

Aleutian Island GKC

"Stock Assessment" based on average historical catch (~6 million Ibs): Tier 5 (lowest)
Triennial Survey, Fishery observer data
Not consistent, potentially biased
Population model using observer data
Potential bias due to observer data
Can we Design a Cooperative survey?
(Consistent and unbiased survey)

What's the problem?

Area
Sampling design
Spatial extent
Accuracy/Precision
Cost Effective

ADF\&G Triennial Survey

Cost:
5 FB II (salary/seaduty/benefits) for 28days
$30 \mathrm{~K} /$ person $=150 \mathrm{~K}$
(150 biologist days)
Vessel charter: wanted 10K/day = 280K

Total Cost: ~430K

Cost due to area too great

So use next best (only) thing for index of abundance: Fishery observer data

Observer data

Fishery Dependent
Fishing "hotspots"
hyper-stability / independence
Variable gear, skipper, bait, etc
Standardized CPUE
Best with what we have

Observer data

Observer data

String locations

High ove Confirm Non-ind
$n \neq 400$
CVs bias

Fished Area

AIGKC Eastern Region (H), >0 pots, >0 crab FINAL Selection: $\mathbf{n}=1100$ (1990-2012)

Observer data

Cooperative Survey?

Improve spatial extent
Reduce potential for hyperstability
Provide consistent data long-term
Cost effective

Survey Design

 Version 2Blue $=1000 \mathrm{~m}$ contour

Survey Design

Reality

High Trawl areas excluded

1 = 66 (22/vessel)
Erla N modified (shortened) strings in non-core areas Runs 50 pot strings.

Early Results

y Dawn: 1 staff, 20 strings, 5 pots/string
5666 Total crab, 2077 measured
Lost one string to Trawl fleet (2 others recover
N: 2 staff, 19 strings, 5 pots/string
4352 Total crab, 1414 measured
icia Lee: 2 staff, 18 strings, 7 pots/string
5497 Total crab, 2382 measured
57 strings (321 pots)

Early Results

Spatial Extent:
Covers 95\% of EAG (high trawl areas excluded) Stratified, 2-stage design (data are independent Still need to examine variance and sample size Skippers/crew impressed with staff

Early Results

Cost:

5 ADFG(salary/seaduty/benefits/travel) for 14d ~1K/person/day = 70K
Fleet:
Increased fuel cost: TBD
Increased time/effort to catch TAC: TBD

Early Results

Logistically feasible to due Coop survey Industry, NRC, ADF\&G

Cost effective
(150 - 200K to survey EAG + WAG)

Next Steps

Full debrief with skippers and staff
(improve efficiencies)
Examine within and among string variability (sample size estimates)
Explore better stratification options
(Skipper, Habitat, Effort)
Initiate in WAG
How/when to integrate into SA
Long-term funding source
Incorporate small-mesh pots

Better Stratification?

Area: Spreads effort out, reduces clumping

Habitat: Ideal, but lots of issues (same as S. CPUE)
Effort: Typically not good to use (part) of response variable; proxy for habitat? But fished area reduced.

What's the problem?

AREA

ADF\&G Triennial Survey

Bering Sea

Pacific Ocean

5nm apart 10pot strings
100fathoms apa
String ~ 0.9nm
Quantifying "all"
$\mathrm{n}=85$ (850)
Sampling area 85

Relative Index of Tagging (growth/

Fished Area

Blue $=1000 \mathrm{~m}$ contour All observer data

Fished Area

2008/09

Inventory

Industry:
Vessels/crew/gear/on the water/willingness
(recognize asking them to modify behavior)

ADFG/NOAA/NRC:
Personnel/Sampling design/some gear
How do we utilize all resources most efficiently?

Version 1 (last year)

Commercial gear
First trip during Commercial season
2 stage design (pots within strings / strings)

