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Goal: Unified & practical movement analysis

1. Conservation of numbers
* |solate movement from other demography

2. Calculate habitat utilization as stationary distribution
e Easy to convert output to species distribution model

3. lIdentical parameters in Lagrangian and Eulerian contexts
e Joint likelihood for population and individual data; OR
e Fit a model to tags, and then simulate movement for densities

4. Parsimonious and flexible parameterization
e Use covariates to allow time-variation without extra parameters

5. Computational efficiency
e Euler approximation and uniformization to avoid large-tailed movement

6. Scale-free parameters
e Correct for discretization choice

7. Continuous-time calculation
e Calculate at any intermediate time within intervals



Goal: Unified & practical movement analysis
e Specify partial differential equation
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diffusion drift taxis

e Lagrangian:
e Calculate distribution after time A; starting at known point S,
e Use as predicted distribution in a state-space model

e Fulerian

e Discretize space and define Continuous Time Markov Chain
(CTMC)
e Computation:
e Exact: Matrix exponential
e Approximation: Euler method or “Uniformization”
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diffusion drift taxis

Decision tree for movement models

Drift: Taxis:
Vector fields for advection Covariates for preference function
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Continuous-time Markov Chain

Different forms of movement
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Continuous-time Markov Chain

Review: Solving differential equations

e Say you know a rate:
d
—b(t) = ab(t
—b(t) = ab(t)

* How do you solve for change after some time At?
b(t + At) = b(t)e*?t

* This is the definition of the exponential function



Continuous-time Markov Chain

Review: simultaneous differential equations

e Say you know a rate:
o
_ — A
= b(t) = b(0)

* The a general solution is:
b(t+A;) =b(t)B
B = eAlt

where eA%t js the matrix exponential of AA,



Continuous-time Markov Chain

Three implementations for matrix exponential:

1. Just use software versions
* expm:expm()inR
e expm()in TMB

2.  Euler approximation
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e Where N is the number of sub-intervals, and we linearize in each

3. Uniformization
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1D example of diffusion-taxis movement
* Example withn, = 25and h; = 0.5T; + D,
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Discretize space for density (Eulerian) models

e Can use scale-invariant parameters, so results don’t
depend on scale

High resolution simulation of species invasion Low resolution simulation of species invasion
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Hidden Markov model

Goals:

* Estimate likelihood of parameters L(0;p, ;)
* Where p, ; is the data likelihood for archival tags
e 0 includes habitat preference parameters

* Estimate probability of states m, ; in each time t

e Predict habitat utilization from preference parameters

Approach:

* Apply forward algorithm to get
Pr(Current state|prior and current data)

e Apply backward algorithm to get:
Pr(Future data|state)

* Optimal state estimate is their product



Hidden Markov model

Apply forward algorithm to get
Pr(Current state|prior and current data)

Algorithm
L lpOf,_ M ift >1
Where:
G
L(H;pg,t) — 2 fg,T
g=1
And:

e T is the maximum time

* f; is the forward algorithm for the probability f, ; of each state g
intime ¢

e M is the integrated movement matrix



Hidden Markov model

Apply backwards algorithm to get
Pr(Future data|state)

Algorithm

b, — 1 ift=T
C M(Pe+1Obeyq) ifE>1

And then get empirical Bayes probability:
n, « f.b,



Discretize space for density (Eulerian) models
e Can fit to archival tags
e Showing a Pacific cod tagged

bathymetry
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Discretize space for density (Eulerian) models
e Can fit to archival tags

* Apply filter-smoother algorithm to reconstruct tracks for
91 day tag deployment

Predicted location probabilities by date (178709)
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Discretize space for density (Eulerian) models
e Can fit to archival tags

* Apply filter-smoother algorithm to reconstruct tracks for
91 day tag deployment

Predicted location probabilities by date (178690)
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Continuous space for individual (Lagrangian) models

Estimate movement

(northern fur seal , tagged by AFSC
Polar Ecosystem Program at St.

Paul in 2016) —

e Black dots — location from
telemetry
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e Thinning to 20 locations for
fitting

* Blue circles — confidence elipse
for predictions
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e Green arrows — estimated path
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Questions/Requests for Plan Team

Endorsement:

e Any concerns or additional research needed before using
diffusion-taxis movement for archival tags in council process?

Prioritization:

e |s it worth pursuing funds to identify covariates that explain
habitat preference for cod using archival tags?

Distribution:

e Should we aim to have an R-package that can do this, to facilitate
access to method, or are simple scripts sufficient?
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