Archival tag methods: Estimating habitat preferences and utilization distribution

Julie Nielsen, Kevin Siwicke, James Thorson

Goal: Unified & practical movement analysis

- 1. Conservation of numbers
 - Isolate movement from other demography
- 2. Calculate habitat utilization as stationary distribution
 - Easy to convert output to species distribution model
- 3. Identical parameters in Lagrangian and Eulerian contexts
 - Joint likelihood for population and individual data; OR
 - Fit a model to tags, and then simulate movement for densities
- 4. Parsimonious and flexible parameterization
 - Use covariates to allow time-variation without extra parameters
- 5. Computational efficiency
 - Euler approximation and uniformization to avoid large-tailed movement
- 6. Scale-free parameters
 - Correct for discretization choice
- 7. Continuous-time calculation
 - Calculate at any intermediate time within intervals

Goal: Unified & practical movement analysis

Specify partial differential equation

$$\frac{\partial}{\partial t} d(s,t) = \underbrace{D\nabla^2 d(s,t)}_{\text{diffusion}} - \underbrace{\mathbf{v}(s) \cdot \nabla d(s,t)}_{\text{drift}} - \underbrace{\nabla h(s) \cdot \nabla d(s,t)}_{\text{taxis}}$$

- Lagrangian:
 - Calculate distribution after time Δ_t starting at known point S_0
 - Use as predicted distribution in a state-space model
- Eulerian
 - Discretize space and define Continuous Time Markov Chain (CTMC)
 - Computation:
 - Exact: Matrix exponential
 - Approximation: Euler method or "Uniformization"

$$\frac{\partial}{\partial t}d(s,t) = \underbrace{D\nabla^2 d(s,t)}_{\text{diffusion}} - \underbrace{\mathbf{v}(s) \cdot \nabla d(s,t)}_{\text{drift}} - \underbrace{\nabla h(s) \cdot \nabla d(s,t)}_{\text{taxis}}$$

Decision tree for movement models

Different forms of movement

Different forms of movement
$$\frac{d}{dt}\mathbf{b} = \mathbf{b}^T\mathbf{M}$$

$$\mathbf{1-p} \quad \mathbf{p}$$

$$\mathbf{p} \quad \mathbf{1-2p} \quad \mathbf{p}$$

$$\mathbf{m} = \mathbf{p} \quad \mathbf{1-2p} \quad \mathbf{p}$$

$$\mathbf{p} \quad \mathbf{1-2p} \quad \mathbf{p}$$

$$\mathbf{p} \quad \mathbf{1-p}$$

Review: Solving differential equations

Say you know a rate:

$$\frac{\mathrm{d}}{\mathrm{d}t}b(t) = \alpha b(t)$$

• How do you solve for change after some time Δt ? $b(t + \Delta t) = b(t)e^{\alpha \Delta t}$

This is the definition of the exponential function

Review: simultaneous differential equations

Say you know a rate:

$$\frac{\delta}{\delta t}\mathbf{b}(t) = \mathbf{b}(t)\mathbf{A}$$

• The a general solution is:

$$\mathbf{b}(t + \Delta_t) = \mathbf{b}(t)\mathbf{B}$$
$$\mathbf{B} = e^{\mathbf{A}\Delta_t}$$

where $e^{\mathbf{A}\Delta_t}$ is the matrix exponential of $\mathbf{A}\Delta_t$

Three implementations for matrix exponential:

- Just use software versions
 - expm::expm() in R
 - expm() in TMB
- 2. Euler approximation

$$e^{\mathbf{A}} = \left(\mathbf{I} + \frac{\mathbf{A}}{N}\right)^{N}$$

- Where N is the number of sub-intervals, and we linearize in each
- 3. Uniformization

$$e^{\mathbf{A}} = \frac{\mathbf{A}^0}{0!} + \frac{\mathbf{A}^1}{1!} + \frac{\mathbf{A}^2}{2!} + \frac{\mathbf{A}^3}{3!} + \cdots$$

So:

$$\mathbf{b}^T e^{\mathbf{A}} = \mathbf{b}^T + \mathbf{b}^T \mathbf{A} + \frac{\mathbf{b}^T \mathbf{A}^2}{2!} + \frac{\mathbf{b}^T \mathbf{A}^3}{3!} + O(\dots)$$

So:

$$\mathbf{b}^{T} e^{\mathbf{A}} = \sum_{n=0}^{N} \mathbf{b}_{n}^{T} + O(\dots)$$

$$\mathbf{b}_{n}^{T} = \begin{cases} \mathbf{b}^{T} & \text{if } n = 0 \\ \mathbf{b}_{n-1}^{T} \mathbf{A} & \text{if } n > 0 \end{cases}$$

1D example of diffusion-taxis movement

• Example with $n_g=25$ and $h_g=0.5T_g+D_g$

 Can use scale-invariant parameters, so results don't depend on scale

High resolution simulation of species invasion
Low resolution simulation of species invasion

Hidden Markov model

Goals:

- Estimate likelihood of parameters $\mathcal{L}(\theta; p_{g,t})$
 - Where $p_{g,t}$ is the data likelihood for archival tags
 - ullet heta includes habitat preference parameters
- Estimate probability of states $\pi_{g,t}$ in each time t
- Predict habitat utilization from preference parameters

Approach:

- Apply forward algorithm to get Pr(Current state|prior and current data)
- Apply backward algorithm to get: Pr(Future data|state)
- Optimal state estimate is their product

Hidden Markov model

Apply forward algorithm to get $Pr(Current\ state|prior\ and\ current\ data)$

Algorithm

$$\mathbf{f}_t = \begin{cases} \mathbf{p}_t & \text{if } t = 1\\ \mathbf{p}_t \odot \mathbf{f}_{t-1} \mathbf{M} & \text{if } t > 1 \end{cases}$$

Where:

$$\mathcal{L}(\theta; p_{g,t}) = \sum_{g=1}^{G} f_{g,T}$$

And:

- T is the maximum time
- \mathbf{f}_t is the forward algorithm for the probability $f_{g,t}$ of each state g in time t
- M is the integrated movement matrix

Hidden Markov model

Apply backwards algorithm to get $Pr(Future\ data|state)$

Algorithm

$$\mathbf{b}_t = \begin{cases} \mathbf{1} & \text{if } t = T \\ \mathbf{M}(\mathbf{p}_{t+1} \odot \mathbf{b}_{t+1}) & \text{if } t > 1 \end{cases}$$

And then get empirical Bayes probability:

$$\mathbf{\pi}_t \propto \mathbf{f}_t \mathbf{b}_t$$

- Can fit to archival tags
- Showing a Pacific cod tagged

Predicted response to bathymetric depth

- Can fit to archival tags
- Apply filter-smoother algorithm to reconstruct tracks for 91 day tag deployment

Predicted location probabilities by date (178709)

- Can fit to archival tags
- Apply filter-smoother algorithm to reconstruct tracks for 91 day tag deployment

Predicted location probabilities by date (178690)

$$\frac{\partial}{\partial t} d(s,t) = \underbrace{D\nabla^2 d(s,t)}_{\text{diffusion}} - \underbrace{\mathbf{v}(s) \cdot \nabla d(s,t)}_{\text{drift}} - \underbrace{\nabla h(s) \cdot \nabla d(s,t)}_{\text{taxis}}$$

Decision tree for movement models

Continuous space for individual (Lagrangian) models

Estimate movement

(northern fur seal, tagged by AFSC Polar Ecosystem Program at St. Paul in 2016)

- Black dots location from telemetry
- Thinning to 20 locations for fitting
- Blue circles confidence elipse for predictions
- Green arrows estimated path

Acknowledgements

Throughout:

Kasper Kristensen

Co-authors:

Julie Nielsen and Kevin Siwicke

Questions/Requests for Plan Team

Endorsement:

 Any concerns or additional research needed before using diffusion-taxis movement for archival tags in council process?

Prioritization:

 Is it worth pursuing funds to identify covariates that explain habitat preference for cod using archival tags?

Distribution:

• Should we aim to have an R-package that can do this, to facilitate access to method, or are simple scripts sufficient?