	2.6	12.8	2.5	15.9	7.8		
CGOA	0.0	0.0	0.0	5.3	0.5	4.2	3.4	1.3	4.3		
WY	0.0	0.0	0.0	13.3	2.6	20.3	3.3	6.0	10.2		
EY-SEO	0.0	0.0	0.0	17.7	4.9	21.8	1.6	9.3	8.8		0.0