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ACLIM

MSE tool for testing climate-resilient polices for management
ACLIM is a proof of concept, now endorsed by leadership

Done in coordination with national international partners and is now
spinning up in multiple regions (e.g., Future Seas, NCLIM, Nor BARENTS
RISK)

Approach is central to the FEP Climate Module, as are rapid assessments
and EFH
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CMIP5 ENSMN Annual SST anomaly (°C)
(2050 to 2099) - (1956 to 2005)

CO2 mitigation scenario High baseline scenario ("Business as usual”)

CMIP5 ENSMN RCP2.6 anomaly (2050-2099)-(1956-2005) C CMIP5 ENSMN RCP8.5 anomaly (2050-2099)-(1956-2005) C
- 90N | | | | A | | \ \ | | | | \
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Projection data from CMIP5 (Taylor et al., 2012) avail. at: www.esrl.noaa.gov/psd/ipcc/ocn

Modified from Fig. 6.2 Holsman et al. 2018 [in | Barange et al. (Eds.)
2018. Impacts of climate change on fisheries and aquaculture. TP 627.
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Anomaly from 1961-1990 climatology, 1 degree, weekly resolution

NOAA /NWS /NCEP /EMC Marine Modeling and Analysis Branch Oper H.R.
RTG_SST_HR Anomaly (0.083 deg X 0.083 deg) for 30 Mar 2019
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Globally averaged MHW frequency

ARTICLE
OPEN

Longer and more frequent marine heatwaves over

the past century 1 . : : : .
Eric C.J. Oliver® 23, Markus G. Donat® %5, Michael T. Burrows®, Pippa J. Moore’, Dan A. Smale® &2, d Globally averaged MHW duration
Lisa V. Alexander®>, Jessica A. Benthuysen'®, Ming Feng® ", Alex Sen Gupta® 45, Alistair J. Hobday'?,
Neil J. Holbrook® %13, Sarah E. Perkins-Kirkpatrick®>, Hillary A. Scannell'®5, Sandra C. Straub® ° & 5.0 ] — HadISST —— SODA
Thomas Wernberg® ° | — ERsST —— NOAA OI SST
2254 —— COBE - Dataset mean
2004 CERA20C

Progress in Oceanography 141 (2016) 227-238

C lists available at Sci Direct

Progress in Oceanography

journal homepage: www.elsevier.com/locate/pocean

: ; ; ; 100 +
A hierarchical approach to defining marine heatwaves @ .
Alistair J. Hobday **, Lisa V. Alexander ", Sarah E. Perkins ", Dan A. Smale *, Sandra C. Straub®, 80 1
Eric CJ. Oliver ™, Jessica A. Benthuysen®, Michael T. Burrows ", Markus G. Donat ", Ming Feng',
Neil J. Holbrook ™, Pippa J. Moore’, Hillary A. Scannell ', Alex Sen Gupta "<, Thomas Wernberg 60 -
*CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Austratia
" ARC Centre of Excellence for Climate System Science, The University of New South Wales, Sydney, Australia 40 . a
“Climate Change Research Centre, The University of New South Wales, Sydney, Australia
9 Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
Climate Dynamics 20 -
https:/doi.org/10.1007/500382-019-04707-2
T T T T T
®) 1900 1920 1940 1960 1980 2000 2020
Check for
updates

| Mean warming not variability drives marine heatwave trends
“We find that mean SST change was the dominant driver of

increasing MHW exposure over nearly two thirds of the ocean,
O S Vet GotA Gt Tt Ao Wt 19 and of changes in MHW intensity over approximately one third
of the ocean. “

Eric C. J. Oliver'®
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Bering Sea “Cold Pool”
2001-2018

Northern Hemisphere Seasonal Cycle
NASA Blue Marble (2004) base imagery with sea ice from NCEP CFSR (1979-2000)

Jan 15, 2004

The Climate Reanalyzer™ | cci-reanalyzer.org

Graphic: J. Overland, P. Stabeno, M. Wang, C. Ladd,
_N. Bond, and S. Salo, PMEL/NOAA
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Climate change effects

Ocean warming

Ocean acidification

Sea-level rise

Reduce ice & snow pack

Reduced oxygenation

Ocean & atmosphere
circulaion changes

Changes in precipitation

Increase in extreme
weather events

Econamisdmpactsentation Marine industries

4 Wild-capture fisheries =
Aquaculture

Pharmaceuticals, chemicals e
w N

Shipping

Port infrastructure & services

Coastal development
s

Seabed mining )
/ Oil and gas
S Renewable energy
X
Desalination
O\ p /

\

\ Habitat protection, restoration

APRIL 2019

— Harvesting of living resources*

— Commerce and trade
in and around the ocean

— Extraction of non-living resources,
generation of new resources

— Responses to ocean health challenges

Technology R & D

~

%"{;:;";Z;\" effects *|PCC confidence levels assigned to impacts on marine industries Type ofimpacton  Level of industry
Il High to very high Ocean warming Wild-capture fisheries maring |ndlu.stry developmemt
I High Ocean acidification Nouacrliu: M Positive Il Established
I Medium high Reduced oxygenation 4 ' ' I Negative I Emergent
Bl Medium . Increase in extreme weather events —%  Pharmaceuticals, chemicals Neutral or New

i Ocean & atmosphere circulation changes Tourism ambiguous

Climate change in the oceans: Human impacts and responses E. Allison and H. R. Bassett (November 12, 2015) Science 350 (6262), 778-782.
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Promote and protect adaptive capacity in fish and fisheries

Improve management foresight in a changing climate
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“knowledge and culture construct societal limits to adaptation, but
these limits are mutable.”

- Adger et al. (2009).




Test new & existing tools
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incremental (normative) adaptation to preserve current livelihoods,
health, and well being and meet future demands

Adaptation

transformational adaptation, especially to address/prevent continued
marginalization and promote diverse well being, values, and views
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Build capacity to revaluate &
enable transformative actions

Iterative Decision Cycles

- Maladaptive Space * +
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Fig. 1. The current ‘classic’ conceptualisation of adaptation pathways - as a series of adaptive learning decision cycles over time (top left, cf. Willows and Connell, 2003;
Haasnoot et al., 2013) with their decision lifetimes (top right - the sum of lead and consequence times, cf. Stafford Smith et al.,2011), where some chains of decisions lead to
maladaptive outcomes over time, but there may be other alternatives that are adaptive (bottom, cf. Reeder and Ranger, 2011; Haasnoot et al.,2013). From the perspective of
the current decision point at the left, a currently satisfactory pathway can be plotted through the future (strongest colour), but this must be re-visited at each decision point
(Figure developed by Andy Reisinger, pers. comm.).

Wise et al. 2014. Reconceptualising adaptation to climate change as part of
pathways of change and response. Global Environmental Change 28: 325-336
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The Decision Cycle

(Re)assess

climate-affected
decisions and
overall goals

Selectpreferred  Dacision Potential

option, implement impacts within
and monitor cyde dedision lifetime
‘ Adaptation l
options and risk
minimization

Iterative Decision Cycles

x Maladaptive Space * Es
»
144
ry
/\ \ . Al n =
”y / t:
: : -_— e . ,y
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s
%
4 Maladaptive Space =7
X

Fig. 1. The current ‘classic’ conceptualisation of adaptation pathways - as a series of adaptive learning decision cycles over time (top left, cf. Willows and Connell, 2003;
Haasnoot et al., 2013) with their decision lifetimes (top right - the sum of lead and consequence times, cf. Stafford Smith et al.,2011), where some chains of decisions lead to
maladaptive outcomes over time, but there may be other alternatives that are adaptive (bottom, cf. Reeder and Ranger, 2011; Haasnoot et al.,2013). From the perspective of
the current decision point at the left, a currently satisfactory pathway can be plotted through the future (strongest colour), but this must be re-visited at each decision point
(Figure developed by Andy Reisinger, pers. comm.).

Wise et al. 2014. Reconceptualising adaptation to climate change as part of
pathways of change and response. Global Environmental Change 28: 325-336
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The Decision Cycle The Decision-Cycle Context
Decision Lifetime
(Re)assess Y . Y
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g
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A -
2
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&
Y
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Fig. 1. The current ‘classic’ conceptualisation of adaptation pathways - as a series of adaptive learning decision cycles over time (top left, cf. Willows and Connell, 2003;
Haasnoot et al., 2013) with their decision lifetimes (top right - the sum of lead and consequence times, cf. Stafford Smith et al.,2011), where some chains of decisions lead to
maladaptive outcomes over time, but there may be other alternatives that are adaptive (bottom, cf. Reeder and Ranger, 2011; Haasnoot et al.,2013). From the perspective of

the current decision point at the left, a currently satisfa
(Figure developed by Andy Reisinger, pers. comm.).

ctory pathway can be plotted through the future (strongest colour), but this must be re-visited at each decision point

Wise et al. 2014. Reconceptualising adaptation to climate change as part of
pathways of change and response. Global Environmental Change 28: 325-336
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Project changes in ocean conditions &

fish populations

Physical, biological, & socioeconomic change;
now - 2100

Evaluate how management can promote
adaptation & minimize negative impacts

gradual change & sudden shocks;
test existing & new tools; estimate risk
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Ecosystem Risk Assess
Quantitative —

A Level3 Quantitative Scenario Anfilyses
= with trajectories & error disgributions

Vulnerability Assessments

Evaluate recovery actions and
management reference points;
estimate cumulative effects

Spatial planning;

Level 2 T
with data & expert opinion research scoping;
L. T T identify interventions
= Indicator Evaluation Sgg'gnsgl;ej:mg'
based on expert opinion ¢
Y Level 1 AP management context
Qualitative J

Class 1

single pressure, single pressure, multiple pressures,
single subject multiple subjects multiple subjects
direct interactions direct + indirect interactions

Holsman et. al 2017. An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability
3(1):e01256. 10.1002/ehs2.1256



http://onlinelibrary.wiley.com/doi/10.1002/ehs2.1256/epdf
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Challenges to evaluating adaptation options:

* |long time horizons of adaptation outcomes;
* the shifting baseline and uncertainty around climate hazards;

e assessing attribution of any results;
e addressing the additional climate risk and counterfactual scenarios

“an approach built on mixed methods, participation and learning helps alleviate some
of the uncertainties around interpreting results on adaptation.” Craft & Fisher 2018, Fisher 2015

Repeated engagement
FEP & .
climate April 2019
ACLIM feb 2018 module ss5C
May 2017 Presented to € adopted Social-
Fisheries ecosystem Ecosystem by ecological
Forum (CA) subcommittee workshop NPFMC ppt
‘ Summer ’ October . Oct 2018 Jan 2019 April 2019
v 2017 ACLIM ssC R
ACLIM BO projections ROMSNPZ Scenarios
Econ results included in presentation workshop
Scenarios presented CEATTLE
workshop to Council multispp

assmnt

o

Craft B., & fisher,'S. (20:18) Mecfsurmg theadag]’ﬁt‘ drrgor.:l in the global stocktake of the Parls AgreEment N 2

Glimate Policy. https -//doi-org/10. 1080/14693062 2018 1485546\@* a8

~



Regional projections

MIROC RCP 4.5
GFDLRCP 4.5
CESM RCP 4.5
MIROC RCP 8.5
GFDL RCP 8.5

GFDL RCP 8.5 PON
CESM RCP 8.5
CESM RCP 8.5 PON

CE - single spp
CE - IBM crab
CE - multispp
CE - MIZER (size spec)
CE - EwE

CE - FEAST

B1 ACLIM Presentation

Assessment tools

single sp
multi sp
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MEY

BO

B40
climate-informed BO
climate-informed B40

No fishing

Status Quo

SQ with flexibility
alternative portfolio 1
alternative portfolio 2

Evaluate Risk &

Adaptation

Ecological metrics
Economic metrics

Human wellbeing
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“plausible descriptions of how the future
may evolve with respect to a range of

prescriptive, (i.e. no likelihood or

preference is attached to any of the
35 - COz individual scenarios of the set)”
| van Vuuren et al. 2011
30 -
25 - High-Baseline
20 - “Business as usual”
15 -
- RCP 6
10 +
5 \
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Global Climate Models (x 7)
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CMIP6 :
Bering Sea 10K Mode
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ACLIM
Alaska Climate Integrated Modeling Project

Anne Hollowed (AFSC, SSMA/REFM)
Kirstin Holsman (AFSC, REEM/REFM)
Alan Haynie (AFSC ESSR/REFM)
Stephen Kasperski (AFSC ESSR/REFM)
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Jonathan Reum (UW SAFS)

Amanda Faig (UW SAFS)

FATE: Fisheries & the Environment
SAAM: Stock Assessment Analytical Methods
S&T: Climate Regimes & Ecosystem Productivity

l.
-

]

# pmel.noaa.gov (¢

PMEL mo BB @) (2)

UNITED STATES DEPARTMENT OF COMMERCE
Pacific Marine Environmental Laboratory

Search PMEL Home

Modeled effect of coastal biogeochemical processes, climate
variability, and ocean acidification on aragonite saturation state in the
Bering Sea

Annual Mean Surface pH (2003-2012) Ma’d’ 06, 2019

‘ Pllcher D.J., D.M. Naiman, J.N. Cross, A.). Hermann, S.A. Siedlecki, G.A. Gibson, and
J.T. Mathis (2019): Modeled effect of coastal biogeochemical processes, climate
& j variability, and ocean acidification on aragonite saturation state in the Bering
| Sea. Front. Mar. Sci., 5, 508, doi: 10.3389/fmars.2018.00508.

Due to naturally cold, low carbonate concentration waters, the Bering Sea is
hughly vulnerable to ocean acidification (OA), the process in which the
absorptlon of h T carbon by the oceans leads to a decrease
" in ocean water pH and carbonate ion concentration. Emerging evidence

1! - suggests that a number of important species in the Bering Sea (such as red

i s s f king crab and Pacific cod) are vulnerable to OA due to direct (e.g., reduced
growth and survival rates) and indirect (e.g., reduced food sources) effects.

Modeled annual mean surface pH over the 2003-12 e h Y nditi " ¢ 2 dl £
timeframe. Cooler colors indicate corrosive, low pH water However, the harsh winter conditions, prevalence of sea ice, and large size of

while warmer colors indicate relatively buffered, high pH the Bering Sea have made it difficult to sample this region for OA using
water traditional ship-based observational methods.

In this paper, the authors developed a computational model of OA in the Bering Sea and used this model to run a simulation from 2003
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Consider nested
scales of adaptation
& management
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| Fine-scale Biophysical

| Regional Biophysical

I I Global & Earth System

Climate Models

Holsman, K. K., Hazen, E. L., Haynie, A., Gourguet, S., Hollowed, A., Bograd, S. J., ... Aydin, K. (2019). Towards climate resiliency in fisheries
management. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsz031
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Climate resilient management = portfolio of multiscale approaches
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Holsman, K. K., Hazen, E. L., Haynie, A., Gourguet, S., Hollowed, A., Bograd, S. J., ... Aydin, K. (2019). Towards climate resiliency in fisheries
management. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsz031
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RESULTS: physics & lower trophic
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OBSERVATIONS ROMSNPZ (downscaled) GLOBAL MODEL
Annual Groundfish Survey Bering10K (July 1) CFSR/CFSv2-Op.Anal. (July 1)

2003

2009
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Increased warming (2090-2099)-(2010-2019)
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Figure 12: Ensemble results for sea bottom temperature (sbt), obtained by projecting atmospheric forcing (from 28 different CMIP5
models under emission scenario RCP8.5) onto the multivariate modes. Left: yearly areal average for each CMIP5 realization, relative to
the 2010-2019 mean. Dark black lines show ensemble mean; light black lines indicate +/- Sd for that year. Right: ensemble mean change
based on the 28 CMIP5 models. (modified from Hermann et al. in press)

(in press) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz, K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected
biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043
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Declines in large zooplankton
(2090-2099)-(2010-2019)
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Figure 13. Ensemble results as in Figure 12, for log,, (large crustacean zooplankton).

(in press) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz,K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected
biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043




Heatwave % of time
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Marine heatwaves will likely
increase in frequency and duration

Duration

Marine heatwave analysis based on downscaled
ROMSNPZ hindcast + projections, and 1970-2000 climatology.
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Heatwaves

Now ~ 21% of the time
2050 ~ 30-77% of the time
2100 ~ 60-90% of the time

rcp4
rcp8
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ROMSNPZ: K. Kearney, A. Hermann, W. Cheng, K. Aydin, 2018
Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016)
Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons,ACLIM
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RESULTS: upper trophic & fisheries
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(in prep) Holsman et al. Evidence for trophic amplification and attenuation of potential climate change impacts on groundfish
productivity in the Bering Sea, AK. Climate change.

(in press) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz ,K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected
biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043
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RCP 8.5
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(in prep) Holsman et al. Evidence for trophic amplification and attenuation of potential climate change impacts on groundfish
productivity in the Bering Sea, AK. Climate change.
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Downscaling is key for understanding variability

Holsman, KK et al. in prep. Comparative global and downscaled projections yield divergent estimates of
fishery volatility under climate change.




SSB

Synergies despite structural differences
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Reum et al. 2019
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More research on interactions &

processes would reduce uncertainty
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Catches
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Future populations driven by
Climate change scenarios

SSB

Mean size
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L — Tanner crab
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AK plaice 9
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changes populations
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Fig. SXXX. (A)
Dendrogram of species
similarity (Euclidean
distance) based on
relative importance of
different uncertainty
sources to catches, SSB,
and mean weight
ensemble projections.
Three clusters were
identified (labeled 1-3).
(B) Area plots indicate
the proportion of
uncertainty associated
with each source
averaged across species
within the three clusters.

Reum JCP, et al. (In Prep) Ensemble projections of future climate change impacts on the Eastern Bering Sea food web
using a multispecies size spectrum model. Intended for Frontiers in Marine Science
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Reum JCP, et al. (In Prep) Ensemble projections of future climate change impacts on the Eastern Bering Sea food web
using a multispecies size spectrum model. Intended for Frontiers in Marine Science




Downscaling is needed

Account for trophic
Interactions

Mitigation is lower risk

Adaptation through
fisheries management
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Projections based on global climate models may
underestimate future variance

Accounting for predation changed the direction of
projections from increases (single-sp model) to
declines (multi-sp)

Most pollock and cod scenarios crashed under
business as usual (RCP8.5) by 2100; carbon
mitigation (RCP 4.5) may lessen or prevent declines

Changing harvest rates through management can
help lessen climate impacts, to a point. Considering

regional management policies is ilgRALAAL. in prep
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BEYOND ‘STATUS QUOQO’: socioEcon
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Projection Scenarios (x3)
AR4 A1B
AR5 RCP 4.5
AR5 RCP 8.5

How can we make

these complex

dynamics realistic
but as simple as

possible?
B N

A\

ACLIM

Alaska Climate Integrated Modeling Project

Anne Hollowed (AFSC, SSMA/REFM)
Kirstin Holsman (AFSC, REEM/REFM)
Alan Haynie (AFSC ESSR/REFM)
Stephen Kasperski (AFSC ESSR/REFM)
Jim lanelli (AFSC, SSMA/REFM)
Kerim Aydin (AFSC, REEM/REFM)
Trond Kristiansen (IMR, Norway)

Al Hermann (UW JISAO/PMEL)

Wei Cheng (UW JISAO/PMEL)

André Punt (UW SAFS)

Jonathan Reum (UW SAFS)

Amanda Faig (UW SAFS)

ries & the Environment
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§V‘ NOAA ATMOSPHERIC ADMINISTRATION
4 NITED STATES DEPARTMENT OF WMERCE

essment Analytical Methods
& Ecosystem Productivity
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*Markets — project prices and costs

*Translate key economic changes to fisher
behavior through different models

Evaluate management tools
*Estimate impacts on fishers & communities.
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(a) Harvesters' fishing decisions

Biological characteristics of
Alaska pollock

(b)

(c) Environmental characteristics
of the Bering Sea

Q=E(CPUE)

Spatial
distribution
of pollock

S
=
-
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(7) <?niformity/ )"
Size

Many social,
economic,
and

Roe
(3) maturity

management

factors.

Haynie and Pfeiffer 2013 CJFAS




Fast Slow, high resolution
Statistical Mechanistic
Implicit ecosystem “noise” Explicit ecosystem interactions

» Effort response to abundance ACLIM utilizes economic

» Spatial models of fleets responding to models of different complexity

shifts in fish distributions.

 Maximum economic yield (MEY)
« Community impact analyses
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Other Alaska Stakeholders

2016-2018+

— ACLIM Presentations of results & progress
— Interactive workshops
— Repeated discussions: impacts & priority issues




B1 ACLIM Presentation APRIL 2019

"Do you think our current management process
is well suited to handle climate change?”

Why/why not?

*&" When poll is active, respond at PollEv.com/aclimnoaa641 D Text ACLIMNOAAG641 to 22333 once to join
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IPCC Socio-Economic Pathways (SSPs)
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SSP5

Fossil Fueled Development
(Mitigation challenges dominate)

SSP3
Fragmentation
(High Challenges)

SSP2

Business as Usual
(Intermediate challenges)

SSP1

Sustainability
(Low challenges)

SSP4

Inequality
(Adaptation challenges dominate)

Socio-economic challenges for adaptation

There Is large uncertainty about economic trends...

APRIL 2019

O'Neill et al Global Environmental Change 2015
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Ocean System Pathways (OSPs)

Global Environmental Change 45 (2017) 203-216

Contents lists available at ScienceDirect

Global Environmental Change STV

journal homepage: www.elsevier.com/locate/gloenvcha

From shared socio-economic pathways (SSPs) to oceanic system pathways @CmssMark
(OSPs): Building policy-relevant scenarios for global oceanic ecosystems and
fisheries

0. Maury""%’"", L. Campling®, H. Arrizabalaga®, O. Aumont*, L. Bopp“¢, G. Merino®, D. Squires”,
W. gheung‘, M. Goujor, C. Guivarch®, S. Lefort’, F. Marsac®”, P. Monteagudo', R. Murtugudde™,
H. Osterblom”, J.F. Pulvenis®, Y. Ye?, B.J. van Ruijven*

2 IRD — UMR 248 MARBEC, Av Jean Monnet CS 30171, 34203 SETE cedex, France

- Alcamo, J., 2008. The SAS approach: combining qualitative and quantitative
knowledge in environmental scenarios environmental futures — the practice of
environmental scenario analysis.

Page 50
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scenarios provide contrasting futures of how the
social-ecological system could evolve

Iterative Decision Cycles

v Maladaptive Space * +
2y
L 3
€ »
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$> V' 4 44
: : _— * - :%
ry — Adaptive Space rd
"
» <
o~
*
+Maladaptive$pace +
x

Fig. 1. The current ‘classic’ conceptualisation of adaptation pathways - as a series of adaptive learning decision cycles over time (top left, cf. Willows and Connell, 2003;
Haasnoot et al., 2013) with their decision lifetimes (top right - the sum of lead and consequence times, cf. Stafford Smith et al.,2011), where some chains of decisions lead to
maladaptive outcomes over time, but there may be other alternatives that are adaptive (bottom, cf. Reeder and Ranger, 2011; Haasnoot et al.,2013). From the perspective of
the current decision point at the left, a currently satisfactory pathway can be plotted through the future (strongest colour), but this must be re-visited at each decision point
(Figure developed by Andy Reisinger, pers. comm.).

Wise et al. 2014. Reconceptualising adaptation to climate change as part of
pathways of change and response. Global Environmental Change 28: 325-336
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Why this might Why this might
Fishery Mechanisms increase decrease

Change in relative price of
oremium fish

costs

Increase in protection for
fishing communities
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Why this might
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Why this might

Mechanisms

Fish prices

increase

Driven by consumer demand,
income and/or scarcity

decrease

Driven by fishing & aquaculture
demand or smaller populations of
valuable species

Change in relative price of
premium fish

Concentrated wealth
interacting with scarcity (e.g.,
high prices for halibut)

Increased value of protein for
humans or input to aquaculture

Number of species fished

Mai

Fishing and processing
costs

Incr
tax.
incr

Priority on conservation
values or other uses of
resources

Change in demand or strength
of conservation measures

Can we simplify
this further?

change in the Endangered
Species Act

Increase in protection for
fishing communities

Additional concern about
preserving the distribution of
fishing opportunities

Less interest or ability by

inhabitants to live in remote,
resource-based areas; more large
fishing vessels.

Revenue volatility

If species are unable to adapt
to changing climate; global
economic factors

Better management or long-term
investment strategies; global
economic factors
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Type of Change

Change in relative price of
oremium fish

Can we simplify

this further?

Increase in protection for

fishini communities
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Price & cost change storylines

1 Increase in value and quota share of pollock & cod relative to
others in the management system

2. Increase in relative value and quota share of lower-value species -
primarily “flatfish”

L)
-




AAAAAAAAA

Bycatch and Protected Species Scenarios

 Pollock constrained by challenges

* Chinook limits value/catch of pollock

* Fur seals limit fishing near the Pribilof islands
 Flatfish, Arrowtooth, and Atka constrained

* Increased SSL restrictions in the Aleutians

» Reduced Flatfish TACs because of halibut

A2\ NOAAFISHERIES™ :

L)
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ABC To TAC And Commercial Harvest (ATTACH)

 Predicts TAC and harvest under current & alternative policies.
 Accurately captures management & fishing behaviors in the BSAI

 Allows ACLIM (& other) evaluate alternative policies performance

| Out of sample BS Pollock catch predictions from AC
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Management Strategy Evaluations (MSEs)

 New technology

» (Catch shares: differing impacts on risks
(Kasperski & Holland 2013, Anderson et al 2017 etc.)

 Dynamic area closures

» Bycatch reduction incentives

* Revised harvest control rules

* Others (to be explored in the future)
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Take-home Messages

* The Bering Sea is likely to change

« ACLIM tools are best available, but will
continue to evolve & improve

* (Continued excellent and responsive
management will be essential.
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Evaluate future
conditions & risk

Characterize
existing

management tools

& approaches Dy,

Define +w

Figure 1. Climate-ready fisheries management process. Changing X o

climate conditions are represented at the centre of the diagram as mtegrated %

ocean acidification, temperature change, sea level rise, and multi-scale (=7

extreme events. These cause changes in the biotic community, such (§

as shifting distributions and changing productivity, as indicated in management

the next ring out from the centre. To enable managers to account pOfth“OS >

for these changes and move toward climate-ready fisheries Kol

management (outermost ring), scientists and managers need to be Q’b

able to detect changes, understand mechanisms of those changes,

evaluate risks and priorities, conduct assessments and develop

forecasts, and communicate results and advice to managers and

stakeholders.
Karp et al. in press. Accounting for Shifting Distributions and Holsman, KK, EL Hazen, A Haynie, S Gourguet, A Hollowed, S
Changing Productivity in the Development of Scientific Advice Bograd, JF Samhouri, K Aydin, Toward climate-resiliency in
for Fishery Management. ICES JMS doi: fisheries management. ICES. 10.1093/icesjms/fsz031

10.1093/icesjms/fsz048
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SICCME/S-CCME
Regional Modeling Nodes

Beaufort & Norwegian Baltic
Eastern | Chukchi Gulf of St. Seal  lgaq
Bering Seas Lawrence Batarits
Sea Seas
we [T
[ =

P/ . : INE Biscay" ‘
Gulf of “|US Coast

Alaska NW Med.
Seal;

~|US Coast

California
Current
N Pacific
&Islands BC Central
Coast

|CES-PICES Strategic Initiative on
Climate Change Effects on Marine Ecosystems
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ACLIM Scenarios Workshop

Wed. April 3, 5:30-7:00 pm
Aleutian Room , Anchorage Hilton

www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project




Thanks!

NPRB & BSIERP Team
ACLIM Team

AFSC
SICCME/SCC-ME
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Funding:

Fisheries & the Environment (FATE)

Stock Assessment Analytical Methods (SAAM)

Climate Regimes & Ecosystem Productivity (CREP)
Economics and Human Dimensions Program

NOAA Integrated Ecosystem Assessment Program (IEA)
NOAA Research Transition Acceleration Program (RTAP)
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2019 ACLIM papers

(2019) Holsman, KK, EL Hazen, A Haynie, S Gourguet, A Hollowed, S Bograd, JF Samhouri, K Aydin, Toward
climate-resiliency in fisheries management. ICES. 10.1093/icesjms/fsz031

(in press) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz1,K. Aydin, M. Wang, A. B. Hollowed, and K. K.

Holsman. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios.
ICES. doi: 10.1093/ices/fsz043

(2019) Reum, J., JL Blanchard, KK Holsman, K Aydin, AE Punt. Species-specific ontogenetic diet shifts
attenuate trophic cascades and lengthen food chains in exploited ecosystems. Okios DOI:
10.1111/0ik.05630

(2019) Reum, J., K. Holsman, KK, Aydin, J. Blanchard, S. Jennings. Energetically relevant predator to prey
body mass ratios and their relationship with predator body size. Ecology and Evolution (9):201-211 DOI:
10.1002/ece3.4715

Reum, J., J. Blanchard, K. Holsman, K. Aydin, A. Hollowed, A. Hermann, W. Chang, A. Faig, A. Haynie, A.
Kasperski, A. Punt, in prep. Ensemble projections of future climate change impacts on the Eastern Bering
Sea food web using a multispecies size spectrum model. Frontiers in Marine Science






