# Bristol Bay red king crab (BBRKC) proposed models May 2024 

Katie Palof ${ }^{1}$,<br>${ }^{1}$ Alaska Department of Fish and Game, katie.palof@alaska.gov

May 2024

## Summary

The model explorations presented here include some of those suggested by CPT and SSC, and updates to GMACS. All GMACS updates were tested to ensure model fit (likelihood values, output, etc.) matched the last accepted base model. These models focus on selectivity - specifically assumptions for selectivity using the BSFRF data as a prior - and time block for molting probability. The models presented here are the beginning of work to explore these topics and the author acknowledges that further exploration is warranted. Model variants were performed using both the accepted 2023 model, 23.0a, and the previously accepted base model, 21.1b. Additionally, models were updated to reflect a correction in the season in which MMB is calculated, which was season 6 but now is season 7 . This was a correction that minimally affects the estimated MMB and associated reference points.
The results of these model explorations are presented in this document in section C. Background on the Bristol Bay red king crab modeling approach, modeling framework (GMACS), and history of the stock and fisheries can be found in the last full SAFE published on the NPFMC website and will not be repeated here.
(BBRKC 2023 SAFE)

## B. Responses to SSC and CPT

## CPT and SSC Comments on Assessments in General

## Response to SSC Comments (June 2023, Oct 2023): <br> "The SSC recommends that a"fallback" Tier 4 alternative be provided, as recommended by the Simpler Modeling workshop. When doing so the SSC asks the authors to provide plots to compare OFLs with the status quo Tier 3 models for previous years, justification for the time series used for status determination and a recommended $A B C$ buffer." <br> Response: A Tier 4 fallback based on survey data and the REMA model was provided in Sept. 2023 and will be provided this Sept. The author provide as much additional information as possible along with these model results. <br> "For the inclusion of trawl survey data, the SSC suggests crab assessment authors and the CPT be more explicit about best practices for which standard years are included for bottom trawl survey data."

Response: This was addressed by the CPT at our Jan 2024 meeting. See meeting minutes for agreed upon "best practices".
"The SSC recommends the crab stocks begin using the established risk table format from groundfish for assessing uncertainty around buffer considerations"

Response: The CPT discussed picking up risk tables for the three main stocks at our Jan 2024 meeting. It was decided that authors would provide draft risk tables for the Sept. 2024 assessments.
"The SSC recommends that uncertainty intervals be included when showing time series of biomass/abundance estimated by models.

Response: These are provided in this document.

Response to SSC Comments (June 2022, Oct 2022):
"The SSC recommends that the RKC authors work together to complete a stock structure template for June 2023."

Response: A structure template for RKC in the Bering Sea was presented at the Sept 2023 CPT meeting (Oct 2023 SSC).
"The SSC suggests that the CPT develop guidelines for when to change model start dates"
Response: This topic was taken up at the Jan 2023 CPT meeting, with some basic guidelines presented in those minutes that included keeping data unless there was a strong reason (environmental, poor data quality, model instability) to exclude the data and data exclusion did not lead to drastic model output changes. Model 22.0, where data starts in 1985 rather than 1975, was presented in May/Sept 2023 but was not adopted. Changes to input data are not considered currently unless the CPT changes their guidance on data inclusion.

## Response to SSC Comments (from February 2022):

"The SSC supports the CPT general recommendations that all stock assessments include results from the currently accepted model with new data (base model) so that changes in model performance can be assessed. Values for management-related quantities for all models that may be recommended by the CPT or SSC should also be available."

Response: These recommendations are reflected in the document.

## CPT and SSC Comments on BBRKC assessment

## Response to SSC Comments specific to this assessment (from October 2023):

Provide basis for the tight prior on $M$ and catchability.
Response: The prior on trawl survey catchability is estimated with a mean of 0.896 and a standard deviation of 0.025 (CV about 0.03) that is based on double-bag experiment results (Weinberg et al. 2004). The prior on M is based on the balance of allowing M to be estimated above the default, historic 0.18 value for males but realizing the limitations of the data to estimate $M$ freely. Future work is planned and will continue to explore the most appropriate estimation of M.

Consider tracking Dungeness crab abundance in the EBS and how this might affect BBRKC dynamics.
Response: Currently there is no abundance estimate of Dungeness crab in the EBS. Conversations have occurred between the author and regional biologist on possible general affects, with the overall consensus that these two species are likely not occupying the same habitat as juveniles/adults. However, the early life spatial occupation for both of these stocks is unknown, so there may be competition for food in these stages. Trends of Dungeness catch over time are being obtained and will be explored in future work.
Explain why equal sample sizes are used for male and female size composition data.
Response: The size composition data for surveys is entered into the model as aggregate data since they are derived from the same survey samples. Therefore the sample size for each is based on the total number of crab measured not those measured by sex.
MCMC output diagnostics, autocorrelation plots and parameter chains
Response: These will be provided in Sept 2024 when a full MCMC is performed on the preferred models.
Possible effect of high 2011 recruitment as scene in survey size composition figures
Response: Size composition plots in Sept 2023 highlighted a potential recruitment event in 2011 for both males and females from the NMFS survey data (Figures 6 and 7 - Sept 2023 SAFE). This peak occurs as size classes that are not included in the assessment model ( $<65 \mathrm{~mm}$, figures 43 and $44-$ Sept 2023 SAFE), therefore this recruitment likely plays little role in the model estimates and resulting retrospective pattern since it is not seen in subsequent years to be included in the model.

## Response to CPT Comments (from May 2023 / Sept 2023):

Reconsider which growth parameters are estimated vs. specified. Consider a model run with growth specified outside the model (CPT Sept 2023)
Response: The author is collaborating with biologists on the availability of more recent growth data, and investigating the feasibility of recovering the original raw data used in the historic growth specifications. Work is underway to determine the best path forward for growth parameterizations for this stock.

Survey selectivity / q / catchability. Reconsider the strong prior and shape of the selectivity curve. Consider using the BSFRF data as a prior on selectivity/catchability as was done in the snow crab assessment (CPT and SSC May/June 2023 and Sept/Oct 2023)

Response: Models presented here (24.0 and 24.0b) reflect explorations on using the BSFRF data as a prior on selectivity - similar to snow crab (fall 2023, Figure 2). Further explorations on priors and shape were not explored this round, although the previous assessment author did explore some aspects in models runs between 2020 and 2022.

Revisit blocking on molting probability from tagging data (CPT and SSC May/June 2023)

Response: The blocking of molt probability for males reflects changes in the Bristol Bay ecosystem in the early 80 s and has been a historic component of the current model. Models 24.0c and 24.0d reflect removing this blocking to estimate one molting probability for the entire time series.

## Response to SSC Comments specific to this assessment (from October 2022):

"The SSC recommends that a high priority be placed on trying to isolate factors that reduce the retrospective bias in mature male biomass."

Response: The author agrees that this should be a high priority, however current explorations have not shed light on these factors yet. This is still a high priority for the author.
"The SSC recommends investigation of the highly biased fits to the BSFRF index and suggests that the current approach of inflating the variance to account for lack of fit is inappropriate when obvious bias is present."

Response: We agree with this recommendation, and are investigating this avenue along with exploring catchability for both surveys. One method to account for this is to use the BSFRF survey to inform a prior on NMFS q and not have it fit directly in the model (Models. 24.0a and 24.0b in this document).
"The accumulation of large males and particularly large females in the plus group indicates length bin groups may need to be re-evaluated."

Response: We acknowledge this observation, recognizing this has only been an issue for about the last 10 years of size compositions since recruitment has been poor. Explorations on extending the size bins is on the list of further work for this model, but was not prioritized on this cycle.
"The SSC noted that the NMFS and the State determined that the survey re-tows would not be conducted in 2022, despite meeting the threshold to do so. The SSC requests an examination from the assessment author of the potential value of these re-tows, and whether re-tows provide a more or less accurate index of abundance."

Response: Model 23.2 was explored in May of 2023 as a bookend for the model output without any retow data. If the CPT and SSC wish to see more variations of this model we can provide them, i.e. removing some years and not all as one possibility. While female re-tow data does not highly affect male model outcomes it does affect fishery closures since the State of Alaska harvest strategy uses a mature female threshold for opening.

## Response to SSC Comments specific to this assessment (from June 2022):

The SSC noted that during preliminary model runs in May, a full document need not be produced, but one that focuses a summary of model features and runs would be sufficient.

Response: Starting in May 2023 the proposed model run document reflects these changes, focusing on model runs and explorations. Model structure and historical information is linked to via the NPFMC website in the summary section and not repeated in this document. The author welcomes further suggestions on the "proposed model" run documents since the CPT does not formally have a format for these.
"The SSC recommends exploring how to estimate both catchabilities (NMFS trawl survey and BSFRF survey), but with a linked prior to influence them to scale together (i.e., assume some approximate value of how much higher $q$ is for that survey)."

Response: This is on the authors list of future work to be addressed with explorations of catchability for both surveys, but has not been explored in this document.

Response to CPT Comments (from May 2022):
"The CPT recommended examining how the initial conditions of abundance are treated as a future analysis"
Response: This has not yet been addressed, but is on the list for future work.

## Response to SSC Comments specific to this assessment (from October 2021):

"The SSC requests that in addition to temperature effects on the timing of the molt-mate cycle, the authors explore other potential drivers (e.g., prey quality or quantity) that could underlie the incomplete molt-mate cycle observed in 2021. Based on NMFS trawl survey female biomass estimates, the State of Alaska closed the BBRKC fishery. Next year's assessment should estimate the probability that the stock is currently in the overfished condition."

Response: NMFS staff did an evaluation of re-tow survey protocol in Spring 2022; no changes were adopted at that time. Probabilities in the overfished condition for some models were estimated in September 2021, May 2022, and for the base model in September 2022. Model 23.2 was presented in May 2023, as an exploration of the base model (21.1b) without the retow data for females. This model has minimal effects on the federal harvest control rules, but does estimate a lower biomass for females which would directly affect the State harvest strategy.
"The SSC recommends that authors should carefully consider assessment implications of the stock boundaries given the evidence of crabs outside of the managed area. The SSC suggests that the authors should still be able to use data from outside stock boundaries, even if not used in the input survey abundance estimates. For example, the abundance seen outside stock boundaries could be treated as covariate informing catchability within the model. This analysis seems particularly important for females that are increasingly outside of the current stock boundaries and are at low abundance, triggering the State closure. The SSC recommends that the authors formulate separate survey abundance time series inside and outside of the defined area that could prove useful in the assessment model (e.g., informing catchability). If this is not an option in the stock assessment, then it highlights the need for ESRs or ESPs to track movement of these crabs both through survey results and developing indices from local knowledge."

Response: The current version of GMACS seems not to be able to use the Northern RKC survey index to inform BBRKC survey catchability. We tried to add a model to include both BBRKC and Northern RKC data, but the groundfish fisheries bycatch is not currently available in the Northern area. In the last two full SAFEs - September 2022 and 2023 - we plotted more proportional data of the Northern RKC. Overall, the proportions of different size groups of the Northern RKC during a recent dozen years are higher than in the past and do not trend higher except for mature females in 2021. The high survey mature female abundance in the Northern area in 2021 was primarily from three tows and one of them is more than $50 \%$ of total mature females. The survey abundance of the Northern RKC will continue to be plotted in the SAFE report in the future. After migration patterns between BBRKC and the Northern RKC are fully understood, we will model them in the stock assessment.
"The SSC supports the BSFRF collaborative work with ADFGG and NMFS to tag BBRKC."
Response: We fully support tagging efforts, especially those to understand seasonal movement and the flow of individuals in or out of the Bristol Bay management area.
"It would be useful to investigate if there is a mechanism for higher natural mortality or fishing mortality for females only during that early time period while following the CPT recommendation of looking at model 21.0 with constant but separate Ms by sex. Since Model 21.0 estimates a very high level of fishing mortality, but does seem to account for the decline in large females, there may be a fishery selectivity issue in that period. If the modelers choose not to continue to use historic data prior to 1985, this suggestion may not be useful."

Response: Figuring out the exact causes of high mortality in the early 1980s is always difficult and we summarize the potential causes in Appendix A of the last full SAFE, section C-vi, "Potential Reasons for High Mortality during the Early 1980s". The directed fishery does not catch many large females and small crab, so it is difficult to remove these crab from the population without a large mortality event. If this period of high natural mortality was a concern, it would be preferred to start the model in 1985, which has
two advantages: avoiding the early 1980 s period so that a constant M over time can be used, and the same NMFS survey gear throughout the whole model time period.
"The SSC supports continued exploration of the use of VAST estimates for this assessment, particularly if their use will inform mechanisms underlying shifting distributions outside of the current management area."

Response: We also support improvement of VAST estimates and are willing to provide feedback to Jon for further improvement. In general the CPT has not prioritized using VAST output in crab models but we hope to revisit this soon, potentially at the Jan 2025 modeling workshop.

## Response to CPT Comments (from September 2021):

"When projecting the stock to determine whether it is approaching an overfished condition, identify the uncertainties included and ignored in the projection. It is particularly important to distinguish those that are captured in the projection (i.e. those associated with the model) and the additional uncertainties that form the basis for the $A B C$ buffer."

Response: Uncertainties are discussed in the projection section included in the final SAFE in Sept. 2023.
"When projecting MMB, label figures with the date to which it is projected (e.g., Feb. 15, 2022), not just the year (which can lead to confusion)."

Response: Working on following this recommendation as we improve plotting standardization from GMACS output.
"Consider a model in which the data starts in 1985 (as suggested by the CIE reviewers)."
Response: Model 22.0 starts in 1985, and was presented in May 2022, May 2023, and Sept 2023. After discussions during the $2023 / 24$ CPT meetings the author is uncertain whether removing the early part of the time series is appropriate. Therefore the model will not be presented again unless specifically requested.

## Response to SSC Comments specific to this assessment (from June 2021):

"The SSC supports exploring more modern methods for estimating natural mortality, but notes that this method still relies strongly on the maximum age for BBRKC. The SSC recommends continued research to validate the ages for this stock."

Response: We agree with this suggestion. The maximum age was determined by old tagging data, and due to funding and personnel constraints, age validation for BBRKC is more likely a long-term goal than a short-term project.
"The likelihood profile suggests that the values of $M$ for male and female might be similar and that the current difference may be because of the constraint of base $M$ to a low value. When $M$ is misspecified, it can be the cause of a strong positive retrospective pattern, which BBRKC has. The SSC would have liked to have seen compositional fits and a retrospective analysis for model 19.6 or some model with a higher $M$ value, particularly to see if it fits the plus group better. Despite the increase in F35\%, there was not a commensurate increase in OFL. An exploration of the underlying reasons for this outcome is needed."

Response: Based on our past modelling experience, when M values for males and females are estimated separately, estimated $M$ values tended to be always higher for females than for males. The likelihood profile was created through fixing $M$ values for males and estimating $M$ values for females, and when the fixed $M$ values for males were very high, estimated $M$ values for females tended to be similar to $M$ values for males. The increase in F35\% but not a commensurate increase in OFL is due to reduction of mature male biomass caused by the high M.

As a reference, we copied the likelihood profile computed in May 2020 below. Model 19.6 uses male base M of 0.257 estimated by Then et al. (2015), and the likelihood profile of base M from 0.1 to 0.4 is as follow:


Figure 1: Likelihood profile on M from May 2020 and 2021; 2022 values of M are circled.

It appears that the maximum likelihood value is achieved with a base M of 0.31 for males and 0.321 for females.

In May 2023, models 23.0, 23.0a, 23.0b, and 23.3 all involve variations of higher base M values for males. Higher base M values do not appear to improve the plus group fittings. In Sept 2023, the accepted model was 23.0a which estimates M for males with a tight prior. This was an increase in $\mathrm{M}(\sim 0.23)$ from previous fixed values of 0.18 and is thought to be more appropriate for king crab stocks.
"In addition to the CPT recommended models (19.3d, 19.3e, and 19.3g), the SSC recommends a simplified version of model $19.3 d$ that estimates one natural mortality parameter across sex and time, and one shared catchability and selectivity curve for the NMFS trawl survey to help make several selectivity parameters better defined."

Response: We named this as model 21.0 and included it in the September 2021 assessment.
"The SSC requests that the current crab management zones be included in the maps of VAST model-derived spatial distributions of BBRKC."

Response: We will ask Dr. Jon Richar to add the current crab management zones to the VAST spatial plots.
"The SSC also looks forward to the summary report from the March 2021 CIE Review for this stock."
Response: The summary report of the 2021 CIE review is included in Appendix D of the 2022 full SAFE (referenced on the NPFMC website).

## Response to CPT Comments (from May 2021):

"The CPT was concerned that the 'information' content of the data with respect to natural mortality could be related to strong assumptions elsewhere in the model, and recommended further exploration of natural mortality after September and suggested attending the June 2021 CAPAM workshop on natural mortality, which may provide some insights into best practices. A large increase in estimated natural mortality would likely increase fishing mortality reference points, with management implications."

Response: Model runs in May 2022/2023 addressed some variations on M. Estimated M values in the lengthbased crab models tend to have higher values than the other approaches, and confounding among estimated M, survey selectivity/catchability, and recruitment in a length-based model makes it difficult to accurately estimate M in the model. The base model accepted in fall 2023 (model 23.0a) includes an estimated M for males using a tight prior. Further exploration of the appropriateness of this prior are planned.
"The CPT was interested in more exploration of the retrospective patterns, which seem to have increased since the last assessment despite no new data being added. Reported Mohn's rhos were starting to reach concerning magnitudes in the proposed models?"

Response: Higher than expected BSFRF survey biomass during 2007-2008 and 2013-2016 and NMFS survey biomass in 2014 are likely behind some of these retrospective patterns. Also, much lower than expected NMFS survey biomass during 2018-2019 and 2021-2022 results in lower biomass estimates in recent years. The biases for total abundance are much smaller than mature male biomass. As other model explorations are tackled retrospective patterns will be considered.

# C. Modeling Approaches and Explorations for spring 2024 

## Assessment Methodology

This assessment model uses the GMACS modeling framework (since 2019) and is detailed in Appendix A of the last full SAFE report (link in the summary section). An updated version of GMACS (version 2.01.M.10, 2024-02-27) was used. The fall 2023 assessment used version 2.01.M.01, 2023-03-13. Progress of GMACS development has been documented on the GitHub development site (GMACS GitHub).

## Model explorations

Models explored in this document:

- 23.0a: base model (fall 2023), M for males estimated in the model + updated GMACS
- 23.0a (MMB season): base model + MMB estimated at the beginning of the last season
- 21.1b: previous base model, M fixed $=0.18$ for males + updated GMACS
- 21.1b (MMB season): $21.1 \mathrm{~b}+\mathrm{MMB}$ estimated at the beginning of the last season
- 24.0: 23.0a (MMB season) + selectivity informed by BSFRF
- 24.0b: 21.1b (MMB season) + selectivity informed by BSFRF
- 24.0c: 23.0a (MMB season) + a single molt period for males and females
- 24.0d: 21.1b (MMB season) + a single molt period for males and females


## Reasoning for model explorations

Six model scenarios are presented in this report. The first two models have nearly identical results and were compared to show the effect of estimating MMB at the beginning of the last season of the year (which is season 7 in the model), versus season 6 in previous versions (models 21.1b.p7 and 23.0a.p7). During some GMACS updating it was discovered that, due to the order of events that take place within a season in the model, the MMB for each year should be estimated in the last season - here season 7 instead of season 6 . The mature male biomass used for management is estimated on Feb. 15th in each year and this corresponds to the beginning of season 7 . Small differences in the reference points are present with this update due to small changes in MMB caused by the fraction of natural mortality being applied during the year for this estimate. The overall model fit is nearly identical, including the MLE and likelihood components (Table 4).

The rest of the model scenarios can be divided into two areas of exploration: 1) exploring a prior on selectivity using the BSFRF data similar to snow crab models in 2023 (models 24.0 and 24.0 b ); and 2 ) simplification of molting probabilities to one time period instead of two (models 24.0c and 24.0d). Both lines of model exploration were done using the fall 2023 accepted base model 23.0a, which estimates the base M for males using a log-normal prior with a mean of 0.18 and a CV of 0.04 , and the previously accepted base model 21.1 b , which has a fixed value of 0.18 for the base M for males. This allows the assumption of two different natural mortality values to play out in all situations. Further work estimating natural mortality with a less informed prior was not performed in these model explorations but is on the list of potential model explorations for the future.

Recent CPT/SSC comments and the simpler modeling workshop report suggested that the author should explore methods to estimate catchability $(Q)$ for the NMFS trawl survey. In the base models, initial trawl survey catchability is estimated to be 0.896 with a standard deviation of 0.025 ( CV about 0.03 ) that is based on double-bag experiment results (Weinberg et al. 2004). The appropriateness of this prior and the
relationship between NMFS trawl survey $Q$ and that assumed for the BSFRF survey have been on the list of model suggestions.
Model explorations here use methods similar to those for snow crab in 2023 to explore using the BSFRF data as a prior on selectivity for the NMFS survey. BSFRF surveys were performed in 5 years (2007, 2008, $2013,2014,2015$, and 2016) and are currently treated as a separate index in the assessment model, with both the index and size composition data being fit with the $Q$ for BSFRF set to 1 . Models 24.0 (based on 23.0a) and 24.0b (based on 21.1b) remove the BSFRF data as an index and size composition data set and instead use the information from these data to set a normal prior on selectivity for the NMFS survey. A GAM was fit to inferred selectivity (assuming the catchability of the BSFRF survey was 1) at size by year weighted by the sample size by year (gam(sel $\sim s($ size $)$, weights $=$ sample_size) ). For these purposes males and females were combined as one sample. The predicted mean and standard error of the resulting GAM was input as a prior on a selectivity parameter for each size class in GMACS (Figure 2). Specifically, the selectivity type was set to 0 (parametric) in the .ctl file and catchability was fixed at 1.
Models 24.0c (based on model 23.0a) and 24.0d (based on model 21.b) are explorations of the suggestion to simplify the molting probability time periods to 1 instead of the 2 periods in the base model. The necessity of the two periods for molting probability is not well documented but it is assumed to be correlated with changes in the environment and the Bristol Bay stock since it coincides with regime shifts and stock crash in the early 80s. The models explored here remove the time periods for molting probability and estimate one curve for the entire model time frame.

## Results

## a. Sensitivity to GMACS changes

Models 23.0a, 23.0a.p7, 21.1b, and 21.1b.p7 reflect changes to the point at which MMB is calculated during the model year. The likelihoods for these model comparisons are identical (Table 4). However, there are slight differences in calculation of terminal year MMB, $\mathrm{B}_{35 \%}$, and specifications resulting from changes in the annual timing of MMB estimation (Table 2). The estimated $\mathrm{F}_{35 \%}$ and $\mathrm{F}_{\mathrm{off}}$ are the same for both models.

## b. Effective sample sizes and weighting factors

- CVs are assumed to be 0.03 for retained catch biomass, 0.04 for total male biomass, 0.07 for pot bycatch biomasses, 0.10 for groundfish bycatch biomasses, and 0.23 for recruitment sex ratio. Models also estimate sigmaR for recruitment variation and have a penalty on $M$ variation and many prior-densities.
- Initial trawl survey catchability (Q) is estimated to be 0.896 with a standard deviation of 0.025 (CV about 0.03) based on the double-bag experiment results (Weinberg et al. 2004). These values are used to set a prior for estimating Q in models with both the BSFRF and NMFS data, but not in models 24.0 or 24.0 b.


## b. Tables of estimates

- Negative log-likelihood values are summarized in Table 4 for all models, while parameter estimates are summarized in Tables $5-8$ for a few representative models.
- Natural mortality estimates are shown in Table 3.
- Abundance, MMB, and recruitment time series for a few representative models are found in Tables 9 -12 .


## c. Evaluation of the fit to the data and model estimates.

- Selectivities by length (Figures 3 and 4 )

Model explorations focus on estimated trawl survey selectivity. The use of the BSFRF data as a prior on survey selectivity in models 24.0 and 24.0 b resulted in a difference in selectivity, especially for large size bins. However, the overall shape of the selectivity curve for these models is similar to that estimated in the base models. Interestingly, since the selectivity priors are the same the estimated selectivity curve for both M models are similar instead of the divergence you see in the two base models. Survey selectivity affects not only the fitting of the data but also the absolute abundance estimates. These estimated survey selectivities are generally smaller than the capture probabilities in Figure A1 (refer to last full SAFE draft) because survey selectivities include capture probabilities and crab availability. The NMFS survey catchability $(Q)$ is estimated to be 0.896 from the trawl experiment. The reliability of estimated survey selectivities will greatly affect the application of the model to fisheries management since under- or over-estimates of survey selectivities will cause a systematic upward or downward bias of abundance estimates, respectively. Information about crab availability in the survey area at survey times will help estimate the survey selectivities. Higher estimated natural mortalities generally result in lower NMFS survey selectivities.

- Molting probability by length (Figure 5)

Models 24.0c and 24.0 d remove the time blocking for male molt probability in an attempt to simplify the modeling process. Overall, differences in model results are minimal. Historically, male molting probabilities have been estimated with two time blocks (1975-1980 and 1981-present) but the estimates are very similar between time blocks. For all models, estimated molting probabilities during 1975-2022 are generally lower than those estimated from the 1954-1961 and 1966-1969 tagging data (Balsiger 1974, Figure 15 in the last full SAFE). Lower molting probabilities mean more oldshell crab, possibly due to changes in molting probabilities over time or shell aging errors. Female molting probability is assumed to be 1 for all time periods.

- NMFS trawl survey biomass and BSFRF surveys (Figures 6 - 11 ).

Survey biomass of males and female is generally up from the low points of 2018 and 2019. Among the model scenarios, model estimated NMFS survey biomasses are similar, with some changed in scale due to changes in M and $Q$, which is expected. Models 24.0c and 24.0 d have differences in the early part of the time series due to there being only one molt probability function for the entire time series.

The fit to BSFRF survey data are similar among the models, with some variability in scale due to changes in M within the two base models, however these are expected due to the large additional CV placed on these data.

All models fits the catch and bycatch biomasses very well and similarly so they are not presented in this document.

## - Recruitment (Figures 12 and 13)

Recruitment time series are plotted for all model scenarios in groups of like models. Recruitment is estimated at the end of year in GMACS. Estimated recruitment time series are generally similar in trends for all models, with those models with higher M values having generally higher recruitment. Model 24.0 - which uses the BSFRF data as a prior for selectivity in NMFS survey - reduces the effect of a larger M value on total recruitment due to a higher estimated selectivity (comparing models m23.0a.p7 and m24).

- Fishing mortality (Figure 16)

The full fishing mortalities for the directed pot fishery at the time of fishing are plotted against mature male biomass on Feb. 15 in the last full SAFE (See BBRKC 2023 SAFE link and Figures 29,30 and 31). Estimated fishing mortalities in most years before the current harvest strategy was adopted in 1996 were above F35\%. Under the current harvest strategy, estimated fishing mortalities were at or above the F35\%
limits in 1998-1999, 2005, 2007-2010, and 2014-2019 for models 21.1b, but below the F35\% limits in the other post-1995 years.
Estimated fishing mortalities for pot female and groundfish fisheries bycatches are generally small and less than 0.07 (not shown in this document but available in last full SAFE).

- Estimated mature male biomass (Figures 17, 18, and 19)

The base models (labeled .p7) reflect the correct timing for mmb estimation to coincide with the intended Feb 15th timing. Estimated mature male biomass for all models has a similar trend over time, however the scaling of the biomass is highly dependent, as expected, on estimates of natural mortality (M) and $Q$ in the model. Overall, higher estimates of M for males produce larger estimates of mature male biomass for most of the time series. Recent mature male biomass, in the last five years or so, was relatively similar for all models. Figure 17 displays the results of changes in the period or season in which MMB is estimated.

- Size composition fits by length and residual plots (Figures $20-28$ ).

All models fit the length composition data similarly and well. Modal progressions are tracked well in the trawl survey data, particularly beginning in mid-1990s. Cohorts first seen in the trawl survey data in 1975, $1986,1990,1995,1999,2002$ and 2005 can be tracked over time. Bycatch size composition data provide little information to track modal progression and are not displayed graphically. Pearson residuals of proportions of survey males and females appear to be random over length and year for all models, however models with higher base M - models based on 23.0a - improve the plus group fittings slightly.

## d. Retrospective and historical analyses

Retrospective analysis was not performed on these model explorations. Topics explored in these models were not expected to improved retrospective trends and therefore these were not explored at this time. They will be performed on models for the fall full SAFE. Retrospective runs performed for the 2023 SAFE suggested an improvement with estimation of $M$ for males, as reported in the Mohn's rho values, from a Mohn's rho of 0.373 to 0.226 . The improved retrospective pattern in MMB was one of the reasons model 23.0a was chosen for specification in fall of 2023.

## e. Uncertainty and sensitivity analyses.

- Estimated standard deviations of parameters are summarized in Tables $5-8$ for a few representative models.
- The last completed SAFE document in 2023 details uncertainty estimates in the current base model parameterization (BBRKC 2023 SAFE).


## f. Comparison of alternative model scenarios.

In this report (May 2024), six models are presented. For negative likelihood value comparisons (Table 4), the base models - 21.1b (updated season, 21.1b.p7) and 23.0 a (updated season, 23.0a.p7) were similar in total likelihood, with those models with one molt time block being very similar also (models 24.0c and 24.0d). The base models were run using the most recent updates to GMACS (version 2.01.M.10), which reflected updates to GMACS output and no structural model changes. The likelihood components of these runs using models $21.1 \mathrm{~b}, 23.0 \mathrm{a}, 21.1 \mathrm{~b} . \mathrm{p} 7$ and 23.0 a .7 were identical out to three digits, however reference point differences, although small, do exist as expected due to the change in timing for MMB estimation. Models 21.1b.p7 and 23.0a.p7 should be considered the most correct reference models, and were used to compare other model explorations.

Two models (24.0 and 24.0b) explore the use of the BSFRF survey data as an informed prior on selectivity for NMFS instead of treating these data as another index/size composition under both base models; 24.0 estimates M with a tight prior comparable to model 23.0 a and 24.0 b has a fixed M of 0.18 which is comparable to model 21.1b. This approach was similar to that used for snow crab in 2023, and is considered a first approach at this line of exploration. First, the inferred selectivity pattern/model estimated using the BSFRF data is similar to that estimated in the base model (Figure 2). Figure 3 visualizes the estimated relationship using the estimated inferred selectivity from the BSFRF data as a prior, and indicates the potential for a dome-shaped relationship. These models, as current specified, do not improve model fit. However, variants of this approach should be considered for exploration in the future. Further model explorations - such as dome shaped selectivity for the NMFS survey selectivity and the potential for selectivity to be greater than 1 for the NMFS survey - are warranted for exploring selectivity and catchability in this model. Additionally, if the BSFRF data were used as a prior, a more appropriate method to incorporate those data is needed since the method used here ignores correlation among size bins in estimating parameters for selectivity.

Two models (24.0c and 24.0 d ) explore the removal of a time block for molt probability for males and females. Female molt probability is estimated to be 1 so the time block is does not impact model outcomes for females. These models, run using both base model frameworks, suggest the time blocking for molt probability does not improve model fit and is likely not necessary. Removing this blocking reduces the number of parameters while giving a similar model fit.

Based on the above considerations, we recommend bringing models 23.0a (updated season), 21.1b (updated season), and the corresponding models with one molt period (24.0c and 24.0d) forward for consideration in Sept. The reference model - accepted in fall 2023 - was model 23.0a without the updated season for MMB. However, it was determined that the timing in MMB estimation for this model was incorrect and therefore model 23.0a (with the updated season for MMB, also labeled 23.0a.p7 in figures) should be the accepted reference model moving forward. It was the author's understanding that both the CPT and SSC desired the previous reference model -21.1 b - be maintained for model development and comparison, and it is done so here. In line with parsimony and model simplification, models 24.0 c and 24.0 d are recommended for consideration in the fall since they simplify the molt probability time periods. Further work is needed on explorations for selectivity and catchability before variants of models 24.0 and 24.0 b should be considered for specification setting.

The CPT/SSC comments above address many other topics that were not able to be addressed in this round of model improvements but are on the author's list for consideration. Additionally, the author is currently pursuing analyses to assist the Alaska Department of Fish and Game in updating the female threshold used for State management and will update on progress on that front when appropriate in the Council process.

## D. Calculation of the OFL and ABC

Tier 3 control rules and methodology behind these calculations are explained in detail in the last full SAFE report published on the NPFMC website (see summary section for link).

Table 1: Changes in management quantities for each scenario explored. Reported quantities are derived from maximum likelihood estimates. MMB, B35, and OFL are reported in 1,000 t. Average recruitment is males and females combined in millions of animals.

| Model | Current MMB | B35 | $M M B / B_{\text {MSY }}$ | F35 | $F_{\text {OFL }}$ | OFL | avg male rec | maleM |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| m21.1b | 16.48 | 21.72 | 0.76 | 0.30 | 0.22 | 3.52 | 6.98 | 0.18 |
| m21.1b.p7 | 15.92 | 20.97 | 0.76 | 0.30 | 0.22 | 3.52 | 6.98 | 0.18 |
| m23.0a | 14.98 | 19.36 | 0.77 | 0.40 | 0.30 | 4.42 | 9.89 | 0.23 |
| m23.0a.p7 | 14.32 | 18.51 | 0.77 | 0.40 | 0.30 | 4.42 | 9.89 | 0.23 |
| m24 | 13.35 | 18.76 | 0.71 | 0.35 | 0.24 | 3.23 | 7.95 | 0.21 |
| m24.0b | 15.01 | 20.67 | 0.73 | 0.30 | 0.21 | 3.14 | 6.82 | 0.18 |
| m24.0c | 14.31 | 18.47 | 0.77 | 0.40 | 0.30 | 4.42 | 9.85 | 0.23 |
| m24.0d | 15.93 | 20.95 | 0.76 | 0.30 | 0.22 | 3.53 | 6.96 | 0.18 |

## E. Projections and Future Outlook

Projections into the future will be performed in the Sept. 2024 assessment with the models selected from this document.

The projections are subject to many uncertainties. Constant population parameters estimated in the models used for the projections include $M$, growth, and fishery selectivities. The uncertainty of abundance and biomass estimates in the terminal year also affects the projections. Uncertainties of the projections caused by these constant parameters and abundance estimates in the terminal year would be reduced by the $20 \%$ ABC buffer. However, if an extreme event occurs, like a sharp increase of M during the projection period, the ABC buffer would be inadequate, and the projections might underestimate uncertainties. The largest uncertainty is likely from recruitment used for the projections. Higher or lower assumed recruitment would cause too optimistic or too pessimistic projections. Overall, recruitment and M used for projections are main factors for projection uncertainties.

## J. Acknowledgements

Drs. Andre Punt, James Ianelli, and D'Arcy Webber first applied BBRKC data to GMACS for stock assessments and our GMACS model mainly comes from their work. Thanks to Tyler Jackson (ADF\&G) for assistance with graphical output for GMACS, survey data summaries, REMA modeling code and review of this document.

## K. References

References can be found in the last full SAFE published on the NPFMC website and will not be repeated here. (BBRKC 2023 SAFE)

## Tables

Catch, sample size, and survey results tables are not repeated here but can be found in the last full completed SAFE (link in summary).

Table 2: Changes in management quantities for each scenario explored. Report quantities are derived from maximum likelihood estimates. Average recruitment is males and females combined in millions of animals.

| Model | Current MMB | B35 | F35 | $F_{\text {OFL }}$ | OFL | avg male rec |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| m21.1b | 16.48 | 21.72 | 0.30 | 0.22 | 3.52 | 6.98 |
| m21.1b.p7 | 15.92 | 20.97 | 0.30 | 0.22 | 3.52 | 6.98 |
| m24.0b | 15.01 | 20.67 | 0.30 | 0.21 | 3.14 | 6.82 |
| m24.0d | 15.93 | 20.95 | 0.30 | 0.22 | 3.53 | 6.96 |
| m23.0a | 14.98 | 19.36 | 0.40 | 0.30 | 4.42 | 9.89 |
| m23.0a.p7 | 14.32 | 18.51 | 0.40 | 0.30 | 4.42 | 9.89 |
| m24 | 13.35 | 18.76 | 0.35 | 0.24 | 3.23 | 7.95 |
| m24.0c | 14.31 | 18.47 | 0.40 | 0.30 | 4.42 | 9.85 |

Table 3: Natural mortality estimates for model scenarios during different year blocks.

| Model | Sex | baseM | $1980-84$ |
| :--- | :--- | ---: | ---: |
| m 21.1 b | female | 0.24 | 1.17 |
| m 21.1 b | male | 0.18 | 0.89 |
| $\mathrm{~m} 21.1 \mathrm{~b} . \mathrm{p} 7$ | female | 0.24 | 1.17 |
| $\mathrm{~m} 21.1 \mathrm{~b} . \mathrm{p} 7$ | male | 0.18 | 0.89 |
| m 23.0 a | female | 0.27 | 1.15 |
| m 23.0 a | male | 0.23 | 0.99 |
| $\mathrm{~m} 23.0 \mathrm{a} . \mathrm{p} 7$ | female | 0.27 | 1.15 |
| $\mathrm{~m} 23.0 \mathrm{a} . \mathrm{p} 7$ | male | 0.23 | 0.99 |
| m 24 | female | 0.25 | 1.17 |
| m 24 | male | 0.21 | 0.96 |
| m 24.0 b | female | 0.23 | 1.17 |
| m 24.0 b | male | 0.18 | 0.90 |
| m 24.0 c | female | 0.27 | 1.16 |
| m 24.0 c | male | 0.23 | 1.00 |
| m 24.0 d | female | 0.24 | 1.17 |
| m 24.0 d | male | 0.18 | 0.89 |

Table 4: Comparisons of negative log-likelihood values and some parameters for all model scenarios. Reference models are versions with MMB estimated in season 7 .

| Component | $\mathrm{m} 23.0 \mathrm{a}(\mathrm{ref})$ | m 24.0 | m 24.0 c | $\mathrm{m} 21.1 \mathrm{~b}(\mathrm{ref})$ | m 24.0 b | m 24.0 d |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Pot-ret-catch | -61.84 | -63.46 | -61.70 | -60.77 | -62.61 | -60.64 |
| Pot-totM-catch | 27.75 | 26.09 | 27.73 | 28.49 | 26.88 | 28.41 |
| Pot-F-discC | -57.45 | -57.45 | -57.45 | -57.44 | -57.44 | -57.44 |
| Trawl-discC | -65.14 | -65.13 | -65.14 | -65.13 | -65.13 | -65.13 |
| Tanner-M-discC | -43.54 | -43.54 | -43.54 | -43.54 | -43.54 | -43.54 |
| Tanner-F-discC | -43.51 | -43.49 | -43.51 | -43.48 | -43.48 | -43.48 |
| Fixed-discC | -37.42 | -37.42 | -37.42 | -37.42 | -37.42 | -37.42 |
| Traw-suv-bio | -38.98 | -40.22 | -38.62 | -37.28 | -38.51 | -36.85 |
| BSFRF-sur-bio | -4.82 |  | -4.72 | -2.94 |  | -2.83 |
| Pot-ret-comp | -3998.15 | -3995.34 | -3996.07 | -3991.77 | -3993.03 | -3988.77 |
| Pot-totM-comp | -2444.35 | -2446.78 | -2444.54 | -2443.63 | -2446.17 | -2443.85 |
| Pot-discF-comp | -1494.87 | -1493.04 | -1494.88 | -1493.90 | -1492.87 | -1493.92 |
| Trawl-disc-comp | -5945.91 | -5931.94 | -5948.13 | -5937.57 | -5929.03 | -5940.66 |
| Tanner-disc-comp | -1276.68 | -1275.78 | -1276.73 | -1274.30 | -1273.78 | -1274.35 |
| Fixed-disc-comp | -3483.07 | -3488.61 | -3483.37 | -3486.24 | -3490.68 | -3486.55 |
| Trawl-sur-comp | -7137.97 | -7143.71 | -7135.96 | -7130.66 | -7141.80 | -7127.86 |
| BSFRF-sur-comp | -844.78 |  | -844.80 | -843.09 |  | -843.15 |
| Recruit-dev | 73.83 | 75.27 | 73.66 | 72.95 | 74.02 | 72.73 |
| Recruit-ini | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Recruit-sex-R | 78.50 | 78.50 | 78.52 | 78.49 | 78.52 | 78.52 |
| M-deviation | 40.42 | 42.23 | 40.52 | 43.92 | 44.29 | 44.05 |
| Sex-specific-R | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
| Ini-size-struct | 33.58 | 32.91 | 33.13 | 30.82 | 31.30 | 30.19 |
| PriorDensity | 250.58 | 187.56 | 236.56 | 265.30 | 198.30 | 251.06 |
| Tot-likelihood | -26473.80 | -25683.34 | -26486.44 | -26429.18 | -25662.17 | -26441.47 |
| Tot-parms | 379.00 | 391.00 | 377.00 | 378.00 | 390.00 | 376.00 |
| MMB35 | 18509.95 | 18757.79 | 18471.37 | 20973.44 | 20669.60 | 20947.76 |
| MMB-terminal | 14316.67 | 13353.26 | 14310.28 | 15915.19 | 15006.84 | 15930.92 |
| F35 | 0.40 | 0.35 | 0.40 | 0.30 | 0.30 | 0.30 |
| Fofl | 0.30 | 0.24 | 0.30 | 0.22 | 0.21 | 0.22 |
| OFL | 4424.14 | 326.77 | 4424.88 | 3522.29 | 3144.79 | 3530.48 |
|  |  |  |  |  |  |  |

Table 5: Summary of estimated model parameter values and standard deviations for model 21.1b.p7 for Bristol Bay red king crab.

| Index | Name | Value | StdDev |
| :---: | :---: | :---: | :---: |
| 1 | M-female | 0.2739 | 0.0138 |
| 2 | Log(Rinitial) | 19.8194 | 0.0488 |
| 3 | Log(Rbar) | 16.1721 | 0.1370 |
| 4 | Recruitment-rb-males | 0.7004 | 0.1250 |
| 5 | Recruitment-rb-females | -0.5304 | 0.2247 |
| 6 | Scaled-logN-for-male-mature-1-shell-1-class-2 | 0.9575 | 0.4194 |
| 7 | Scaled-logN-for-male-mature-1-shell-1-class-3 | 0.6521 | 0.4674 |
| 8 | Scaled-logN-for-male-mature-1-shell-1-class-4 | 0.8596 | 0.3318 |
| 9 | Scaled-logN-for-male-mature-1-shell-1-class-5 | 0.7087 | 0.3044 |
| 10 | Scaled-logN-for-male-mature-1-shell-1-class-6 | 0.5452 | 0.2945 |
| 11 | Scaled-logN-for-male-mature-1-shell-1-class-7 | 0.5007 | 0.2770 |
| 12 | Scaled-logN-for-male-mature-1-shell-1-class-8 | 0.3438 | 0.2773 |
| 13 | Scaled-logN-for-male-mature-1-shell-1-class-9 | 0.3784 | 0.2639 |
| 14 | Scaled-logN-for-male-mature-1-shell-1-class-10 | 0.4107 | 0.2583 |
| 15 | Scaled-logN-for-male-mature-1-shell-1-class-11 | 0.1840 | 0.2812 |
| 16 | Scaled-logN-for-male-mature-1-shell-1-class-12 | 0.1620 | 0.2770 |
| 17 | Scaled-logN-for-male-mature-1-shell-1-class-13 | 0.0561 | 0.2868 |
| 18 | Scaled-logN-for-male-mature-1-shell-1-class-14 | 0.1714 | 0.2625 |
| 19 | Scaled-logN-for-male-mature-1-shell-1-class-15 | -0.0061 | 0.2036 |
| 20 | Scaled-logN-for-male-mature-1-shell-1-class-16 | -0.2357 | 0.1957 |
| 21 | Scaled-logN-for-male-mature-1-shell-1-class-17 | -0.3883 | 0.1978 |
| 22 | Scaled-logN-for-male-mature-1-shell-1-class-18 | -0.7366 | 0.2114 |
| 23 | Scaled-logN-for-male-mature-1-shell-1-class-19 | -1.1967 | 0.2326 |
| 24 | Scaled-logN-for-male-mature-1-shell-1-class-20 | -1.2417 | 0.2349 |
| 25 | Scaled-logN-for-female-mature-1-shell-1-class-1 | 1.2834 | 0.6755 |
| 26 | Scaled-logN-for-female-mature-1-shell-1-class-2 | 1.4473 | 0.4616 |
| 27 | Scaled-logN-for-female-mature-1-shell-1-class-3 | 1.3906 | 0.3675 |
| 28 | Scaled-logN-for-female-mature-1-shell-1-class-4 | 1.1656 | 0.3363 |
| 29 | Scaled-logN-for-female-mature-1-shell-1-class-5 | 1.0791 | 0.2955 |
| 30 | Scaled-logN-for-female-mature-1-shell-1-class-6 | 0.5974 | 0.3188 |
| 31 | Scaled-logN-for-female-mature-1-shell-1-class-7 | 0.2118 | 0.3529 |
| 32 | Scaled-logN-for-female-mature-1-shell-1-class-8 | -0.0262 | 0.3616 |
| 33 | Scaled-logN-for-female-mature-1-shell-1-class-9 | -0.2151 | 0.3547 |
| 34 | Scaled-logN-for-female-mature-1-shell-1-class-10 | -0.5471 | 0.3742 |
| 35 | Scaled-logN-for-female-mature-1-shell-1-class-11 | -0.9334 | 0.3857 |
| 36 | Scaled-logN-for-female-mature-1-shell-1-class-12 | -1.1914 | 0.3903 |
| 37 | Scaled-logN-for-female-mature-1-shell-1-class-13 | -1.4218 | 0.3888 |
| 38 | Scaled-logN-for-female-mature-1-shell-1-class-14 | -1.7911 | 0.3769 |
| 39 | Scaled-logN-for-female-mature-1-shell-1-class-15 | -1.8971 | 0.3728 |
| 40 | Scaled-logN-for-female-mature-1-shell-1-class-16 | -1.8388 | 0.3526 |
| 41 | Gscale-male-period-1 | 0.9669 | 0.1825 |
| 42 | Gscale-female-period-1 | 1.4454 | 0.1214 |
| 43 | Molt-probability-mu-male-period-1 | 142.4929 | 1.7326 |
| 44 | Molt-probability-CV-male-period-1 | 0.0579 | 0.0101 |
| 45 | Molt-probability-mu-male-period-2 | 139.9796 | 0.5900 |
| 46 | Molt-probability-CV-male-period-2 | 0.0707 | 0.0033 |
| 47 | Sel-Pot-Fishery-male-period-1-par-1 | 4.7608 | 0.0082 |
| 48 | Sel-Pot-Fishery-male-period-1-par-2 | 2.2714 | 0.0458 |
| 49 | Sel-Pot-Fishery-female-period-1-par-1 | 4.5126 | 0.0165 |
| 50 | Sel-Pot-Fishery-female-period-1-par-2 | 2.0491 | 0.1084 |


| 51 | Sel-Trawl-Bycatch-male-period-1-par-1 | 5.1631 | 0.0595 |
| :---: | :---: | :---: | :---: |
| 52 | Sel-Trawl-Bycatch-male-period-1-par-2 | 2.8582 | 0.0452 |
| 53 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-1 | 4.7219 | 0.2188 |
| 54 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-2 | 2.1638 | 0.3059 |
| 55 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-1 | 4.7463 | 0.0775 |
| 56 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-2 | 0.9000 | 0.3035 |
| 57 | Sel-Fixed-Gear-male-period-1-par-1 | 4.7870 | 0.0222 |
| 58 | Sel-Fixed-Gear-male-period-1-par-2 | 2.3329 | 0.0863 |
| 59 | Sel-NMFS-Trawl-male-period-1-par-1 | 4.0895 | 0.1956 |
| 60 | Sel-NMFS-Trawl-male-period-1-par-2 | 2.2357 | 0.4015 |
| 61 | Sel-NMFS-Trawl-male-period-2-par-1 | 3.7549 | 0.6262 |
| 62 | Sel-NMFS-Trawl-male-period-2-par-2 | 3.2493 | 0.4070 |
| 63 | Sel-BSFRF-male-period-1-par-1 | 4.4282 | 0.0288 |
| 64 | Sel-BSFRF-male-period-1-par-2 | 2.4212 | 0.0709 |
| 65 | Ret-Pot-Fishery-male-period-1-par-1 | 4.9232 | 0.0015 |
| 66 | Ret-Pot-Fishery-male-period-1-par-2 | 0.6747 | 0.0533 |
| 67 | Ret-Pot-Fishery-male-period-2-par-1 | 4.9321 | 0.0020 |
| 68 | Ret-Pot-Fishery-male-period-2-par-2 | 0.7186 | 0.0990 |
| 69 | Log-fbar-Pot-Fishery | -1.6673 | 0.0424 |
| 70 | Log-fbar-Trawl-Bycatch | -4.3416 | 0.0751 |
| 71 | Log-fbar-Bairdi-Fishery-Bycatch | -5.5892 | 0.2909 |
| 72 | Log-fbar-Fixed-Gear | -6.5084 | 0.0705 |
| 73 | Log-fdev-Pot-Fishery-year-1975-season-3 | 0.9136 | 0.1188 |
| 74 | Log-fdev-Pot-Fishery-year-1976-season-3 | 0.8714 | 0.0906 |
| 75 | Log-fdev-Pot-Fishery-year-1977-season-3 | 0.7824 | 0.0743 |
| 76 | Log-fdev-Pot-Fishery-year-1978-season-3 | 0.8759 | 0.0604 |
| 77 | Log-fdev-Pot-Fishery-year-1979-season-3 | 1.0872 | 0.0541 |
| 78 | Log-fdev-Pot-Fishery-year-1980-season-3 | 1.9548 | 0.0563 |
| 79 | Log-fdev-Pot-Fishery-year-1981-season-3 | 2.4908 | 0.1194 |
| 80 | Log-fdev-Pot-Fishery-year-1982-season-3 | 0.9171 | 0.1770 |
| 81 | Log-fdev-Pot-Fishery-year-1983-season-3 | -8.7942 | 0.1261 |
| 82 | Log-fdev-Pot-Fishery-year-1984-season-3 | 1.2519 | 0.1125 |
| 83 | Log-fdev-Pot-Fishery-year-1985-season-3 | 1.3254 | 0.0894 |
| 84 | Log-fdev-Pot-Fishery-year-1986-season-3 | 1.4907 | 0.0733 |
| 85 | Log-fdev-Pot-Fishery-year-1987-season-3 | 1.0240 | 0.0643 |
| 86 | Log-fdev-Pot-Fishery-year-1988-season-3 | 0.0849 | 0.0531 |
| 87 | Log-fdev-Pot-Fishery-year-1989-season-3 | 0.1991 | 0.0476 |
| 88 | Log-fdev-Pot-Fishery-year-1990-season-3 | 0.8477 | 0.0389 |
| 89 | Log-fdev-Pot-Fishery-year-1991-season-3 | 0.8623 | 0.0415 |
| 90 | Log-fdev-Pot-Fishery-year-1992-season-3 | 0.3484 | 0.0462 |
| 91 | Log-fdev-Pot-Fishery-year-1993-season-3 | 1.0177 | 0.0508 |
| 92 | Log-fdev-Pot-Fishery-year-1994-season-3 | -4.1351 | 0.0487 |
| 93 | Log-fdev-Pot-Fishery-year-1995-season-3 | -4.5473 | 0.0422 |
| 94 | Log-fdev-Pot-Fishery-year-1996-season-3 | -0.0773 | 0.0408 |
| 95 | Log-fdev-Pot-Fishery-year-1997-season-3 | -0.0286 | 0.0412 |
| 96 | Log-fdev-Pot-Fishery-year-1998-season-3 | 0.8877 | 0.0437 |
| 97 | Log-fdev-Pot-Fishery-year-1999-season-3 | 0.5304 | 0.0428 |
| 98 | Log-fdev-Pot-Fishery-year-2000-season-3 | -0.0566 | 0.0412 |
| 99 | Log-fdev-Pot-Fishery-year-2001-season-3 | -0.1361 | 0.0408 |
| 100 | Log-fdev-Pot-Fishery-year-2002-season-3 | -0.0247 | 0.0397 |
| 101 | Log-fdev-Pot-Fishery-year-2003-season-3 | 0.4387 | 0.0384 |
| 102 | Log-fdev-Pot-Fishery-year-2004-season-3 | 0.3962 | 0.0385 |
| 103 | Log-fdev-Pot-Fishery-year-2005-season-3 | 0.6865 | 0.0390 |


| 104 | Log-fdev-Pot-Fishery-year-2006-season-3 | 0.4391 | 0.0384 |
| :---: | :---: | :---: | :---: |
| 105 | Log-fdev-Pot-Fishery-year-2007-season-3 | 0.8043 | 0.0383 |
| 106 | Log-fdev-Pot-Fishery-year-2008-season-3 | 0.9760 | 0.0400 |
| 107 | Log-fdev-Pot-Fishery-year-2009-season-3 | 0.7919 | 0.0407 |
| 108 | Log-fdev-Pot-Fishery-year-2010-season-3 | 0.6609 | 0.0400 |
| 109 | Log-fdev-Pot-Fishery-year-2011-season-3 | 0.0241 | 0.0388 |
| 110 | Log-fdev-Pot-Fishery-year-2012-season-3 | -0.0523 | 0.0378 |
| 111 | Log-fdev-Pot-Fishery-year-2013-season-3 | 0.1347 | 0.0376 |
| 112 | Log-fdev-Pot-Fishery-year-2014-season-3 | 0.4639 | 0.0379 |
| 113 | Log-fdev-Pot-Fishery-year-2015-season-3 | 0.5360 | 0.0400 |
| 114 | Log-fdev-Pot-Fishery-year-2016-season-3 | 0.5352 | 0.0449 |
| 115 | Log-fdev-Pot-Fishery-year-2017-season-3 | 0.4455 | 0.0529 |
| 116 | Log-fdev-Pot-Fishery-year-2018-season-3 | 0.2550 | 0.0620 |
| 117 | Log-fdev-Pot-Fishery-year-2019-season-3 | 0.1953 | 0.0694 |
| 118 | Log-fdev-Pot-Fishery-year-2020-season-3 | -0.2388 | 0.0721 |
| 119 | Log-fdev-Pot-Fishery-year-2021-season-3 | -4.6866 | 0.0712 |
| 120 | Log-fdev-Pot-Fishery-year-2022-season-3 | -4.7690 | 0.0704 |
| 121 | Log-fdev-Trawl-Bycatch-year-1976-season-5 | 0.2419 | 0.1247 |
| 122 | Log-fdev-Trawl-Bycatch-year-1977-season-5 | 0.6801 | 0.1165 |
| 123 | Log-fdev-Trawl-Bycatch-year-1978-season-5 | 0.6588 | 0.1106 |
| 124 | Log-fdev-Trawl-Bycatch-year-1979-season-5 | 0.7342 | 0.1090 |
| 125 | Log-fdev-Trawl-Bycatch-year-1980-season-5 | 1.4516 | 0.1117 |
| 126 | Log-fdev-Trawl-Bycatch-year-1981-season-5 | 1.2246 | 0.1308 |
| 127 | Log-fdev-Trawl-Bycatch-year-1982-season-5 | 2.5078 | 0.1315 |
| 128 | Log-fdev-Trawl-Bycatch-year-1983-season-5 | 2.2296 | 0.1190 |
| 129 | Log-fdev-Trawl-Bycatch-year-1984-season-5 | 3.4537 | 0.1163 |
| 130 | Log-fdev-Trawl-Bycatch-year-1985-season-5 | 2.2496 | 0.1115 |
| 131 | Log-fdev-Trawl-Bycatch-year-1986-season-5 | 1.1873 | 0.1113 |
| 132 | Log-fdev-Trawl-Bycatch-year-1987-season-5 | 0.7329 | 0.1089 |
| 133 | Log-fdev-Trawl-Bycatch-year-1988-season-5 | 1.5068 | 0.1046 |
| 134 | Log-fdev-Trawl-Bycatch-year-1989-season-5 | 0.0746 | 0.1036 |
| 135 | Log-fdev-Trawl-Bycatch-year-1990-season-5 | 0.5289 | 0.1036 |
| 136 | Log-fdev-Trawl-Bycatch-year-1991-season-5 | 0.9539 | 0.1048 |
| 137 | Log-fdev-Trawl-Bycatch-year-1992-season-5 | 0.7909 | 0.1051 |
| 138 | Log-fdev-Trawl-Bycatch-year-1993-season-5 | 1.2704 | 0.1079 |
| 139 | Log-fdev-Trawl-Bycatch-year-1994-season-5 | -0.4997 | 0.1049 |
| 140 | Log-fdev-Trawl-Bycatch-year-1995-season-5 | -0.7897 | 0.1034 |
| 141 | Log-fdev-Trawl-Bycatch-year-1996-season-5 | -0.7230 | 0.1036 |
| 142 | Log-fdev-Trawl-Bycatch-year-1997-season-5 | -1.1886 | 0.1035 |
| 143 | Log-fdev-Trawl-Bycatch-year-1998-season-5 | 0.1119 | 0.1039 |
| 144 | Log-fdev-Trawl-Bycatch-year-1999-season-5 | -0.1674 | 0.1037 |
| 145 | Log-fdev-Trawl-Bycatch-year-2000-season-5 | -0.9286 | 0.1030 |
| 146 | Log-fdev-Trawl-Bycatch-year-2001-season-5 | -0.1601 | 0.1029 |
| 147 | Log-fdev-Trawl-Bycatch-year-2002-season-5 | -0.4595 | 0.1026 |
| 148 | Log-fdev-Trawl-Bycatch-year-2003-season-5 | -0.5528 | 0.1024 |
| 149 | Log-fdev-Trawl-Bycatch-year-2004-season-5 | -0.3201 | 0.1024 |
| 150 | Log-fdev-Trawl-Bycatch-year-2005-season-5 | -0.5953 | 0.1023 |
| 151 | Log-fdev-Trawl-Bycatch-year-2006-season-5 | -0.4262 | 0.1020 |
| 152 | Log-fdev-Trawl-Bycatch-year-2007-season-5 | -0.3489 | 0.1021 |
| 153 | Log-fdev-Trawl-Bycatch-year-2008-season-5 | -0.3753 | 0.1023 |
| 154 | Log-fdev-Trawl-Bycatch-year-2009-season-5 | -0.7326 | 0.1024 |
| 155 | Log-fdev-Trawl-Bycatch-year-2010-season-5 | -0.8816 | 0.1023 |
| 156 | Log-fdev-Trawl-Bycatch-year-2011-season-5 | -1.3459 | 0.1020 |


| 157 | Log-fdev-Trawl-Bycatch-year-2012-season-5 | -1.8676 | 0.1021 |
| :---: | :---: | :---: | :---: |
| 158 | Log-fdev-Trawl-Bycatch-year-2013-season-5 | -1.1533 | 0.1023 |
| 159 | Log-fdev-Trawl-Bycatch-year-2014-season-5 | -1.7176 | 0.1025 |
| 160 | Log-fdev-Trawl-Bycatch-year-2015-season-5 | -1.3343 | 0.1031 |
| 161 | Log-fdev-Trawl-Bycatch-year-2016-season-5 | -0.8092 | 0.1045 |
| 162 | Log-fdev-Trawl-Bycatch-year-2017-season-5 | -0.3763 | 0.1065 |
| 163 | Log-fdev-Trawl-Bycatch-year-2018-season-5 | -0.4417 | 0.1087 |
| 164 | Log-fdev-Trawl-Bycatch-year-2019-season-5 | -0.3477 | 0.1111 |
| 165 | Log-fdev-Trawl-Bycatch-year-2020-season-5 | -0.3768 | 0.1129 |
| 166 | Log-fdev-Trawl-Bycatch-year-2021-season-5 | -1.3634 | 0.1134 |
| 167 | Log-fdev-Trawl-Bycatch-year-2022-season-5 | -2.3064 | 0.1149 |
| 168 | Log-fdev-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.1164 | 0.0682 |
| 169 | Log-fdev-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.6699 | 0.0682 |
| 170 | Log-fdev-Bairdi-Fishery-Bycatch-year-1977-season-5 | 1.2283 | 0.0682 |
| 171 | Log-fdev-Bairdi-Fishery-Bycatch-year-1978-season-5 | 1.0927 | 0.0682 |
| 172 | Log-fdev-Bairdi-Fishery-Bycatch-year-1979-season-5 | 1.3825 | 0.0682 |
| 173 | Log-fdev-Bairdi-Fishery-Bycatch-year-1980-season-5 | 1.4243 | 0.0682 |
| 174 | Log-fdev-Bairdi-Fishery-Bycatch-year-1981-season-5 | 0.9927 | 0.0682 |
| 175 | Log-fdev-Bairdi-Fishery-Bycatch-year-1982-season-5 | 0.4764 | 0.0682 |
| 176 | Log-fdev-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.9874 | 0.0682 |
| 177 | Log-fdev-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.5787 | 0.0682 |
| 178 | Log-fdev-Bairdi-Fishery-Bycatch-year-1987-season-5 | -1.0994 | 0.0682 |
| 179 | Log-fdev-Bairdi-Fishery-Bycatch-year-1988-season-5 | -0.2563 | 0.0682 |
| 180 | Log-fdev-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.9400 | 0.0682 |
| 181 | Log-fdev-Bairdi-Fishery-Bycatch-year-1990-season-5 | 1.4182 | 0.0682 |
| 182 | Log-fdev-Bairdi-Fishery-Bycatch-year-1991-season-5 | 3.2422 | 0.0755 |
| 183 | Log-fdev-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.2884 | 0.0949 |
| 184 | Log-fdev-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5871 | 0.1209 |
| 185 | Log-fdev-Bairdi-Fishery-Bycatch-year-1994-season-5 | -0.7543 | 0.0815 |
| 186 | Log-fdev-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1386 | 0.0735 |
| 187 | Log-fdev-Bairdi-Fishery-Bycatch-year-2007-season-5 | -2.9910 | 0.0925 |
| 188 | Log-fdev-Bairdi-Fishery-Bycatch-year-2008-season-5 | -2.4123 | 0.1123 |
| 189 | Log-fdev-Bairdi-Fishery-Bycatch-year-2009-season-5 | -3.4950 | 0.0757 |
| 190 | Log-fdev-Bairdi-Fishery-Bycatch-year-2013-season-5 | -0.8486 | 0.0937 |
| 191 | Log-fdev-Bairdi-Fishery-Bycatch-year-2014-season-5 | -0.1237 | 0.1113 |
| 192 | Log-fdev-Bairdi-Fishery-Bycatch-year-2015-season-5 | 1.0591 | 0.1333 |
| 193 | Log-fdev-Fixed-Gear-year-1996-season-5 | 0.5581 | 0.1030 |
| 194 | Log-fdev-Fixed-Gear-year-1997-season-5 | -0.1048 | 0.1021 |
| 195 | Log-fdev-Fixed-Gear-year-1998-season-5 | -0.3206 | 0.1027 |
| 196 | Log-fdev-Fixed-Gear-year-1999-season-5 | 0.6006 | 0.1020 |
| 197 | Log-fdev-Fixed-Gear-year-2000-season-5 | -1.8269 | 0.1014 |
| 198 | Log-fdev-Fixed-Gear-year-2001-season-5 | 0.1279 | 0.1011 |
| 199 | Log-fdev-Fixed-Gear-year-2002-season-5 | -0.1302 | 0.1007 |
| 200 | Log-fdev-Fixed-Gear-year-2003-season-5 | -0.9636 | 0.1006 |
| 201 | Log-fdev-Fixed-Gear-year-2004-season-5 | -0.7899 | 0.1004 |
| 202 | Log-fdev-Fixed-Gear-year-2005-season-5 | -0.5165 | 0.1003 |
| 203 | Log-fdev-Fixed-Gear-year-2006-season-5 | -0.5631 | 0.1000 |
| 204 | Log-fdev-Fixed-Gear-year-2007-season-5 | -0.0163 | 0.1001 |
| 205 | Log-fdev-Fixed-Gear-year-2008-season-5 | -0.7163 | 0.1004 |
| 206 | Log-fdev-Fixed-Gear-year-2009-season-5 | -1.7133 | 0.1001 |
| 207 | Log-fdev-Fixed-Gear-year-2010-season-5 | -2.5481 | 0.0997 |
| 208 | Log-fdev-Fixed-Gear-year-2011-season-5 | -1.0676 | 0.0994 |
| 209 | Log-fdev-Fixed-Gear-year-2012-season-5 | -0.5125 | 0.0993 |


| 210 | Log-fdev-Fixed-Gear-year-2013-season-5 | 0.6269 | 0.0993 |
| :---: | :---: | :---: | :---: |
| 211 | Log-fdev-Fixed-Gear-year-2014-season-5 | 1.4777 | 0.0994 |
| 212 | Log-fdev-Fixed-Gear-year-2015-season-5 | 1.1606 | 0.0997 |
| 213 | Log-fdev-Fixed-Gear-year-2016-season-5 | 0.3295 | 0.1004 |
| 214 | Log-fdev-Fixed-Gear-year-2017-season-5 | 1.9314 | 0.1016 |
| 215 | Log-fdev-Fixed-Gear-year-2018-season-5 | 2.1884 | 0.1027 |
| 216 | Log-fdev-Fixed-Gear-year-2019-season-5 | 0.9856 | 0.1040 |
| 217 | Log-fdev-Fixed-Gear-year-2020-season-5 | 0.7804 | 0.1057 |
| 218 | Log-fdev-Fixed-Gear-year-2021-season-5 | 0.7715 | 0.1070 |
| 219 | Log-fdev-Fixed-Gear-year-2022-season-5 | 0.2512 | 0.1092 |
| 220 | Log-foff-Pot-Fishery | -2.7448 | 0.0396 |
| 221 | Log-foff-Bairdi-Fishery-Bycatch | -0.1036 | 0.4149 |
| 222 | Log-fdov-Pot-Fishery-year-1990-season-3 | 1.9426 | 0.0836 |
| 223 | Log-fdov-Pot-Fishery-year-1991-season-3 | -0.7302 | 0.0828 |
| 224 | Log-fdov-Pot-Fishery-year-1992-season-3 | 1.9421 | 0.0841 |
| 225 | Log-fdov-Pot-Fishery-year-1993-season-3 | 1.7744 | 0.0858 |
| 226 | Log-fdov-Pot-Fishery-year-1994-season-3 | -0.4582 | 0.0846 |
| 227 | Log-fdov-Pot-Fishery-year-1995-season-3 | -0.2257 | 0.0824 |
| 228 | Log-fdov-Pot-Fishery-year-1996-season-3 | -3.7226 | 0.0813 |
| 229 | Log-fdov-Pot-Fishery-year-1997-season-3 | -0.3543 | 0.0820 |
| 230 | Log-fdov-Pot-Fishery-year-1998-season-3 | 1.4261 | 0.0823 |
| 231 | Log-fdov-Pot-Fishery-year-1999-season-3 | -2.8064 | 0.0815 |
| 232 | Log-fdov-Pot-Fishery-year-2000-season-3 | 1.1234 | 0.0807 |
| 233 | Log-fdov-Pot-Fishery-year-2001-season-3 | 0.8492 | 0.0806 |
| 234 | Log-fdov-Pot-Fishery-year-2002-season-3 | -1.8978 | 0.0800 |
| 235 | Log-fdov-Pot-Fishery-year-2003-season-3 | 1.1895 | 0.0801 |
| 236 | Log-fdov-Pot-Fishery-year-2004-season-3 | 0.3967 | 0.0802 |
| 237 | Log-fdov-Pot-Fishery-year-2005-season-3 | 0.9277 | 0.0796 |
| 238 | Log-fdov-Pot-Fishery-year-2006-season-3 | -1.2564 | 0.0791 |
| 239 | Log-fdov-Pot-Fishery-year-2007-season-3 | -0.2176 | 0.0791 |
| 240 | Log-fdov-Pot-Fishery-year-2008-season-3 | -0.4845 | 0.0794 |
| 241 | Log-fdov-Pot-Fishery-year-2009-season-3 | -0.7522 | 0.0796 |
| 242 | Log-fdov-Pot-Fishery-year-2010-season-3 | -0.2721 | 0.0794 |
| 243 | Log-fdov-Pot-Fishery-year-2011-season-3 | -1.1676 | 0.0785 |
| 244 | Log-fdov-Pot-Fishery-year-2012-season-3 | -1.8840 | 0.0781 |
| 245 | Log-fdov-Pot-Fishery-year-2013-season-3 | 0.1371 | 0.0780 |
| 246 | Log-fdov-Pot-Fishery-year-2014-season-3 | -0.2697 | 0.0781 |
| 247 | Log-fdov-Pot-Fishery-year-2015-season-3 | 0.7877 | 0.0785 |
| 248 | Log-fdov-Pot-Fishery-year-2016-season-3 | 0.2371 | 0.0800 |
| 249 | Log-fdov-Pot-Fishery-year-2017-season-3 | -0.4174 | 0.0826 |
| 250 | Log-fdov-Pot-Fishery-year-2018-season-3 | 0.9058 | 0.0865 |
| 251 | Log-fdov-Pot-Fishery-year-2019-season-3 | -0.1694 | 0.0895 |
| 252 | Log-fdov-Pot-Fishery-year-2020-season-3 | -0.6953 | 0.0901 |
| 253 | Log-fdov-Pot-Fishery-year-2021-season-3 | 2.8968 | 0.0896 |
| 254 | Log-fdov-Pot-Fishery-year-2022-season-3 | 1.2413 | 0.0898 |
| 255 | Log-fdov-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.0000 | 0.0962 |
| 256 | Log-fdov-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.0001 | 0.0962 |
| 257 | Log-fdov-Bairdi-Fishery-Bycatch-year-1977-season-5 | 0.0003 | 0.0963 |
| 258 | Log-fdov-Bairdi-Fishery-Bycatch-year-1978-season-5 | 0.0002 | 0.0963 |
| 259 | Log-fdov-Bairdi-Fishery-Bycatch-year-1979-season-5 | 0.0004 | 0.0963 |
| 260 | Log-fdov-Bairdi-Fishery-Bycatch-year-1980-season-5 | 0.0001 | 0.0963 |
| 261 | Log-fdov-Bairdi-Fishery-Bycatch-year-1981-season-5 | -0.0001 | 0.0963 |
| 262 | Log-fdov-Bairdi-Fishery-Bycatch-year-1982-season-5 | -0.0002 | 0.0962 |


| 263 | Log-fdov-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.0002 | 0.0962 |
| :---: | :---: | :---: | :---: |
| 264 | Log-fdov-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.0001 | 0.0962 |
| 265 | Log-fdov-Bairdi-Fishery-Bycatch-year-1987-season-5 | -0.0001 | 0.0962 |
| 266 | Log-fdov-Bairdi-Fishery-Bycatch-year-1988-season-5 | 0.0001 | 0.0962 |
| 267 | Log-fdov-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.0004 | 0.0962 |
| 268 | Log-fdov-Bairdi-Fishery-Bycatch-year-1990-season-5 | 0.0008 | 0.0963 |
| 269 | Log-fdov-Bairdi-Fishery-Bycatch-year-1991-season-5 | 1.5517 | 0.1690 |
| 270 | Log-fdov-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.8070 | 0.1203 |
| 271 | Log-fdov-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5731 | 0.1421 |
| 272 | Log-fdov-Bairdi-Fishery-Bycatch-year-1994-season-5 | -3.4377 | 0.1082 |
| 273 | Log-fdov-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1316 | 0.1445 |
| 274 | Log-fdov-Bairdi-Fishery-Bycatch-year-2007-season-5 | -0.7745 | 0.1255 |
| 275 | Log-fdov-Bairdi-Fishery-Bycatch-year-2008-season-5 | 0.0419 | 0.1322 |
| 276 | Log-fdov-Bairdi-Fishery-Bycatch-year-2009-season-5 | 0.3868 | 0.1027 |
| 277 | Log-fdov-Bairdi-Fishery-Bycatch-year-2013-season-5 | 0.9394 | 0.1676 |
| 278 | Log-fdov-Bairdi-Fishery-Bycatch-year-2014-season-5 | 0.1583 | 0.1525 |
| 279 | Log-fdov-Bairdi-Fishery-Bycatch-year-2015-season-5 | 0.8840 | 0.1671 |
| 280 | Rec-dev-est-1975 | 1.1089 | 0.2653 |
| 281 | Rec-dev-est-1976 | 0.6603 | 0.2932 |
| 282 | Rec-dev-est-1977 | 1.1136 | 0.2384 |
| 283 | Rec-dev-est-1978 | 1.6938 | 0.2055 |
| 284 | Rec-dev-est-1979 | 1.9597 | 0.2148 |
| 285 | Rec-dev-est-1980 | 1.1627 | 0.2565 |
| 286 | Rec-dev-est-1981 | 2.4345 | 0.1640 |
| 287 | Rec-dev-est-1982 | 1.4802 | 0.1782 |
| 288 | Rec-dev-est-1983 | 1.0973 | 0.1655 |
| 289 | Rec-dev-est-1984 | -0.7272 | 0.2478 |
| 290 | Rec-dev-est-1985 | 0.3481 | 0.1616 |
| 291 | Rec-dev-est-1986 | -0.8087 | 0.2423 |
| 292 | Rec-dev-est-1987 | -1.2347 | 0.2742 |
| 293 | Rec-dev-est-1988 | -0.9696 | 0.2210 |
| 294 | Rec-dev-est-1989 | -0.0248 | 0.1625 |
| 295 | Rec-dev-est-1990 | -0.4839 | 0.1825 |
| 296 | Rec-dev-est-1991 | -1.9423 | 0.3554 |
| 297 | Rec-dev-est-1992 | -0.8543 | 0.1959 |
| 298 | Rec-dev-est-1993 | -1.9743 | 0.4167 |
| 299 | Rec-dev-est-1994 | 1.0212 | 0.1454 |
| 300 | Rec-dev-est-1995 | -0.8946 | 0.2571 |
| 301 | Rec-dev-est-1996 | -1.5594 | 0.3361 |
| 302 | Rec-dev-est-1997 | -0.5418 | 0.1972 |
| 303 | Rec-dev-est-1998 | 0.4557 | 0.1540 |
| 304 | Rec-dev-est-1999 | -0.5294 | 0.2223 |
| 305 | Rec-dev-est-2000 | -0.5048 | 0.2384 |
| 306 | Rec-dev-est-2001 | 0.8824 | 0.1527 |
| 307 | Rec-dev-est-2002 | -0.5931 | 0.2632 |
| 308 | Rec-dev-est-2003 | -0.6566 | 0.2613 |
| 309 | Rec-dev-est-2004 | 0.6189 | 0.1550 |
| 310 | Rec-dev-est-2005 | -0.1138 | 0.1807 |
| 311 | Rec-dev-est-2006 | -0.4985 | 0.1875 |
| 312 | Rec-dev-est-2007 | -1.0812 | 0.2349 |
| 313 | Rec-dev-est-2008 | -0.9518 | 0.2344 |
| 314 | Rec-dev-est-2009 | 0.0295 | 0.1766 |
| 315 | Rec-dev-est-2010 | -0.5126 | 0.2259 |


| 316 | Rec-dev-est-2011 | -1.0539 | 0.2306 |
| :---: | :---: | :---: | :---: |
| 317 | Rec-dev-est-2012 | -1.3729 | 0.2207 |
| 318 | Rec-dev-est-2013 | -1.8383 | 0.2667 |
| 319 | Rec-dev-est-2014 | -1.3622 | 0.2298 |
| 320 | Rec-dev-est-2015 | -0.7046 | 0.1724 |
| 321 | Rec-dev-est-2016 | -1.5169 | 0.2433 |
| 322 | Rec-dev-est-2017 | -0.8475 | 0.1907 |
| 323 | Rec-dev-est-2018 | -1.5416 | 0.2770 |
| 324 | Rec-dev-est-2019 | -1.5340 | 0.2716 |
| 325 | Rec-dev-est-2020 | -1.6594 | 0.2882 |
| 326 | Rec-dev-est-2021 | -0.8932 | 0.2358 |
| 327 | Rec-dev-est-2022 | -1.3340 | 0.3508 |
| 328 | Logit-rec-prop-est-1975 | -0.0843 | 0.4263 |
| 329 | Logit-rec-prop-est-1976 | -0.8587 | 0.5197 |
| 330 | Logit-rec-prop-est-1977 | -0.2347 | 0.3548 |
| 331 | Logit-rec-prop-est-1978 | -0.4360 | 0.2667 |
| 332 | Logit-rec-prop-est-1979 | 0.0866 | 0.2536 |
| 333 | Logit-rec-prop-est-1980 | 0.2636 | 0.3346 |
| 334 | Logit-rec-prop-est-1981 | 0.3608 | 0.1399 |
| 335 | Logit-rec-prop-est-1982 | 0.4040 | 0.2303 |
| 336 | Logit-rec-prop-est-1983 | -0.0648 | 0.1763 |
| 337 | Logit-rec-prop-est-1984 | 0.4403 | 0.4533 |
| 338 | Logit-rec-prop-est-1985 | -0.4756 | 0.1655 |
| 339 | Logit-rec-prop-est-1986 | 0.2249 | 0.4165 |
| 340 | Logit-rec-prop-est-1987 | -0.1054 | 0.4544 |
| 341 | Logit-rec-prop-est-1988 | 0.4154 | 0.3821 |
| 342 | Logit-rec-prop-est-1989 | -0.0802 | 0.1667 |
| 343 | Logit-rec-prop-est-1990 | 0.1809 | 0.2415 |
| 344 | Logit-rec-prop-est-1991 | 0.7068 | 0.7172 |
| 345 | Logit-rec-prop-est-1992 | 0.2500 | 0.2837 |
| 346 | Logit-rec-prop-est-1993 | -0.3047 | 0.6763 |
| 347 | Logit-rec-prop-est-1994 | -0.2839 | 0.0864 |
| 348 | Logit-rec-prop-est-1995 | 1.3209 | 0.6445 |
| 349 | Logit-rec-prop-est-1996 | 0.4112 | 0.6328 |
| 350 | Logit-rec-prop-est-1997 | 0.5011 | 0.3215 |
| 351 | Logit-rec-prop-est-1998 | -0.0401 | 0.1400 |
| 352 | Logit-rec-prop-est-1999 | 0.2166 | 0.3610 |
| 353 | Logit-rec-prop-est-2000 | -0.5522 | 0.3755 |
| 354 | Logit-rec-prop-est-2001 | -0.4728 | 0.1239 |
| 355 | Logit-rec-prop-est-2002 | -0.4070 | 0.4247 |
| 356 | Logit-rec-prop-est-2003 | -0.0094 | 0.4363 |
| 357 | Logit-rec-prop-est-2004 | -0.3851 | 0.1379 |
| 358 | Logit-rec-prop-est-2005 | -0.0794 | 0.2360 |
| 359 | Logit-rec-prop-est-2006 | 0.3627 | 0.2780 |
| 360 | Logit-rec-prop-est-2007 | -0.1878 | 0.3691 |
| 361 | Logit-rec-prop-est-2008 | -0.4417 | 0.3583 |
| 362 | Logit-rec-prop-est-2009 | -0.7824 | 0.1942 |
| 363 | Logit-rec-prop-est-2010 | -0.4576 | 0.3174 |
| 364 | Logit-rec-prop-est-2011 | -0.5404 | 0.3449 |
| 365 | Logit-rec-prop-est-2012 | -0.2384 | 0.3305 |
| 366 | Logit-rec-prop-est-2013 | -0.3179 | 0.4276 |
| 367 | Logit-rec-prop-est-2014 | -0.3592 | 0.3366 |
| 368 | Logit-rec-prop-est-2015 | 0.2842 | 0.2152 |


| 369 | Logit-rec-prop-est-2016 | 0.5167 | 0.4432 |
| :--- | :--- | ---: | :--- |
| 370 | Logit-rec-prop-est-2017 | 0.6098 | 0.2835 |
| 371 | Logit-rec-prop-est-2018 | -0.1925 | 0.4560 |
| 372 | Logit-rec-prop-est-2019 | 0.3735 | 0.4700 |
| 373 | Logit-rec-prop-est-2020 | 0.5544 | 0.5226 |
| 374 | Logit-rec-prop-est-2021 | 0.1438 | 0.3470 |
| 375 | Logit-rec-prop-est-2022 | -0.2362 | 0.5730 |
| 376 | M-dev-est-par-1 | 1.5980 | 0.0292 |
| 377 | Survey-q-survey-1 | 0.9680 | 0.0251 |
| 378 | Log-add-cvt-survey-2 | -0.7750 | 0.2728 |

Table 6: Summary of estimated model parameter values and standard deviations for model 23.0a for Bristol Bay red king crab.

| Index | Name | Value | StdDev |
| :---: | :---: | :---: | :---: |
| 1 | M-base | 0.2318 | 0.0065 |
| 2 | M-female | 0.1511 | 0.0185 |
| 3 | Log(Rinitial) | 20.0186 | 0.0590 |
| 4 | Log(Rbar) | 16.5133 | 0.1436 |
| 5 | Recruitment-rb-males | 0.7638 | 0.1264 |
| 6 | Recruitment-rb-females | -0.5830 | 0.2145 |
| 7 | Scaled-logN-for-male-mature-1-shell-1-class-2 | 1.0828 | 0.4281 |
| 8 | Scaled-logN-for-male-mature-1-shell-1-class-3 | 0.7376 | 0.4877 |
| 9 | Scaled-logN-for-male-mature-1-shell-1-class-4 | 0.9567 | 0.3339 |
| 10 | Scaled-logN-for-male-mature-1-shell-1-class-5 | 0.7947 | 0.3034 |
| 11 | Scaled-logN-for-male-mature-1-shell-1-class-6 | 0.6106 | 0.2925 |
| 12 | Scaled-logN-for-male-mature-1-shell-1-class-7 | 0.5506 | 0.2736 |
| 13 | Scaled-logN-for-male-mature-1-shell-1-class-8 | 0.3721 | 0.2743 |
| 14 | Scaled-logN-for-male-mature-1-shell-1-class-9 | 0.3846 | 0.2618 |
| 15 | Scaled-logN-for-male-mature-1-shell-1-class-10 | 0.3996 | 0.2555 |
| 16 | Scaled-logN-for-male-mature-1-shell-1-class-11 | 0.1577 | 0.2774 |
| 17 | Scaled-logN-for-male-mature-1-shell-1-class-12 | 0.1209 | 0.2732 |
| 18 | Scaled-logN-for-male-mature-1-shell-1-class-13 | -0.0034 | 0.2841 |
| 19 | Scaled-logN-for-male-mature-1-shell-1-class-14 | 0.0894 | 0.2641 |
| 20 | Scaled-logN-for-male-mature-1-shell-1-class-15 | -0.0787 | 0.2038 |
| 21 | Scaled-logN-for-male-mature-1-shell-1-class-16 | -0.3239 | 0.1966 |
| 22 | Scaled-logN-for-male-mature-1-shell-1-class-17 | -0.4817 | 0.1988 |
| 23 | Scaled-logN-for-male-mature-1-shell-1-class-18 | -0.8343 | 0.2124 |
| 24 | Scaled-logN-for-male-mature-1-shell-1-class-19 | -1.2965 | 0.2331 |
| 25 | Scaled-logN-for-male-mature-1-shell-1-class-20 | -1.3406 | 0.2354 |
| 26 | Scaled-logN-for-female-mature-1-shell-1-class-1 | 1.3360 | 0.7879 |
| 27 | Scaled-logN-for-female-mature-1-shell-1-class-2 | 1.5444 | 0.4942 |
| 28 | Scaled-logN-for-female-mature-1-shell-1-class-3 | 1.4441 | 0.3822 |
| 29 | Scaled-logN-for-female-mature-1-shell-1-class-4 | 1.1954 | 0.3507 |
| 30 | Scaled-logN-for-female-mature-1-shell-1-class-5 | 1.1145 | 0.3028 |
| 31 | Scaled-logN-for-female-mature-1-shell-1-class-6 | 0.6386 | 0.3227 |
| 32 | Scaled-logN-for-female-mature-1-shell-1-class-7 | 0.2334 | 0.3564 |
| 33 | Scaled-logN-for-female-mature-1-shell-1-class-8 | -0.0048 | 0.3595 |
| 34 | Scaled-logN-for-female-mature-1-shell-1-class-9 | -0.2030 | 0.3501 |
| 35 | Scaled-logN-for-female-mature-1-shell-1-class-10 | -0.5457 | 0.3688 |
| 36 | Scaled-logN-for-female-mature-1-shell-1-class-11 | -0.9406 | 0.3802 |
| 37 | Scaled-logN-for-female-mature-1-shell-1-class-12 | -1.2002 | 0.3850 |
| 38 | Scaled-logN-for-female-mature-1-shell-1-class-13 | -1.4328 | 0.3837 |
| 39 | Scaled-logN-for-female-mature-1-shell-1-class-14 | -1.8195 | 0.3727 |
| 40 | Scaled-logN-for-female-mature-1-shell-1-class-15 | -1.9277 | 0.3691 |
| 41 | Scaled-logN-for-female-mature-1-shell-1-class-16 | -1.8706 | 0.3491 |
| 42 | Gscale-male-period-1 | 0.9741 | 0.1871 |
| 43 | Gscale-female-period-1 | 1.3991 | 0.1226 |
| 44 | Molt-probability-mu-male-period-1 | 143.0002 | 1.7373 |
| 45 | Molt-probability-CV-male-period-1 | 0.0558 | 0.0097 |
| 46 | Molt-probability-mu-male-period-2 | 141.1893 | 0.6119 |
| 47 | Molt-probability-CV-male-period-2 | 0.0687 | 0.0034 |
| 48 | Sel-Pot-Fishery-male-period-1-par-1 | 4.7815 | 0.0083 |
| 49 | Sel-Pot-Fishery-male-period-1-par-2 | 2.2786 | 0.0424 |
| 50 | Sel-Pot-Fishery-female-period-1-par-1 | 4.5656 | 0.0189 |


| 51 | Sel-Pot-Fishery-female-period-1-par-2 | 2.2325 | 0.0907 |
| :---: | :---: | :---: | :---: |
| 52 | Sel-Trawl-Bycatch-male-period-1-par-1 | 5.1331 | 0.0453 |
| 53 | Sel-Trawl-Bycatch-male-period-1-par-2 | 2.7830 | 0.0406 |
| 54 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-1 | 4.7191 | 0.2337 |
| 55 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-2 | 2.1670 | 0.3047 |
| 56 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-1 | 4.7363 | 0.0906 |
| 57 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-2 | 0.9030 | 0.3027 |
| 58 | Sel-Fixed-Gear-male-period-1-par-1 | 4.8083 | 0.0217 |
| 59 | Sel-Fixed-Gear-male-period-1-par-2 | 2.3330 | 0.0767 |
| 60 | Sel-NMFS-Trawl-male-period-1-par-1 | 4.1631 | 0.1150 |
| 61 | Sel-NMFS-Trawl-male-period-1-par-2 | 2.2419 | 0.3295 |
| 62 | Sel-NMFS-Trawl-male-period-2-par-1 | 4.0732 | 0.2604 |
| 63 | Sel-NMFS-Trawl-male-period-2-par-2 | 3.5909 | 0.4034 |
| 64 | Sel-BSFRF-male-period-1-par-1 | 4.4676 | 0.0273 |
| 65 | Sel-BSFRF-male-period-1-par-2 | 2.5605 | 0.0766 |
| 66 | Ret-Pot-Fishery-male-period-1-par-1 | 4.9234 | 0.0015 |
| 67 | Ret-Pot-Fishery-male-period-1-par-2 | 0.6765 | 0.0525 |
| 68 | Ret-Pot-Fishery-male-period-2-par-1 | 4.9323 | 0.0020 |
| 69 | Ret-Pot-Fishery-male-period-2-par-2 | 0.7223 | 0.0977 |
| 70 | Log-fbar-Pot-Fishery | -1.7100 | 0.0439 |
| 71 | Log-fbar-Trawl-Bycatch | -4.3773 | 0.0755 |
| 72 | Log-fbar-Bairdi-Fishery-Bycatch | -5.7052 | 0.3304 |
| 73 | Log-fbar-Fixed-Gear | -6.5343 | 0.0751 |
| 74 | Log-fdev-Pot-Fishery-year-1975-season-3 | 0.8957 | 0.1207 |
| 75 | Log-fdev-Pot-Fishery-year-1976-season-3 | 0.8609 | 0.0912 |
| 76 | Log-fdev-Pot-Fishery-year-1977-season-3 | 0.7821 | 0.0752 |
| 77 | Log-fdev-Pot-Fishery-year-1978-season-3 | 0.8751 | 0.0615 |
| 78 | Log-fdev-Pot-Fishery-year-1979-season-3 | 1.0881 | 0.0557 |
| 79 | Log-fdev-Pot-Fishery-year-1980-season-3 | 1.9587 | 0.0589 |
| 80 | Log-fdev-Pot-Fishery-year-1981-season-3 | 2.5121 | 0.1137 |
| 81 | Log-fdev-Pot-Fishery-year-1982-season-3 | 0.9623 | 0.1538 |
| 82 | Log-fdev-Pot-Fishery-year-1983-season-3 | -8.7023 | 0.1033 |
| 83 | Log-fdev-Pot-Fishery-year-1984-season-3 | 1.4238 | 0.0999 |
| 84 | Log-fdev-Pot-Fishery-year-1985-season-3 | 1.4629 | 0.0919 |
| 85 | Log-fdev-Pot-Fishery-year-1986-season-3 | 1.5506 | 0.0778 |
| 86 | Log-fdev-Pot-Fishery-year-1987-season-3 | 1.0415 | 0.0671 |
| 87 | Log-fdev-Pot-Fishery-year-1988-season-3 | 0.0746 | 0.0547 |
| 88 | Log-fdev-Pot-Fishery-year-1989-season-3 | 0.1836 | 0.0487 |
| 89 | Log-fdev-Pot-Fishery-year-1990-season-3 | 0.8291 | 0.0399 |
| 90 | Log-fdev-Pot-Fishery-year-1991-season-3 | 0.8341 | 0.0430 |
| 91 | Log-fdev-Pot-Fishery-year-1992-season-3 | 0.3180 | 0.0476 |
| 92 | Log-fdev-Pot-Fishery-year-1993-season-3 | 0.9766 | 0.0519 |
| 93 | Log-fdev-Pot-Fishery-year-1994-season-3 | -4.1904 | 0.0492 |
| 94 | Log-fdev-Pot-Fishery-year-1995-season-3 | -4.5887 | 0.0425 |
| 95 | Log-fdev-Pot-Fishery-year-1996-season-3 | -0.1000 | 0.0409 |
| 96 | Log-fdev-Pot-Fishery-year-1997-season-3 | -0.0337 | 0.0413 |
| 97 | Log-fdev-Pot-Fishery-year-1998-season-3 | 0.8845 | 0.0440 |
| 98 | Log-fdev-Pot-Fishery-year-1999-season-3 | 0.5036 | 0.0435 |
| 99 | Log-fdev-Pot-Fishery-year-2000-season-3 | -0.0862 | 0.0418 |
| 100 | Log-fdev-Pot-Fishery-year-2001-season-3 | -0.1511 | 0.0413 |
| 101 | Log-fdev-Pot-Fishery-year-2002-season-3 | -0.0314 | 0.0400 |
| 102 | Log-fdev-Pot-Fishery-year-2003-season-3 | 0.4279 | 0.0387 |
| 103 | Log-fdev-Pot-Fishery-year-2004-season-3 | 0.3851 | 0.0388 |


| 104 | Log-fdev-Pot-Fishery-year-2005-season-3 | 0.6775 | 0.0393 |
| :---: | :---: | :---: | :---: |
| 105 | Log-fdev-Pot-Fishery-year-2006-season-3 | 0.4216 | 0.0386 |
| 106 | Log-fdev-Pot-Fishery-year-2007-season-3 | 0.7858 | 0.0387 |
| 107 | Log-fdev-Pot-Fishery-year-2008-season-3 | 0.9539 | 0.0409 |
| 108 | Log-fdev-Pot-Fishery-year-2009-season-3 | 0.7547 | 0.0420 |
| 109 | Log-fdev-Pot-Fishery-year-2010-season-3 | 0.6098 | 0.0415 |
| 110 | Log-fdev-Pot-Fishery-year-2011-season-3 | -0.0285 | 0.0400 |
| 111 | Log-fdev-Pot-Fishery-year-2012-season-3 | -0.0929 | 0.0387 |
| 112 | Log-fdev-Pot-Fishery-year-2013-season-3 | 0.1068 | 0.0383 |
| 113 | Log-fdev-Pot-Fishery-year-2014-season-3 | 0.4386 | 0.0385 |
| 114 | Log-fdev-Pot-Fishery-year-2015-season-3 | 0.5084 | 0.0402 |
| 115 | Log-fdev-Pot-Fishery-year-2016-season-3 | 0.5119 | 0.0442 |
| 116 | Log-fdev-Pot-Fishery-year-2017-season-3 | 0.4370 | 0.0509 |
| 117 | Log-fdev-Pot-Fishery-year-2018-season-3 | 0.2702 | 0.0590 |
| 118 | Log-fdev-Pot-Fishery-year-2019-season-3 | 0.2312 | 0.0658 |
| 119 | Log-fdev-Pot-Fishery-year-2020-season-3 | -0.1941 | 0.0683 |
| 120 | Log-fdev-Pot-Fishery-year-2021-season-3 | -4.6342 | 0.0676 |
| 121 | Log-fdev-Pot-Fishery-year-2022-season-3 | -4.7048 | 0.0673 |
| 122 | Log-fdev-Trawl-Bycatch-year-1976-season-5 | 0.2348 | 0.1256 |
| 123 | Log-fdev-Trawl-Bycatch-year-1977-season-5 | 0.6808 | 0.1173 |
| 124 | Log-fdev-Trawl-Bycatch-year-1978-season-5 | 0.6643 | 0.1115 |
| 125 | Log-fdev-Trawl-Bycatch-year-1979-season-5 | 0.7431 | 0.1102 |
| 126 | Log-fdev-Trawl-Bycatch-year-1980-season-5 | 1.4692 | 0.1132 |
| 127 | Log-fdev-Trawl-Bycatch-year-1981-season-5 | 1.2510 | 0.1254 |
| 128 | Log-fdev-Trawl-Bycatch-year-1982-season-5 | 2.5449 | 0.1224 |
| 129 | Log-fdev-Trawl-Bycatch-year-1983-season-5 | 2.2925 | 0.1129 |
| 130 | Log-fdev-Trawl-Bycatch-year-1984-season-5 | 3.5424 | 0.1126 |
| 131 | Log-fdev-Trawl-Bycatch-year-1985-season-5 | 2.3227 | 0.1122 |
| 132 | Log-fdev-Trawl-Bycatch-year-1986-season-5 | 1.2198 | 0.1126 |
| 133 | Log-fdev-Trawl-Bycatch-year-1987-season-5 | 0.7320 | 0.1100 |
| 134 | Log-fdev-Trawl-Bycatch-year-1988-season-5 | 1.4900 | 0.1054 |
| 135 | Log-fdev-Trawl-Bycatch-year-1989-season-5 | 0.0502 | 0.1041 |
| 136 | Log-fdev-Trawl-Bycatch-year-1990-season-5 | 0.4934 | 0.1042 |
| 137 | Log-fdev-Trawl-Bycatch-year-1991-season-5 | 0.9075 | 0.1056 |
| 138 | Log-fdev-Trawl-Bycatch-year-1992-season-5 | 0.7468 | 0.1058 |
| 139 | Log-fdev-Trawl-Bycatch-year-1993-season-5 | 1.2109 | 0.1085 |
| 140 | Log-fdev-Trawl-Bycatch-year-1994-season-5 | -0.5487 | 0.1052 |
| 141 | Log-fdev-Trawl-Bycatch-year-1995-season-5 | -0.8266 | 0.1036 |
| 142 | Log-fdev-Trawl-Bycatch-year-1996-season-5 | -0.7493 | 0.1037 |
| 143 | Log-fdev-Trawl-Bycatch-year-1997-season-5 | -1.1997 | 0.1036 |
| 144 | Log-fdev-Trawl-Bycatch-year-1998-season-5 | 0.0992 | 0.1041 |
| 145 | Log-fdev-Trawl-Bycatch-year-1999-season-5 | -0.1916 | 0.1040 |
| 146 | Log-fdev-Trawl-Bycatch-year-2000-season-5 | -0.9561 | 0.1033 |
| 147 | Log-fdev-Trawl-Bycatch-year-2001-season-5 | -0.1792 | 0.1031 |
| 148 | Log-fdev-Trawl-Bycatch-year-2002-season-5 | -0.4695 | 0.1028 |
| 149 | Log-fdev-Trawl-Bycatch-year-2003-season-5 | -0.5651 | 0.1026 |
| 150 | Log-fdev-Trawl-Bycatch-year-2004-season-5 | -0.3342 | 0.1025 |
| 151 | Log-fdev-Trawl-Bycatch-year-2005-season-5 | -0.6109 | 0.1024 |
| 152 | Log-fdev-Trawl-Bycatch-year-2006-season-5 | -0.4440 | 0.1021 |
| 153 | Log-fdev-Trawl-Bycatch-year-2007-season-5 | -0.3717 | 0.1023 |
| 154 | Log-fdev-Trawl-Bycatch-year-2008-season-5 | -0.4022 | 0.1026 |
| 155 | Log-fdev-Trawl-Bycatch-year-2009-season-5 | -0.7660 | 0.1028 |
| 156 | Log-fdev-Trawl-Bycatch-year-2010-season-5 | -0.9229 | 0.1028 |


| 157 | Log-fdev-Trawl-Bycatch-year-2011-season-5 | -1.3835 | 0.1023 |
| :---: | :---: | :---: | :---: |
| 158 | Log-fdev-Trawl-Bycatch-year-2012-season-5 | -1.8944 | 0.1024 |
| 159 | Log-fdev-Trawl-Bycatch-year-2013-season-5 | -1.1676 | 0.1025 |
| 160 | Log-fdev-Trawl-Bycatch-year-2014-season-5 | -1.7240 | 0.1026 |
| 161 | Log-fdev-Trawl-Bycatch-year-2015-season-5 | -1.3363 | 0.1032 |
| 162 | Log-fdev-Trawl-Bycatch-year-2016-season-5 | -0.8027 | 0.1045 |
| 163 | Log-fdev-Trawl-Bycatch-year-2017-season-5 | -0.3540 | 0.1063 |
| 164 | Log-fdev-Trawl-Bycatch-year-2018-season-5 | -0.3985 | 0.1084 |
| 165 | Log-fdev-Trawl-Bycatch-year-2019-season-5 | -0.2857 | 0.1107 |
| 166 | Log-fdev-Trawl-Bycatch-year-2020-season-5 | -0.3046 | 0.1124 |
| 167 | Log-fdev-Trawl-Bycatch-year-2021-season-5 | -1.2860 | 0.1127 |
| 168 | Log-fdev-Trawl-Bycatch-year-2022-season-5 | -2.2207 | 0.1141 |
| 169 | Log-fdev-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.1163 | 0.0682 |
| 170 | Log-fdev-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.6699 | 0.0682 |
| 171 | Log-fdev-Bairdi-Fishery-Bycatch-year-1977-season-5 | 1.2283 | 0.0682 |
| 172 | Log-fdev-Bairdi-Fishery-Bycatch-year-1978-season-5 | 1.0926 | 0.0682 |
| 173 | Log-fdev-Bairdi-Fishery-Bycatch-year-1979-season-5 | 1.3824 | 0.0682 |
| 174 | Log-fdev-Bairdi-Fishery-Bycatch-year-1980-season-5 | 1.4242 | 0.0682 |
| 175 | Log-fdev-Bairdi-Fishery-Bycatch-year-1981-season-5 | 0.9927 | 0.0682 |
| 176 | Log-fdev-Bairdi-Fishery-Bycatch-year-1982-season-5 | 0.4764 | 0.0682 |
| 177 | Log-fdev-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.9874 | 0.0682 |
| 178 | Log-fdev-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.5787 | 0.0682 |
| 179 | Log-fdev-Bairdi-Fishery-Bycatch-year-1987-season-5 | -1.0994 | 0.0682 |
| 180 | Log-fdev-Bairdi-Fishery-Bycatch-year-1988-season-5 | -0.2563 | 0.0682 |
| 181 | Log-fdev-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.9401 | 0.0682 |
| 182 | Log-fdev-Bairdi-Fishery-Bycatch-year-1990-season-5 | 1.4182 | 0.0682 |
| 183 | Log-fdev-Bairdi-Fishery-Bycatch-year-1991-season-5 | 3.2430 | 0.0758 |
| 184 | Log-fdev-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.2810 | 0.1059 |
| 185 | Log-fdev-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5511 | 0.1271 |
| 186 | Log-fdev-Bairdi-Fishery-Bycatch-year-1994-season-5 | -0.7692 | 0.0854 |
| 187 | Log-fdev-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1203 | 0.0742 |
| 188 | Log-fdev-Bairdi-Fishery-Bycatch-year-2007-season-5 | -2.9806 | 0.0990 |
| 189 | Log-fdev-Bairdi-Fishery-Bycatch-year-2008-season-5 | -2.4158 | 0.1186 |
| 190 | Log-fdev-Bairdi-Fishery-Bycatch-year-2009-season-5 | -3.5068 | 0.0757 |
| 191 | Log-fdev-Bairdi-Fishery-Bycatch-year-2013-season-5 | -0.8373 | 0.0966 |
| 192 | Log-fdev-Bairdi-Fishery-Bycatch-year-2014-season-5 | -0.1100 | 0.1203 |
| 193 | Log-fdev-Bairdi-Fishery-Bycatch-year-2015-season-5 | 1.0782 | 0.1481 |
| 194 | Log-fdev-Fixed-Gear-year-1996-season-5 | 0.5319 | 0.1033 |
| 195 | Log-fdev-Fixed-Gear-year-1997-season-5 | -0.1164 | 0.1024 |
| 196 | Log-fdev-Fixed-Gear-year-1998-season-5 | -0.3359 | 0.1031 |
| 197 | Log-fdev-Fixed-Gear-year-1999-season-5 | 0.5736 | 0.1023 |
| 198 | Log-fdev-Fixed-Gear-year-2000-season-5 | -1.8535 | 0.1017 |
| 199 | Log-fdev-Fixed-Gear-year-2001-season-5 | 0.1090 | 0.1013 |
| 200 | Log-fdev-Fixed-Gear-year-2002-season-5 | -0.1457 | 0.1009 |
| 201 | Log-fdev-Fixed-Gear-year-2003-season-5 | -0.9819 | 0.1008 |
| 202 | Log-fdev-Fixed-Gear-year-2004-season-5 | -0.8062 | 0.1006 |
| 203 | Log-fdev-Fixed-Gear-year-2005-season-5 | -0.5347 | 0.1005 |
| 204 | Log-fdev-Fixed-Gear-year-2006-season-5 | -0.5833 | 0.1002 |
| 205 | Log-fdev-Fixed-Gear-year-2007-season-5 | -0.0364 | 0.1002 |
| 206 | Log-fdev-Fixed-Gear-year-2008-season-5 | -0.7387 | 0.1006 |
| 207 | Log-fdev-Fixed-Gear-year-2009-season-5 | -1.7420 | 0.1004 |
| 208 | Log-fdev-Fixed-Gear-year-2010-season-5 | -2.5820 | 0.0999 |
| 209 | Log-fdev-Fixed-Gear-year-2011-season-5 | -1.0972 | 0.0996 |


| 210 | Log-fdev-Fixed-Gear-year-2012-season-5 | -0.5316 | 0.0995 |
| :---: | :---: | :---: | :---: |
| 211 | Log-fdev-Fixed-Gear-year-2013-season-5 | 0.6176 | 0.0994 |
| 212 | Log-fdev-Fixed-Gear-year-2014-season-5 | 1.4737 | 0.0995 |
| 213 | Log-fdev-Fixed-Gear-year-2015-season-5 | 1.1636 | 0.0998 |
| 214 | Log-fdev-Fixed-Gear-year-2016-season-5 | 0.3441 | 0.1005 |
| 215 | Log-fdev-Fixed-Gear-year-2017-season-5 | 1.9614 | 0.1017 |
| 216 | Log-fdev-Fixed-Gear-year-2018-season-5 | 2.2364 | 0.1028 |
| 217 | Log-fdev-Fixed-Gear-year-2019-season-5 | 1.0474 | 0.1041 |
| 218 | Log-fdev-Fixed-Gear-year-2020-season-5 | 0.8488 | 0.1057 |
| 219 | Log-fdev-Fixed-Gear-year-2021-season-5 | 0.8446 | 0.1068 |
| 220 | Log-fdev-Fixed-Gear-year-2022-season-5 | 0.3335 | 0.1090 |
| 221 | Log-foff-Pot-Fishery | -2.7574 | 0.0445 |
| 222 | Log-foff-Bairdi-Fishery-Bycatch | -0.1395 | 0.4885 |
| 223 | Log-fdov-Pot-Fishery-year-1990-season-3 | 1.9051 | 0.0841 |
| 224 | Log-fdov-Pot-Fishery-year-1991-season-3 | -0.7521 | 0.0833 |
| 225 | Log-fdov-Pot-Fishery-year-1992-season-3 | 1.9208 | 0.0846 |
| 226 | Log-fdov-Pot-Fishery-year-1993-season-3 | 1.7587 | 0.0860 |
| 227 | Log-fdov-Pot-Fishery-year-1994-season-3 | -0.4574 | 0.0846 |
| 228 | Log-fdov-Pot-Fishery-year-1995-season-3 | -0.2380 | 0.0823 |
| 229 | Log-fdov-Pot-Fishery-year-1996-season-3 | -3.7300 | 0.0813 |
| 230 | Log-fdov-Pot-Fishery-year-1997-season-3 | -0.3775 | 0.0822 |
| 231 | Log-fdov-Pot-Fishery-year-1998-season-3 | 1.3843 | 0.0829 |
| 232 | Log-fdov-Pot-Fishery-year-1999-season-3 | -2.8344 | 0.0821 |
| 233 | Log-fdov-Pot-Fishery-year-2000-season-3 | 1.1036 | 0.0811 |
| 234 | Log-fdov-Pot-Fishery-year-2001-season-3 | 0.8195 | 0.0810 |
| 235 | Log-fdov-Pot-Fishery-year-2002-season-3 | -1.9359 | 0.0805 |
| 236 | Log-fdov-Pot-Fishery-year-2003-season-3 | 1.1622 | 0.0803 |
| 237 | Log-fdov-Pot-Fishery-year-2004-season-3 | 0.3689 | 0.0806 |
| 238 | Log-fdov-Pot-Fishery-year-2005-season-3 | 0.8870 | 0.0802 |
| 239 | Log-fdov-Pot-Fishery-year-2006-season-3 | -1.2844 | 0.0796 |
| 240 | Log-fdov-Pot-Fishery-year-2007-season-3 | -0.2406 | 0.0796 |
| 241 | Log-fdov-Pot-Fishery-year-2008-season-3 | -0.5040 | 0.0800 |
| 242 | Log-fdov-Pot-Fishery-year-2009-season-3 | -0.7546 | 0.0802 |
| 243 | Log-fdov-Pot-Fishery-year-2010-season-3 | -0.2552 | 0.0799 |
| 244 | Log-fdov-Pot-Fishery-year-2011-season-3 | -1.1339 | 0.0791 |
| 245 | Log-fdov-Pot-Fishery-year-2012-season-3 | -1.8477 | 0.0785 |
| 246 | Log-fdov-Pot-Fishery-year-2013-season-3 | 0.1682 | 0.0784 |
| 247 | Log-fdov-Pot-Fishery-year-2014-season-3 | -0.2354 | 0.0785 |
| 248 | Log-fdov-Pot-Fishery-year-2015-season-3 | 0.8310 | 0.0789 |
| 249 | Log-fdov-Pot-Fishery-year-2016-season-3 | 0.2867 | 0.0802 |
| 250 | Log-fdov-Pot-Fishery-year-2017-season-3 | -0.3677 | 0.0824 |
| 251 | Log-fdov-Pot-Fishery-year-2018-season-3 | 0.9450 | 0.0854 |
| 252 | Log-fdov-Pot-Fishery-year-2019-season-3 | -0.1385 | 0.0880 |
| 253 | Log-fdov-Pot-Fishery-year-2020-season-3 | -0.6617 | 0.0886 |
| 254 | Log-fdov-Pot-Fishery-year-2021-season-3 | 2.9322 | 0.0886 |
| 255 | Log-fdov-Pot-Fishery-year-2022-season-3 | 1.2716 | 0.0893 |
| 256 | Log-fdov-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.0000 | 0.0962 |
| 257 | Log-fdov-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.0001 | 0.0962 |
| 258 | Log-fdov-Bairdi-Fishery-Bycatch-year-1977-season-5 | 0.0003 | 0.0962 |
| 259 | Log-fdov-Bairdi-Fishery-Bycatch-year-1978-season-5 | 0.0003 | 0.0963 |
| 260 | Log-fdov-Bairdi-Fishery-Bycatch-year-1979-season-5 | 0.0004 | 0.0963 |
| 261 | Log-fdov-Bairdi-Fishery-Bycatch-year-1980-season-5 | 0.0001 | 0.0963 |
| 262 | Log-fdov-Bairdi-Fishery-Bycatch-year-1981-season-5 | -0.0001 | 0.0963 |


| 263 | Log-fdov-Bairdi-Fishery-Bycatch-year-1982-season-5 | -0.0001 | 0.0962 |
| :---: | :---: | :---: | :---: |
| 264 | Log-fdov-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.0001 | 0.0962 |
| 265 | Log-fdov-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.0001 | 0.0962 |
| 266 | Log-fdov-Bairdi-Fishery-Bycatch-year-1987-season-5 | -0.0001 | 0.0962 |
| 267 | Log-fdov-Bairdi-Fishery-Bycatch-year-1988-season-5 | 0.0000 | 0.0962 |
| 268 | Log-fdov-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.0003 | 0.0962 |
| 269 | Log-fdov-Bairdi-Fishery-Bycatch-year-1990-season-5 | 0.0006 | 0.0963 |
| 270 | Log-fdov-Bairdi-Fishery-Bycatch-year-1991-season-5 | 1.4897 | 0.1588 |
| 271 | Log-fdov-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.7778 | 0.1278 |
| 272 | Log-fdov-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5861 | 0.1485 |
| 273 | Log-fdov-Bairdi-Fishery-Bycatch-year-1994-season-5 | -3.4396 | 0.1108 |
| 274 | Log-fdov-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1782 | 0.1733 |
| 275 | Log-fdov-Bairdi-Fishery-Bycatch-year-2007-season-5 | -0.8057 | 0.1313 |
| 276 | Log-fdov-Bairdi-Fishery-Bycatch-year-2008-season-5 | 0.0358 | 0.1377 |
| 277 | Log-fdov-Bairdi-Fishery-Bycatch-year-2009-season-5 | 0.3959 | 0.1029 |
| 278 | Log-fdov-Bairdi-Fishery-Bycatch-year-2013-season-5 | 0.9906 | 0.1745 |
| 279 | Log-fdov-Bairdi-Fishery-Bycatch-year-2014-season-5 | 0.2097 | 0.1576 |
| 280 | Log-fdov-Bairdi-Fishery-Bycatch-year-2015-season-5 | 0.9364 | 0.1833 |
| 281 | Rec-dev-est-1975 | 1.1022 | 0.2632 |
| 282 | Rec-dev-est-1976 | 0.5911 | 0.2966 |
| 283 | Rec-dev-est-1977 | 1.0292 | 0.2415 |
| 284 | Rec-dev-est-1978 | 1.6112 | 0.2076 |
| 285 | Rec-dev-est-1979 | 1.9106 | 0.2149 |
| 286 | Rec-dev-est-1980 | 1.1326 | 0.2575 |
| 287 | Rec-dev-est-1981 | 2.4109 | 0.1630 |
| 288 | Rec-dev-est-1982 | 1.4616 | 0.1772 |
| 289 | Rec-dev-est-1983 | 1.0946 | 0.1641 |
| 290 | Rec-dev-est-1984 | -0.6997 | 0.2424 |
| 291 | Rec-dev-est-1985 | 0.3635 | 0.1614 |
| 292 | Rec-dev-est-1986 | -0.7477 | 0.2371 |
| 293 | Rec-dev-est-1987 | -1.1841 | 0.2717 |
| 294 | Rec-dev-est-1988 | -0.9526 | 0.2229 |
| 295 | Rec-dev-est-1989 | -0.0131 | 0.1630 |
| 296 | Rec-dev-est-1990 | -0.4073 | 0.1802 |
| 297 | Rec-dev-est-1991 | -1.8651 | 0.3493 |
| 298 | Rec-dev-est-1992 | -0.8225 | 0.1955 |
| 299 | Rec-dev-est-1993 | -2.0161 | 0.4386 |
| 300 | Rec-dev-est-1994 | 1.0224 | 0.1455 |
| 301 | Rec-dev-est-1995 | -0.7614 | 0.2474 |
| 302 | Rec-dev-est-1996 | -1.5274 | 0.3418 |
| 303 | Rec-dev-est-1997 | -0.5343 | 0.1991 |
| 304 | Rec-dev-est-1998 | 0.4807 | 0.1539 |
| 305 | Rec-dev-est-1999 | -0.4717 | 0.2184 |
| 306 | Rec-dev-est-2000 | -0.5440 | 0.2480 |
| 307 | Rec-dev-est-2001 | 0.9146 | 0.1525 |
| 308 | Rec-dev-est-2002 | -0.5416 | 0.2585 |
| 309 | Rec-dev-est-2003 | -0.6335 | 0.2622 |
| 310 | Rec-dev-est-2004 | 0.6051 | 0.1555 |
| 311 | Rec-dev-est-2005 | -0.0439 | 0.1767 |
| 312 | Rec-dev-est-2006 | -0.4733 | 0.1854 |
| 313 | Rec-dev-est-2007 | -1.0313 | 0.2291 |
| 314 | Rec-dev-est-2008 | -0.8961 | 0.2304 |
| 315 | Rec-dev-est-2009 | 0.0044 | 0.1804 |


| 316 | Rec-dev-est-2010 | -0.4742 | 0.2207 |
| :---: | :---: | :---: | :---: |
| 317 | Rec-dev-est-2011 | -1.0410 | 0.2272 |
| 318 | Rec-dev-est-2012 | -1.3850 | 0.2211 |
| 319 | Rec-dev-est-2013 | -1.8713 | 0.2653 |
| 320 | Rec-dev-est-2014 | -1.4136 | 0.2193 |
| 321 | Rec-dev-est-2015 | -0.7704 | 0.1706 |
| 322 | Rec-dev-est-2016 | -1.5464 | 0.2395 |
| 323 | Rec-dev-est-2017 | -0.8907 | 0.1877 |
| 324 | Rec-dev-est-2018 | -1.6169 | 0.2768 |
| 325 | Rec-dev-est-2019 | -1.5542 | 0.2642 |
| 326 | Rec-dev-est-2020 | -1.7233 | 0.2882 |
| 327 | Rec-dev-est-2021 | -0.9453 | 0.2312 |
| 328 | Rec-dev-est-2022 | -1.3828 | 0.3457 |
| 329 | Logit-rec-prop-est-1975 | -0.0825 | 0.4201 |
| 330 | Logit-rec-prop-est-1976 | -0.7944 | 0.5136 |
| 331 | Logit-rec-prop-est-1977 | -0.2159 | 0.3595 |
| 332 | Logit-rec-prop-est-1978 | -0.3880 | 0.2657 |
| 333 | Logit-rec-prop-est-1979 | 0.2034 | 0.2559 |
| 334 | Logit-rec-prop-est-1980 | 0.3466 | 0.3362 |
| 335 | Logit-rec-prop-est-1981 | 0.4782 | 0.1426 |
| 336 | Logit-rec-prop-est-1982 | 0.5650 | 0.2373 |
| 337 | Logit-rec-prop-est-1983 | 0.0379 | 0.1744 |
| 338 | Logit-rec-prop-est-1984 | 0.4274 | 0.4370 |
| 339 | Logit-rec-prop-est-1985 | -0.4809 | 0.1647 |
| 340 | Logit-rec-prop-est-1986 | 0.1744 | 0.3978 |
| 341 | Logit-rec-prop-est-1987 | -0.1409 | 0.4463 |
| 342 | Logit-rec-prop-est-1988 | 0.3680 | 0.3809 |
| 343 | Logit-rec-prop-est-1989 | -0.0938 | 0.1688 |
| 344 | Logit-rec-prop-est-1990 | 0.1480 | 0.2312 |
| 345 | Logit-rec-prop-est-1991 | 0.7606 | 0.7194 |
| 346 | Logit-rec-prop-est-1992 | 0.2127 | 0.2809 |
| 347 | Logit-rec-prop-est-1993 | -0.3721 | 0.7001 |
| 348 | Logit-rec-prop-est-1994 | -0.3612 | 0.0888 |
| 349 | Logit-rec-prop-est-1995 | 1.2126 | 0.5986 |
| 350 | Logit-rec-prop-est-1996 | 0.3887 | 0.6422 |
| 351 | Logit-rec-prop-est-1997 | 0.4605 | 0.3233 |
| 352 | Logit-rec-prop-est-1998 | -0.0966 | 0.1389 |
| 353 | Logit-rec-prop-est-1999 | 0.2109 | 0.3501 |
| 354 | Logit-rec-prop-est-2000 | -0.5932 | 0.3974 |
| 355 | Logit-rec-prop-est-2001 | -0.5346 | 0.1235 |
| 356 | Logit-rec-prop-est-2002 | -0.4136 | 0.4131 |
| 357 | Logit-rec-prop-est-2003 | -0.1001 | 0.4309 |
| 358 | Logit-rec-prop-est-2004 | -0.4172 | 0.1415 |
| 359 | Logit-rec-prop-est-2005 | -0.1446 | 0.2218 |
| 360 | Logit-rec-prop-est-2006 | 0.4178 | 0.2761 |
| 361 | Logit-rec-prop-est-2007 | -0.1220 | 0.3564 |
| 362 | Logit-rec-prop-est-2008 | -0.4880 | 0.3493 |
| 363 | Logit-rec-prop-est-2009 | -0.7218 | 0.2037 |
| 364 | Logit-rec-prop-est-2010 | -0.4455 | 0.3069 |
| 365 | Logit-rec-prop-est-2011 | -0.5328 | 0.3376 |
| 366 | Logit-rec-prop-est-2012 | -0.1993 | 0.3320 |
| 367 | Logit-rec-prop-est-2013 | -0.3440 | 0.4245 |
| 368 | Logit-rec-prop-est-2014 | -0.3811 | 0.3182 |


| 369 | Logit-rec-prop-est-2015 | 0.2664 | 0.2081 |
| :--- | :--- | ---: | :--- |
| 370 | Logit-rec-prop-est-2016 | 0.5493 | 0.4405 |
| 371 | Logit-rec-prop-est-2017 | 0.6054 | 0.2787 |
| 372 | Logit-rec-prop-est-2018 | -0.1821 | 0.4569 |
| 373 | Logit-rec-prop-est-2019 | 0.2945 | 0.4504 |
| 374 | Logit-rec-prop-est-2020 | 0.5584 | 0.5280 |
| 375 | Logit-rec-prop-est-2021 | 0.1423 | 0.3442 |
| 376 | Logit-rec-prop-est-2022 | -0.1831 | 0.5643 |
| 377 | M-dev-est-par-1 | 1.4547 | 0.0315 |
| 378 | Survey-q-survey-1 | 0.9380 | 0.0258 |
| 379 | Log-add-cvt-survey-2 | -0.9821 | 0.2863 |

Table 7: Summary of estimated model parameter values and standard deviations for model 24.0 for Bristol Bay red king crab.

| Index | Name | Value | StdDev |
| :---: | :---: | :---: | :---: |
| 1 | M-base | 0.2070 | 0.0049 |
| 2 | M-female | 0.1979 | 0.0173 |
| 3 | Log(Rinitial) | 19.9088 | 0.0474 |
| 4 | Log(Rbar) | 16.2820 | 0.1383 |
| 5 | Recruitment-rb-males | 0.7825 | 0.1768 |
| 6 | Recruitment-rb-females | -0.7391 | 0.2381 |
| 7 | Scaled-logN-for-male-mature-1-shell-1-class-2 | 1.0489 | 0.4278 |
| 8 | Scaled-logN-for-male-mature-1-shell-1-class-3 | 0.7050 | 0.4768 |
| 9 | Scaled-logN-for-male-mature-1-shell-1-class-4 | 0.9000 | 0.3393 |
| 10 | Scaled-logN-for-male-mature-1-shell-1-class-5 | 0.7977 | 0.3083 |
| 11 | Scaled-logN-for-male-mature-1-shell-1-class-6 | 0.6153 | 0.2978 |
| 12 | Scaled-logN-for-male-mature-1-shell-1-class-7 | 0.5797 | 0.2756 |
| 13 | Scaled-logN-for-male-mature-1-shell-1-class-8 | 0.3645 | 0.2782 |
| 14 | Scaled-logN-for-male-mature-1-shell-1-class-9 | 0.3831 | 0.2637 |
| 15 | Scaled-logN-for-male-mature-1-shell-1-class-10 | 0.3864 | 0.2575 |
| 16 | Scaled-logN-for-male-mature-1-shell-1-class-11 | 0.1631 | 0.2780 |
| 17 | Scaled-logN-for-male-mature-1-shell-1-class-12 | 0.0969 | 0.2746 |
| 18 | Scaled-logN-for-male-mature-1-shell-1-class-13 | 0.0072 | 0.2814 |
| 19 | Scaled-logN-for-male-mature-1-shell-1-class-14 | 0.0545 | 0.2655 |
| 20 | Scaled-logN-for-male-mature-1-shell-1-class-15 | -0.0645 | 0.2027 |
| 21 | Scaled-logN-for-male-mature-1-shell-1-class-16 | -0.2771 | 0.1960 |
| 22 | Scaled-logN-for-male-mature-1-shell-1-class-17 | -0.4311 | 0.1977 |
| 23 | Scaled-logN-for-male-mature-1-shell-1-class-18 | -0.7843 | 0.2116 |
| 24 | Scaled-logN-for-male-mature-1-shell-1-class-19 | -1.2420 | 0.2329 |
| 25 | Scaled-logN-for-male-mature-1-shell-1-class-20 | -1.2930 | 0.2341 |
| 26 | Scaled-logN-for-female-mature-1-shell-1-class-1 | 1.3605 | 0.5549 |
| 27 | Scaled-logN-for-female-mature-1-shell-1-class-2 | 1.5008 | 0.4433 |
| 28 | Scaled-logN-for-female-mature-1-shell-1-class-3 | 1.4183 | 0.3689 |
| 29 | Scaled-logN-for-female-mature-1-shell-1-class-4 | 1.1775 | 0.3453 |
| 30 | Scaled-logN-for-female-mature-1-shell-1-class-5 | 1.1380 | 0.3074 |
| 31 | Scaled-logN-for-female-mature-1-shell-1-class-6 | 0.6259 | 0.3348 |
| 32 | Scaled-logN-for-female-mature-1-shell-1-class-7 | 0.2043 | 0.3715 |
| 33 | Scaled-logN-for-female-mature-1-shell-1-class-8 | -0.0375 | 0.3667 |
| 34 | Scaled-logN-for-female-mature-1-shell-1-class-9 | -0.2297 | 0.3541 |
| 35 | Scaled-logN-for-female-mature-1-shell-1-class-10 | -0.5643 | 0.3696 |
| 36 | Scaled-logN-for-female-mature-1-shell-1-class-11 | -0.9610 | 0.3813 |
| 37 | Scaled-logN-for-female-mature-1-shell-1-class-12 | -1.2189 | 0.3833 |
| 38 | Scaled-logN-for-female-mature-1-shell-1-class-13 | -1.4498 | 0.3821 |
| 39 | Scaled-logN-for-female-mature-1-shell-1-class-14 | -1.8345 | 0.3707 |
| 40 | Scaled-logN-for-female-mature-1-shell-1-class-15 | -1.9243 | 0.3686 |
| 41 | Scaled-logN-for-female-mature-1-shell-1-class-16 | -1.8457 | 0.3509 |
| 42 | Gscale-male-period-1 | 1.0302 | 0.2144 |
| 43 | Gscale-female-period-1 | 1.3817 | 0.1268 |
| 44 | Molt-probability-mu-male-period-1 | 143.1532 | 1.5414 |
| 45 | Molt-probability-CV-male-period-1 | 0.0509 | 0.0082 |
| 46 | Molt-probability-mu-male-period-2 | 141.7649 | 0.5451 |
| 47 | Molt-probability-CV-male-period-2 | 0.0639 | 0.0030 |
| 48 | Sel-Pot-Fishery-male-period-1-par-1 | 4.7733 | 0.0083 |
| 49 | Sel-Pot-Fishery-male-period-1-par-2 | 2.2707 | 0.0440 |
| 50 | Sel-Pot-Fishery-female-period-1-par-1 | 4.5349 | 0.0179 |


| 51 | Sel-Pot-Fishery-female-period-1-par-2 | 2.1257 | 0.1016 |
| :---: | :---: | :---: | :---: |
| 52 | Sel-Trawl-Bycatch-male-period-1-par-1 | 5.1522 | 0.0544 |
| 53 | Sel-Trawl-Bycatch-male-period-1-par-2 | 2.8175 | 0.0434 |
| 54 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-1 | 4.7385 | 0.2180 |
| 55 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-2 | 2.1635 | 0.3060 |
| 56 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-1 | 4.7279 | 0.0829 |
| 57 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-2 | 0.9005 | 0.3031 |
| 58 | Sel-Fixed-Gear-male-period-1-par-1 | 4.8054 | 0.0232 |
| 59 | Sel-Fixed-Gear-male-period-1-par-2 | 2.3471 | 0.0816 |
| 60 | Sel-NMFS-Trawl-male-period-1-par-1 | -1.9156 | 0.0971 |
| 61 | Sel-NMFS-Trawl-male-period-1-par-2 | -1.6589 | 0.1156 |
| 62 | Sel-NMFS-Trawl-male-period-1-par-3 | -1.2592 | 0.0888 |
| 63 | Sel-NMFS-Trawl-male-period-1-par-4 | -0.9430 | 0.0601 |
| 64 | Sel-NMFS-Trawl-male-period-1-par-5 | -0.7669 | 0.0476 |
| 65 | Sel-NMFS-Trawl-male-period-1-par-6 | -0.5653 | 0.0403 |
| 66 | Sel-NMFS-Trawl-male-period-1-par-7 | -0.4279 | 0.0366 |
| 67 | Sel-NMFS-Trawl-male-period-1-par-8 | -0.2715 | 0.0324 |
| 68 | Sel-NMFS-Trawl-male-period-1-par-9 | -0.1839 | 0.0296 |
| 69 | Sel-NMFS-Trawl-male-period-1-par-10 | -0.1086 | 0.0283 |
| 70 | Sel-NMFS-Trawl-male-period-1-par-11 | -0.0841 | 0.0286 |
| 71 | Sel-NMFS-Trawl-male-period-1-par-12 | -0.0181 | 0.0278 |
| 72 | Sel-NMFS-Trawl-male-period-1-par-13 | -0.0096 | 0.0283 |
| 73 | Sel-NMFS-Trawl-male-period-1-par-14 | 0.0400 | 0.0285 |
| 74 | Sel-NMFS-Trawl-male-period-1-par-15 | 0.0177 | 0.0302 |
| 75 | Sel-NMFS-Trawl-male-period-1-par-16 | -0.0435 | 0.0329 |
| 76 | Sel-NMFS-Trawl-male-period-1-par-17 | -0.0280 | 0.0374 |
| 77 | Sel-NMFS-Trawl-male-period-1-par-18 | -0.0302 | 0.0418 |
| 78 | Sel-NMFS-Trawl-male-period-1-par-19 | -0.0734 | 0.0508 |
| 79 | Sel-NMFS-Trawl-male-period-1-par-20 | 0.0284 | 0.0497 |
| 80 | Ret-Pot-Fishery-male-period-1-par-1 | 4.9230 | 0.0015 |
| 81 | Ret-Pot-Fishery-male-period-1-par-2 | 0.6727 | 0.0535 |
| 82 | Ret-Pot-Fishery-male-period-2-par-1 | 4.9322 | 0.0020 |
| 83 | Ret-Pot-Fishery-male-period-2-par-2 | 0.7188 | 0.0992 |
| 84 | Log-fbar-Pot-Fishery | -1.6138 | 0.0378 |
| 85 | Log-fbar-Trawl-Bycatch | -4.2692 | 0.0731 |
| 86 | Log-fbar-Bairdi-Fishery-Bycatch | -5.5354 | 0.3260 |
| 87 | Log-fbar-Fixed-Gear | -6.4161 | 0.0707 |
| 88 | Log-fdev-Pot-Fishery-year-1975-season-3 | 0.8529 | 0.1193 |
| 89 | Log-fdev-Pot-Fishery-year-1976-season-3 | 0.8251 | 0.0898 |
| 90 | Log-fdev-Pot-Fishery-year-1977-season-3 | 0.7388 | 0.0736 |
| 91 | Log-fdev-Pot-Fishery-year-1978-season-3 | 0.8155 | 0.0598 |
| 92 | Log-fdev-Pot-Fishery-year-1979-season-3 | 1.0182 | 0.0529 |
| 93 | Log-fdev-Pot-Fishery-year-1980-season-3 | 1.8874 | 0.0549 |
| 94 | Log-fdev-Pot-Fishery-year-1981-season-3 | 2.4651 | 0.1170 |
| 95 | Log-fdev-Pot-Fishery-year-1982-season-3 | 0.9114 | 0.1646 |
| 96 | Log-fdev-Pot-Fishery-year-1983-season-3 | -8.7939 | 0.1134 |
| 97 | Log-fdev-Pot-Fishery-year-1984-season-3 | 1.3153 | 0.1058 |
| 98 | Log-fdev-Pot-Fishery-year-1985-season-3 | 1.3833 | 0.0905 |
| 99 | Log-fdev-Pot-Fishery-year-1986-season-3 | 1.5070 | 0.0772 |
| 100 | Log-fdev-Pot-Fishery-year-1987-season-3 | 1.0201 | 0.0669 |
| 101 | Log-fdev-Pot-Fishery-year-1988-season-3 | 0.0574 | 0.0545 |
| 102 | Log-fdev-Pot-Fishery-year-1989-season-3 | 0.1657 | 0.0483 |
| 103 | Log-fdev-Pot-Fishery-year-1990-season-3 | 0.8155 | 0.0391 |


| 104 | Log-fdev-Pot-Fishery-year-1991-season-3 | 0.8334 | 0.0421 |
| :---: | :---: | :---: | :---: |
| 105 | Log-fdev-Pot-Fishery-year-1992-season-3 | 0.3304 | 0.0470 |
| 106 | Log-fdev-Pot-Fishery-year-1993-season-3 | 1.0053 | 0.0519 |
| 107 | Log-fdev-Pot-Fishery-year-1994-season-3 | -4.1618 | 0.0496 |
| 108 | Log-fdev-Pot-Fishery-year-1995-season-3 | -4.5826 | 0.0426 |
| 109 | Log-fdev-Pot-Fishery-year-1996-season-3 | -0.1037 | 0.0409 |
| 110 | Log-fdev-Pot-Fishery-year-1997-season-3 | -0.0403 | 0.0413 |
| 111 | Log-fdev-Pot-Fishery-year-1998-season-3 | 0.8844 | 0.0443 |
| 112 | Log-fdev-Pot-Fishery-year-1999-season-3 | 0.5128 | 0.0438 |
| 113 | Log-fdev-Pot-Fishery-year-2000-season-3 | -0.0801 | 0.0420 |
| 114 | Log-fdev-Pot-Fishery-year-2001-season-3 | -0.1511 | 0.0415 |
| 115 | Log-fdev-Pot-Fishery-year-2002-season-3 | -0.0379 | 0.0402 |
| 116 | Log-fdev-Pot-Fishery-year-2003-season-3 | 0.4167 | 0.0388 |
| 117 | Log-fdev-Pot-Fishery-year-2004-season-3 | 0.3724 | 0.0389 |
| 118 | Log-fdev-Pot-Fishery-year-2005-season-3 | 0.6667 | 0.0395 |
| 119 | Log-fdev-Pot-Fishery-year-2006-season-3 | 0.4096 | 0.0388 |
| 120 | Log-fdev-Pot-Fishery-year-2007-season-3 | 0.7747 | 0.0388 |
| 121 | Log-fdev-Pot-Fishery-year-2008-season-3 | 0.9567 | 0.0410 |
| 122 | Log-fdev-Pot-Fishery-year-2009-season-3 | 0.7778 | 0.0421 |
| 123 | Log-fdev-Pot-Fishery-year-2010-season-3 | 0.6512 | 0.0416 |
| 124 | Log-fdev-Pot-Fishery-year-2011-season-3 | 0.0158 | 0.0400 |
| 125 | Log-fdev-Pot-Fishery-year-2012-season-3 | -0.0574 | 0.0387 |
| 126 | Log-fdev-Pot-Fishery-year-2013-season-3 | 0.1372 | 0.0382 |
| 127 | Log-fdev-Pot-Fishery-year-2014-season-3 | 0.4726 | 0.0381 |
| 128 | Log-fdev-Pot-Fishery-year-2015-season-3 | 0.5498 | 0.0392 |
| 129 | Log-fdev-Pot-Fishery-year-2016-season-3 | 0.5697 | 0.0428 |
| 130 | Log-fdev-Pot-Fishery-year-2017-season-3 | 0.5184 | 0.0495 |
| 131 | Log-fdev-Pot-Fishery-year-2018-season-3 | 0.3688 | 0.0583 |
| 132 | Log-fdev-Pot-Fishery-year-2019-season-3 | 0.3387 | 0.0663 |
| 133 | Log-fdev-Pot-Fishery-year-2020-season-3 | -0.0998 | 0.0703 |
| 134 | Log-fdev-Pot-Fishery-year-2021-season-3 | -4.5667 | 0.0702 |
| 135 | Log-fdev-Pot-Fishery-year-2022-season-3 | -4.6665 | 0.0696 |
| 136 | Log-fdev-Trawl-Bycatch-year-1976-season-5 | 0.1988 | 0.1243 |
| 137 | Log-fdev-Trawl-Bycatch-year-1977-season-5 | 0.6362 | 0.1159 |
| 138 | Log-fdev-Trawl-Bycatch-year-1978-season-5 | 0.6061 | 0.1101 |
| 139 | Log-fdev-Trawl-Bycatch-year-1979-season-5 | 0.6737 | 0.1084 |
| 140 | Log-fdev-Trawl-Bycatch-year-1980-season-5 | 1.4034 | 0.1107 |
| 141 | Log-fdev-Trawl-Bycatch-year-1981-season-5 | 1.2077 | 0.1259 |
| 142 | Log-fdev-Trawl-Bycatch-year-1982-season-5 | 2.5033 | 0.1255 |
| 143 | Log-fdev-Trawl-Bycatch-year-1983-season-5 | 2.2373 | 0.1153 |
| 144 | Log-fdev-Trawl-Bycatch-year-1984-season-5 | 3.4974 | 0.1143 |
| 145 | Log-fdev-Trawl-Bycatch-year-1985-season-5 | 2.2926 | 0.1121 |
| 146 | Log-fdev-Trawl-Bycatch-year-1986-season-5 | 1.2117 | 0.1126 |
| 147 | Log-fdev-Trawl-Bycatch-year-1987-season-5 | 0.7334 | 0.1102 |
| 148 | Log-fdev-Trawl-Bycatch-year-1988-season-5 | 1.4824 | 0.1052 |
| 149 | Log-fdev-Trawl-Bycatch-year-1989-season-5 | 0.0387 | 0.1040 |
| 150 | Log-fdev-Trawl-Bycatch-year-1990-season-5 | 0.4939 | 0.1040 |
| 151 | Log-fdev-Trawl-Bycatch-year-1991-season-5 | 0.9239 | 0.1054 |
| 152 | Log-fdev-Trawl-Bycatch-year-1992-season-5 | 0.7674 | 0.1056 |
| 153 | Log-fdev-Trawl-Bycatch-year-1993-season-5 | 1.2587 | 0.1085 |
| 154 | Log-fdev-Trawl-Bycatch-year-1994-season-5 | -0.5238 | 0.1054 |
| 155 | Log-fdev-Trawl-Bycatch-year-1995-season-5 | -0.8250 | 0.1037 |
| 156 | Log-fdev-Trawl-Bycatch-year-1996-season-5 | -0.7531 | 0.1038 |


| 157 | Log-fdev-Trawl-Bycatch-year-1997-season-5 | -1.2059 | 0.1037 |
| :---: | :---: | :---: | :---: |
| 158 | Log-fdev-Trawl-Bycatch-year-1998-season-5 | 0.1106 | 0.1042 |
| 159 | Log-fdev-Trawl-Bycatch-year-1999-season-5 | -0.1762 | 0.1041 |
| 160 | Log-fdev-Trawl-Bycatch-year-2000-season-5 | -0.9500 | 0.1034 |
| 161 | Log-fdev-Trawl-Bycatch-year-2001-season-5 | -0.1811 | 0.1032 |
| 162 | Log-fdev-Trawl-Bycatch-year-2002-season-5 | -0.4767 | 0.1028 |
| 163 | Log-fdev-Trawl-Bycatch-year-2003-season-5 | -0.5724 | 0.1026 |
| 164 | Log-fdev-Trawl-Bycatch-year-2004-season-5 | -0.3439 | 0.1026 |
| 165 | Log-fdev-Trawl-Bycatch-year-2005-season-5 | -0.6170 | 0.1025 |
| 166 | Log-fdev-Trawl-Bycatch-year-2006-season-5 | -0.4538 | 0.1022 |
| 167 | Log-fdev-Trawl-Bycatch-year-2007-season-5 | -0.3773 | 0.1023 |
| 168 | Log-fdev-Trawl-Bycatch-year-2008-season-5 | -0.3939 | 0.1027 |
| 169 | Log-fdev-Trawl-Bycatch-year-2009-season-5 | -0.7459 | 0.1028 |
| 170 | Log-fdev-Trawl-Bycatch-year-2010-season-5 | -0.8928 | 0.1027 |
| 171 | Log-fdev-Trawl-Bycatch-year-2011-season-5 | -1.3577 | 0.1023 |
| 172 | Log-fdev-Trawl-Bycatch-year-2012-season-5 | -1.8760 | 0.1024 |
| 173 | Log-fdev-Trawl-Bycatch-year-2013-season-5 | -1.1529 | 0.1025 |
| 174 | Log-fdev-Trawl-Bycatch-year-2014-season-5 | -1.7056 | 0.1025 |
| 175 | Log-fdev-Trawl-Bycatch-year-2015-season-5 | -1.3121 | 0.1030 |
| 176 | Log-fdev-Trawl-Bycatch-year-2016-season-5 | -0.7700 | 0.1040 |
| 177 | Log-fdev-Trawl-Bycatch-year-2017-season-5 | -0.3111 | 0.1057 |
| 178 | Log-fdev-Trawl-Bycatch-year-2018-season-5 | -0.3490 | 0.1077 |
| 179 | Log-fdev-Trawl-Bycatch-year-2019-season-5 | -0.2320 | 0.1102 |
| 180 | Log-fdev-Trawl-Bycatch-year-2020-season-5 | -0.2562 | 0.1124 |
| 181 | Log-fdev-Trawl-Bycatch-year-2021-season-5 | -1.2562 | 0.1133 |
| 182 | Log-fdev-Trawl-Bycatch-year-2022-season-5 | -2.2097 | 0.1149 |
| 183 | Log-fdev-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.1163 | 0.0682 |
| 184 | Log-fdev-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.6699 | 0.0682 |
| 185 | Log-fdev-Bairdi-Fishery-Bycatch-year-1977-season-5 | 1.2282 | 0.0682 |
| 186 | Log-fdev-Bairdi-Fishery-Bycatch-year-1978-season-5 | 1.0926 | 0.0682 |
| 187 | Log-fdev-Bairdi-Fishery-Bycatch-year-1979-season-5 | 1.3823 | 0.0682 |
| 188 | Log-fdev-Bairdi-Fishery-Bycatch-year-1980-season-5 | 1.4242 | 0.0682 |
| 189 | Log-fdev-Bairdi-Fishery-Bycatch-year-1981-season-5 | 0.9927 | 0.0682 |
| 190 | Log-fdev-Bairdi-Fishery-Bycatch-year-1982-season-5 | 0.4765 | 0.0682 |
| 191 | Log-fdev-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.9874 | 0.0682 |
| 192 | Log-fdev-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.5787 | 0.0682 |
| 193 | Log-fdev-Bairdi-Fishery-Bycatch-year-1987-season-5 | -1.0994 | 0.0682 |
| 194 | Log-fdev-Bairdi-Fishery-Bycatch-year-1988-season-5 | -0.2563 | 0.0682 |
| 195 | Log-fdev-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.9400 | 0.0682 |
| 196 | Log-fdev-Bairdi-Fishery-Bycatch-year-1990-season-5 | 1.4181 | 0.0682 |
| 197 | Log-fdev-Bairdi-Fishery-Bycatch-year-1991-season-5 | 3.2286 | 0.0779 |
| 198 | Log-fdev-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.2822 | 0.0967 |
| 199 | Log-fdev-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5829 | 0.1357 |
| 200 | Log-fdev-Bairdi-Fishery-Bycatch-year-1994-season-5 | -0.7750 | 0.0817 |
| 201 | Log-fdev-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1574 | 0.0751 |
| 202 | Log-fdev-Bairdi-Fishery-Bycatch-year-2007-season-5 | -2.9992 | 0.0882 |
| 203 | Log-fdev-Bairdi-Fishery-Bycatch-year-2008-season-5 | -2.4075 | 0.1171 |
| 204 | Log-fdev-Bairdi-Fishery-Bycatch-year-2009-season-5 | -3.4887 | 0.0802 |
| 205 | Log-fdev-Bairdi-Fishery-Bycatch-year-2013-season-5 | -0.8377 | 0.0942 |
| 206 | Log-fdev-Bairdi-Fishery-Bycatch-year-2014-season-5 | -0.1064 | 0.1138 |
| 207 | Log-fdev-Bairdi-Fishery-Bycatch-year-2015-season-5 | 1.0915 | 0.1435 |
| 208 | Log-fdev-Fixed-Gear-year-1996-season-5 | 0.5257 | 0.1033 |
| 209 | Log-fdev-Fixed-Gear-year-1997-season-5 | -0.1244 | 0.1023 |


| 210 | Log-fdev-Fixed-Gear-year-1998-season-5 | -0.3301 | 0.1031 |
| :---: | :---: | :---: | :---: |
| 211 | Log-fdev-Fixed-Gear-year-1999-season-5 | 0.5807 | 0.1023 |
| 212 | Log-fdev-Fixed-Gear-year-2000-season-5 | -1.8539 | 0.1016 |
| 213 | Log-fdev-Fixed-Gear-year-2001-season-5 | 0.1022 | 0.1012 |
| 214 | Log-fdev-Fixed-Gear-year-2002-season-5 | -0.1582 | 0.1007 |
| 215 | Log-fdev-Fixed-Gear-year-2003-season-5 | -0.9956 | 0.1007 |
| 216 | Log-fdev-Fixed-Gear-year-2004-season-5 | -0.8222 | 0.1005 |
| 217 | Log-fdev-Fixed-Gear-year-2005-season-5 | -0.5488 | 0.1004 |
| 218 | Log-fdev-Fixed-Gear-year-2006-season-5 | -0.6012 | 0.1001 |
| 219 | Log-fdev-Fixed-Gear-year-2007-season-5 | -0.0502 | 0.1002 |
| 220 | Log-fdev-Fixed-Gear-year-2008-season-5 | -0.7405 | 0.1007 |
| 221 | Log-fdev-Fixed-Gear-year-2009-season-5 | -1.7348 | 0.1005 |
| 222 | Log-fdev-Fixed-Gear-year-2010-season-5 | -2.5701 | 0.1000 |
| 223 | Log-fdev-Fixed-Gear-year-2011-season-5 | -1.0914 | 0.0996 |
| 224 | Log-fdev-Fixed-Gear-year-2012-season-5 | -0.5318 | 0.0996 |
| 225 | Log-fdev-Fixed-Gear-year-2013-season-5 | 0.6153 | 0.0994 |
| 226 | Log-fdev-Fixed-Gear-year-2014-season-5 | 1.4736 | 0.0995 |
| 227 | Log-fdev-Fixed-Gear-year-2015-season-5 | 1.1675 | 0.0998 |
| 228 | Log-fdev-Fixed-Gear-year-2016-season-5 | 0.3533 | 0.1004 |
| 229 | Log-fdev-Fixed-Gear-year-2017-season-5 | 1.9749 | 0.1015 |
| 230 | Log-fdev-Fixed-Gear-year-2018-season-5 | 2.2524 | 0.1025 |
| 231 | Log-fdev-Fixed-Gear-year-2019-season-5 | 1.0658 | 0.1040 |
| 232 | Log-fdev-Fixed-Gear-year-2020-season-5 | 0.8651 | 0.1058 |
| 233 | Log-fdev-Fixed-Gear-year-2021-season-5 | 0.8500 | 0.1072 |
| 234 | Log-fdev-Fixed-Gear-year-2022-season-5 | 0.3268 | 0.1095 |
| 235 | Log-foff-Pot-Fishery | -2.7811 | 0.0443 |
| 236 | Log-foff-Bairdi-Fishery-Bycatch | -0.2159 | 0.4442 |
| 237 | Log-fdov-Pot-Fishery-year-1990-season-3 | 1.9640 | 0.0842 |
| 238 | Log-fdov-Pot-Fishery-year-1991-season-3 | -0.7059 | 0.0835 |
| 239 | Log-fdov-Pot-Fishery-year-1992-season-3 | 1.9593 | 0.0850 |
| 240 | Log-fdov-Pot-Fishery-year-1993-season-3 | 1.7855 | 0.0868 |
| 241 | Log-fdov-Pot-Fishery-year-1994-season-3 | -0.4303 | 0.0854 |
| 242 | Log-fdov-Pot-Fishery-year-1995-season-3 | -0.1885 | 0.0829 |
| 243 | Log-fdov-Pot-Fishery-year-1996-season-3 | -3.6856 | 0.0817 |
| 244 | Log-fdov-Pot-Fishery-year-1997-season-3 | -0.3384 | 0.0826 |
| 245 | Log-fdov-Pot-Fishery-year-1998-season-3 | 1.4213 | 0.0833 |
| 246 | Log-fdov-Pot-Fishery-year-1999-season-3 | -2.8012 | 0.0824 |
| 247 | Log-fdov-Pot-Fishery-year-2000-season-3 | 1.1345 | 0.0813 |
| 248 | Log-fdov-Pot-Fishery-year-2001-season-3 | 0.8500 | 0.0813 |
| 249 | Log-fdov-Pot-Fishery-year-2002-season-3 | -1.9019 | 0.0806 |
| 250 | Log-fdov-Pot-Fishery-year-2003-season-3 | 1.1931 | 0.0805 |
| 251 | Log-fdov-Pot-Fishery-year-2004-season-3 | 0.3983 | 0.0808 |
| 252 | Log-fdov-Pot-Fishery-year-2005-season-3 | 0.9156 | 0.0803 |
| 253 | Log-fdov-Pot-Fishery-year-2006-season-3 | -1.2585 | 0.0797 |
| 254 | Log-fdov-Pot-Fishery-year-2007-season-3 | -0.2151 | 0.0797 |
| 255 | Log-fdov-Pot-Fishery-year-2008-season-3 | -0.4855 | 0.0803 |
| 256 | Log-fdov-Pot-Fishery-year-2009-season-3 | -0.7547 | 0.0806 |
| 257 | Log-fdov-Pot-Fishery-year-2010-season-3 | -0.2724 | 0.0805 |
| 258 | Log-fdov-Pot-Fishery-year-2011-season-3 | -1.1562 | 0.0796 |
| 259 | Log-fdov-Pot-Fishery-year-2012-season-3 | -1.8656 | 0.0790 |
| 260 | Log-fdov-Pot-Fishery-year-2013-season-3 | 0.1534 | 0.0789 |
| 261 | Log-fdov-Pot-Fishery-year-2014-season-3 | -0.2552 | 0.0789 |
| 262 | Log-fdov-Pot-Fishery-year-2015-season-3 | 0.8021 | 0.0793 |


| 263 | Log-fdov-Pot-Fishery-year-2016-season-3 | 0.2384 | 0.0804 |
| :---: | :---: | :---: | :---: |
| 264 | Log-fdov-Pot-Fishery-year-2017-season-3 | -0.4442 | 0.0826 |
| 265 | Log-fdov-Pot-Fishery-year-2018-season-3 | 0.8485 | 0.0859 |
| 266 | Log-fdov-Pot-Fishery-year-2019-season-3 | -0.2456 | 0.0890 |
| 267 | Log-fdov-Pot-Fishery-year-2020-season-3 | -0.7572 | 0.0902 |
| 268 | Log-fdov-Pot-Fishery-year-2021-season-3 | 2.8623 | 0.0901 |
| 269 | Log-fdov-Pot-Fishery-year-2022-season-3 | 1.2310 | 0.0903 |
| 270 | Log-fdov-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.0001 | 0.0962 |
| 271 | Log-fdov-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.0001 | 0.0962 |
| 272 | Log-fdov-Bairdi-Fishery-Bycatch-year-1977-season-5 | 0.0004 | 0.0962 |
| 273 | Log-fdov-Bairdi-Fishery-Bycatch-year-1978-season-5 | 0.0003 | 0.0963 |
| 274 | Log-fdov-Bairdi-Fishery-Bycatch-year-1979-season-5 | 0.0006 | 0.0963 |
| 275 | Log-fdov-Bairdi-Fishery-Bycatch-year-1980-season-5 | 0.0002 | 0.0963 |
| 276 | Log-fdov-Bairdi-Fishery-Bycatch-year-1981-season-5 | -0.0001 | 0.0963 |
| 277 | Log-fdov-Bairdi-Fishery-Bycatch-year-1982-season-5 | -0.0002 | 0.0962 |
| 278 | Log-fdov-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.0002 | 0.0962 |
| 279 | Log-fdov-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.0001 | 0.0962 |
| 280 | Log-fdov-Bairdi-Fishery-Bycatch-year-1987-season-5 | -0.0001 | 0.0962 |
| 281 | Log-fdov-Bairdi-Fishery-Bycatch-year-1988-season-5 | 0.0001 | 0.0962 |
| 282 | Log-fdov-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.0004 | 0.0962 |
| 283 | Log-fdov-Bairdi-Fishery-Bycatch-year-1990-season-5 | 0.0008 | 0.0963 |
| 284 | Log-fdov-Bairdi-Fishery-Bycatch-year-1991-season-5 | 1.5272 | 0.1425 |
| 285 | Log-fdov-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.8097 | 0.1207 |
| 286 | Log-fdov-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5886 | 0.1543 |
| 287 | Log-fdov-Bairdi-Fishery-Bycatch-year-1994-season-5 | -3.4069 | 0.1085 |
| 288 | Log-fdov-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1575 | 0.1584 |
| 289 | Log-fdov-Bairdi-Fishery-Bycatch-year-2007-season-5 | -0.7996 | 0.1196 |
| 290 | Log-fdov-Bairdi-Fishery-Bycatch-year-2008-season-5 | 0.0111 | 0.1369 |
| 291 | Log-fdov-Bairdi-Fishery-Bycatch-year-2009-season-5 | 0.3578 | 0.1063 |
| 292 | Log-fdov-Bairdi-Fishery-Bycatch-year-2013-season-5 | 0.9749 | 0.1593 |
| 293 | Log-fdov-Bairdi-Fishery-Bycatch-year-2014-season-5 | 0.1869 | 0.1481 |
| 294 | Log-fdov-Bairdi-Fishery-Bycatch-year-2015-season-5 | 0.9057 | 0.1767 |
| 295 | Rec-dev-est-1975 | 1.1858 | 0.2376 |
| 296 | Rec-dev-est-1976 | 0.7182 | 0.2779 |
| 297 | Rec-dev-est-1977 | 1.1448 | 0.2291 |
| 298 | Rec-dev-est-1978 | 1.7155 | 0.2001 |
| 299 | Rec-dev-est-1979 | 1.9628 | 0.1978 |
| 300 | Rec-dev-est-1980 | 1.1423 | 0.2379 |
| 301 | Rec-dev-est-1981 | 2.4411 | 0.1619 |
| 302 | Rec-dev-est-1982 | 1.4952 | 0.1769 |
| 303 | Rec-dev-est-1983 | 1.1160 | 0.1644 |
| 304 | Rec-dev-est-1984 | -0.6928 | 0.2379 |
| 305 | Rec-dev-est-1985 | 0.3626 | 0.1599 |
| 306 | Rec-dev-est-1986 | -0.7480 | 0.2325 |
| 307 | Rec-dev-est-1987 | -1.1960 | 0.2616 |
| 308 | Rec-dev-est-1988 | -0.9446 | 0.2199 |
| 309 | Rec-dev-est-1989 | -0.0324 | 0.1622 |
| 310 | Rec-dev-est-1990 | -0.4505 | 0.1798 |
| 311 | Rec-dev-est-1991 | -1.8417 | 0.3333 |
| 312 | Rec-dev-est-1992 | -0.8291 | 0.1919 |
| 313 | Rec-dev-est-1993 | -1.9686 | 0.4034 |
| 314 | Rec-dev-est-1994 | 1.0077 | 0.1449 |
| 315 | Rec-dev-est-1995 | -0.7442 | 0.2510 |


| 316 | Rec-dev-est-1996 | -1.4980 | 0.3256 |
| :---: | :---: | :---: | :---: |
| 317 | Rec-dev-est-1997 | -0.5127 | 0.1941 |
| 318 | Rec-dev-est-1998 | 0.4758 | 0.1529 |
| 319 | Rec-dev-est-1999 | -0.4496 | 0.2138 |
| 320 | Rec-dev-est-2000 | -0.4833 | 0.2387 |
| 321 | Rec-dev-est-2001 | 0.9129 | 0.1523 |
| 322 | Rec-dev-est-2002 | -0.5494 | 0.2547 |
| 323 | Rec-dev-est-2003 | -0.5420 | 0.2455 |
| 324 | Rec-dev-est-2004 | 0.6351 | 0.1564 |
| 325 | Rec-dev-est-2005 | -0.2507 | 0.2026 |
| 326 | Rec-dev-est-2006 | -0.3919 | 0.1915 |
| 327 | Rec-dev-est-2007 | -0.9927 | 0.2397 |
| 328 | Rec-dev-est-2008 | -0.9689 | 0.2369 |
| 329 | Rec-dev-est-2009 | -0.0256 | 0.1835 |
| 330 | Rec-dev-est-2010 | -0.4403 | 0.2048 |
| 331 | Rec-dev-est-2011 | -1.1424 | 0.2418 |
| 332 | Rec-dev-est-2012 | -1.3366 | 0.2210 |
| 333 | Rec-dev-est-2013 | -1.8442 | 0.2725 |
| 334 | Rec-dev-est-2014 | -1.5043 | 0.2409 |
| 335 | Rec-dev-est-2015 | -0.7712 | 0.1722 |
| 336 | Rec-dev-est-2016 | -1.6255 | 0.2424 |
| 337 | Rec-dev-est-2017 | -0.9071 | 0.1862 |
| 338 | Rec-dev-est-2018 | -1.6488 | 0.2714 |
| 339 | Rec-dev-est-2019 | -1.6094 | 0.2618 |
| 340 | Rec-dev-est-2020 | -1.7638 | 0.2814 |
| 341 | Rec-dev-est-2021 | -1.0454 | 0.2324 |
| 342 | Rec-dev-est-2022 | -1.5020 | 0.3410 |
| 343 | Logit-rec-prop-est-1975 | -0.0459 | 0.3766 |
| 344 | Logit-rec-prop-est-1976 | -0.8836 | 0.5192 |
| 345 | Logit-rec-prop-est-1977 | -0.2687 | 0.3448 |
| 346 | Logit-rec-prop-est-1978 | -0.4320 | 0.2654 |
| 347 | Logit-rec-prop-est-1979 | 0.1848 | 0.2511 |
| 348 | Logit-rec-prop-est-1980 | 0.2561 | 0.3314 |
| 349 | Logit-rec-prop-est-1981 | 0.4640 | 0.1371 |
| 350 | Logit-rec-prop-est-1982 | 0.4951 | 0.2290 |
| 351 | Logit-rec-prop-est-1983 | 0.0655 | 0.1729 |
| 352 | Logit-rec-prop-est-1984 | 0.3817 | 0.4128 |
| 353 | Logit-rec-prop-est-1985 | -0.3948 | 0.1600 |
| 354 | Logit-rec-prop-est-1986 | 0.2814 | 0.3872 |
| 355 | Logit-rec-prop-est-1987 | -0.0644 | 0.4305 |
| 356 | Logit-rec-prop-est-1988 | 0.3568 | 0.3571 |
| 357 | Logit-rec-prop-est-1989 | -0.0462 | 0.1666 |
| 358 | Logit-rec-prop-est-1990 | 0.2287 | 0.2326 |
| 359 | Logit-rec-prop-est-1991 | 0.5912 | 0.6289 |
| 360 | Logit-rec-prop-est-1992 | 0.3026 | 0.2755 |
| 361 | Logit-rec-prop-est-1993 | -0.5947 | 0.6354 |
| 362 | Logit-rec-prop-est-1994 | -0.3087 | 0.0895 |
| 363 | Logit-rec-prop-est-1995 | 1.2797 | 0.5525 |
| 364 | Logit-rec-prop-est-1996 | 0.3272 | 0.5797 |
| 365 | Logit-rec-prop-est-1997 | 0.4406 | 0.3022 |
| 366 | Logit-rec-prop-est-1998 | -0.0393 | 0.1373 |
| 367 | Logit-rec-prop-est-1999 | 0.2715 | 0.3335 |
| 368 | Logit-rec-prop-est-2000 | -0.6806 | 0.3843 |


| 369 | Logit-rec-prop-est-2001 | -0.4552 | 0.1216 |
| :--- | :--- | ---: | :--- |
| 370 | Logit-rec-prop-est-2002 | -0.3763 | 0.4149 |
| 371 | Logit-rec-prop-est-2003 | -0.1292 | 0.3955 |
| 372 | Logit-rec-prop-est-2004 | -0.4696 | 0.1463 |
| 373 | Logit-rec-prop-est-2005 | 0.1761 | 0.3077 |
| 374 | Logit-rec-prop-est-2006 | 0.3269 | 0.2893 |
| 375 | Logit-rec-prop-est-2007 | -0.1131 | 0.3798 |
| 376 | Logit-rec-prop-est-2008 | -0.3802 | 0.3658 |
| 377 | Logit-rec-prop-est-2009 | -0.7023 | 0.2112 |
| 378 | Logit-rec-prop-est-2010 | -0.4366 | 0.2817 |
| 379 | Logit-rec-prop-est-2011 | -0.4409 | 0.3703 |
| 380 | Logit-rec-prop-est-2012 | -0.4314 | 0.3313 |
| 381 | Logit-rec-prop-est-2013 | -0.1748 | 0.4477 |
| 382 | Logit-rec-prop-est-2014 | -0.4769 | 0.3688 |
| 383 | Logit-rec-prop-est-2015 | 0.2961 | 0.2167 |
| 384 | Logit-rec-prop-est-2016 | 0.5049 | 0.4350 |
| 385 | Logit-rec-prop-est-2017 | 0.6692 | 0.2705 |
| 386 | Logit-rec-prop-est-2018 | -0.2056 | 0.4489 |
| 387 | Logit-rec-prop-est-2019 | 0.3472 | 0.4424 |
| 388 | Logit-rec-prop-est-2020 | 0.4573 | 0.4892 |
| 389 | Logit-rec-prop-est-2021 | 0.1010 | 0.3467 |
| 390 | Logit-rec-prop-est-2022 | -0.2547 | 0.5608 |
| 391 | M-dev-est-par-1 | 1.5302 | 0.0280 |

Table 8: Summary of estimated model parameter values and standard deviations for model 24.0c for Bristol Bay red king crab.

| Index | Name | Value | StdDev |
| :---: | :---: | :---: | :---: |
| 1 | M-base | 0.2319 | 0.0065 |
| 2 | M-female | 0.1499 | 0.0184 |
| 3 | Log(Rinitial) | 20.0449 | 0.0564 |
| 4 | Log(Rbar) | 16.5088 | 0.1436 |
| 5 | Recruitment-rb-males | 0.7694 | 0.1272 |
| 6 | Recruitment-rb-females | -0.5868 | 0.2142 |
| 7 | Scaled-logN-for-male-mature-1-shell-1-class-2 | 1.0593 | 0.4355 |
| 8 | Scaled-logN-for-male-mature-1-shell-1-class-3 | 0.7217 | 0.4872 |
| 9 | Scaled-logN-for-male-mature-1-shell-1-class-4 | 0.9359 | 0.3379 |
| 10 | Scaled-logN-for-male-mature-1-shell-1-class-5 | 0.7618 | 0.3100 |
| 11 | Scaled-logN-for-male-mature-1-shell-1-class-6 | 0.5702 | 0.2995 |
| 12 | Scaled-logN-for-male-mature-1-shell-1-class-7 | 0.5207 | 0.2787 |
| 13 | Scaled-logN-for-male-mature-1-shell-1-class-8 | 0.3578 | 0.2778 |
| 14 | Scaled-logN-for-male-mature-1-shell-1-class-9 | 0.3862 | 0.2641 |
| 15 | Scaled-logN-for-male-mature-1-shell-1-class-10 | 0.4099 | 0.2563 |
| 16 | Scaled-logN-for-male-mature-1-shell-1-class-11 | 0.1875 | 0.2743 |
| 17 | Scaled-logN-for-male-mature-1-shell-1-class-12 | 0.1685 | 0.2681 |
| 18 | Scaled-logN-for-male-mature-1-shell-1-class-13 | 0.0547 | 0.2766 |
| 19 | Scaled-logN-for-male-mature-1-shell-1-class-14 | 0.1590 | 0.2518 |
| 20 | Scaled-logN-for-male-mature-1-shell-1-class-15 | -0.0245 | 0.1982 |
| 21 | Scaled-logN-for-male-mature-1-shell-1-class-16 | -0.2835 | 0.1912 |
| 22 | Scaled-logN-for-male-mature-1-shell-1-class-17 | -0.4480 | 0.1937 |
| 23 | Scaled-logN-for-male-mature-1-shell-1-class-18 | -0.7971 | 0.2076 |
| 24 | Scaled-logN-for-male-mature-1-shell-1-class-19 | -1.2596 | 0.2289 |
| 25 | Scaled-logN-for-male-mature-1-shell-1-class-20 | -1.3201 | 0.2290 |
| 26 | Scaled-logN-for-female-mature-1-shell-1-class-1 | 1.3592 | 0.7333 |
| 27 | Scaled-logN-for-female-mature-1-shell-1-class-2 | 1.5169 | 0.4879 |
| 28 | Scaled-logN-for-female-mature-1-shell-1-class-3 | 1.4134 | 0.3811 |
| 29 | Scaled-logN-for-female-mature-1-shell-1-class-4 | 1.1670 | 0.3510 |
| 30 | Scaled-logN-for-female-mature-1-shell-1-class-5 | 1.0919 | 0.3033 |
| 31 | Scaled-logN-for-female-mature-1-shell-1-class-6 | 0.6263 | 0.3245 |
| 32 | Scaled-logN-for-female-mature-1-shell-1-class-7 | 0.2154 | 0.3602 |
| 33 | Scaled-logN-for-female-mature-1-shell-1-class-8 | -0.0252 | 0.3631 |
| 34 | Scaled-logN-for-female-mature-1-shell-1-class-9 | -0.2213 | 0.3534 |
| 35 | Scaled-logN-for-female-mature-1-shell-1-class-10 | -0.5672 | 0.3718 |
| 36 | Scaled-logN-for-female-mature-1-shell-1-class-11 | -0.9599 | 0.3822 |
| 37 | Scaled-logN-for-female-mature-1-shell-1-class-12 | -1.2195 | 0.3864 |
| 38 | Scaled-logN-for-female-mature-1-shell-1-class-13 | -1.4507 | 0.3848 |
| 39 | Scaled-logN-for-female-mature-1-shell-1-class-14 | -1.8284 | 0.3734 |
| 40 | Scaled-logN-for-female-mature-1-shell-1-class-15 | -1.9355 | 0.3695 |
| 41 | Scaled-logN-for-female-mature-1-shell-1-class-16 | -1.8820 | 0.3496 |
| 42 | Gscale-male-period-1 | 0.9872 | 0.1875 |
| 43 | Gscale-female-period-1 | 1.3988 | 0.1226 |
| 44 | Molt-probability-mu-male-period-1 | 141.4071 | 0.5857 |
| 45 | Molt-probability-CV-male-period-1 | 0.0673 | 0.0032 |
| 46 | Sel-Pot-Fishery-male-period-1-par-1 | 4.7805 | 0.0082 |
| 47 | Sel-Pot-Fishery-male-period-1-par-2 | 2.2733 | 0.0422 |
| 48 | Sel-Pot-Fishery-female-period-1-par-1 | 4.5656 | 0.0189 |
| 49 | Sel-Pot-Fishery-female-period-1-par-2 | 2.2330 | 0.0907 |
| 50 | Sel-Trawl-Bycatch-male-period-1-par-1 | 5.1342 | 0.0453 |


| 51 | Sel-Trawl-Bycatch-male-period-1-par-2 | 2.7854 | 0.0402 |
| :---: | :---: | :---: | :---: |
| 52 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-1 | 4.7163 | 0.2354 |
| 53 | Sel-Bairdi-Fishery-Bycatch-male-period-1-par-2 | 2.1674 | 0.3046 |
| 54 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-1 | 4.7357 | 0.0905 |
| 55 | Sel-Bairdi-Fishery-Bycatch-female-period-1-par-2 | 0.9030 | 0.3027 |
| 56 | Sel-Fixed-Gear-male-period-1-par-1 | 4.8079 | 0.0215 |
| 57 | Sel-Fixed-Gear-male-period-1-par-2 | 2.3302 | 0.0765 |
| 58 | Sel-NMFS-Trawl-male-period-1-par-1 | 4.1526 | 0.1200 |
| 59 | Sel-NMFS-Trawl-male-period-1-par-2 | 2.2173 | 0.3441 |
| 60 | Sel-NMFS-Trawl-male-period-2-par-1 | 4.0776 | 0.2482 |
| 61 | Sel-NMFS-Trawl-male-period-2-par-2 | 3.5278 | 0.3688 |
| 62 | Sel-BSFRF-male-period-1-par-1 | 4.4673 | 0.0273 |
| 63 | Sel-BSFRF-male-period-1-par-2 | 2.5638 | 0.0773 |
| 64 | Ret-Pot-Fishery-male-period-1-par-1 | 4.9237 | 0.0015 |
| 65 | Ret-Pot-Fishery-male-period-1-par-2 | 0.6805 | 0.0523 |
| 66 | Ret-Pot-Fishery-male-period-2-par-1 | 4.9322 | 0.0020 |
| 67 | Ret-Pot-Fishery-male-period-2-par-2 | 0.7209 | 0.0982 |
| 68 | Log-fbar-Pot-Fishery | -1.7108 | 0.0440 |
| 69 | Log-fbar-Trawl-Bycatch | -4.3759 | 0.0752 |
| 70 | Log-fbar-Bairdi-Fishery-Bycatch | -5.7008 | 0.3287 |
| 71 | Log-fbar-Fixed-Gear | -6.5286 | 0.0747 |
| 72 | Log-fdev-Pot-Fishery-year-1975-season-3 | 0.8091 | 0.0904 |
| 73 | Log-fdev-Pot-Fishery-year-1976-season-3 | 0.7903 | 0.0719 |
| 74 | Log-fdev-Pot-Fishery-year-1977-season-3 | 0.7310 | 0.0632 |
| 75 | Log-fdev-Pot-Fishery-year-1978-season-3 | 0.8484 | 0.0560 |
| 76 | Log-fdev-Pot-Fishery-year-1979-season-3 | 1.0826 | 0.0546 |
| 77 | Log-fdev-Pot-Fishery-year-1980-season-3 | 1.9751 | 0.0585 |
| 78 | Log-fdev-Pot-Fishery-year-1981-season-3 | 2.5056 | 0.1147 |
| 79 | Log-fdev-Pot-Fishery-year-1982-season-3 | 0.9456 | 0.1546 |
| 80 | Log-fdev-Pot-Fishery-year-1983-season-3 | -8.7103 | 0.1043 |
| 81 | Log-fdev-Pot-Fishery-year-1984-season-3 | 1.4312 | 0.1009 |
| 82 | Log-fdev-Pot-Fishery-year-1985-season-3 | 1.4795 | 0.0916 |
| 83 | Log-fdev-Pot-Fishery-year-1986-season-3 | 1.5645 | 0.0775 |
| 84 | Log-fdev-Pot-Fishery-year-1987-season-3 | 1.0533 | 0.0668 |
| 85 | Log-fdev-Pot-Fishery-year-1988-season-3 | 0.0836 | 0.0545 |
| 86 | Log-fdev-Pot-Fishery-year-1989-season-3 | 0.1911 | 0.0485 |
| 87 | Log-fdev-Pot-Fishery-year-1990-season-3 | 0.8358 | 0.0396 |
| 88 | Log-fdev-Pot-Fishery-year-1991-season-3 | 0.8414 | 0.0426 |
| 89 | Log-fdev-Pot-Fishery-year-1992-season-3 | 0.3262 | 0.0472 |
| 90 | Log-fdev-Pot-Fishery-year-1993-season-3 | 0.9856 | 0.0514 |
| 91 | Log-fdev-Pot-Fishery-year-1994-season-3 | -4.1825 | 0.0489 |
| 92 | Log-fdev-Pot-Fishery-year-1995-season-3 | -4.5824 | 0.0422 |
| 93 | Log-fdev-Pot-Fishery-year-1996-season-3 | -0.0936 | 0.0406 |
| 94 | Log-fdev-Pot-Fishery-year-1997-season-3 | -0.0266 | 0.0409 |
| 95 | Log-fdev-Pot-Fishery-year-1998-season-3 | 0.8924 | 0.0436 |
| 96 | Log-fdev-Pot-Fishery-year-1999-season-3 | 0.5114 | 0.0431 |
| 97 | Log-fdev-Pot-Fishery-year-2000-season-3 | -0.0790 | 0.0415 |
| 98 | Log-fdev-Pot-Fishery-year-2001-season-3 | -0.1437 | 0.0409 |
| 99 | Log-fdev-Pot-Fishery-year-2002-season-3 | -0.0242 | 0.0397 |
| 100 | Log-fdev-Pot-Fishery-year-2003-season-3 | 0.4343 | 0.0385 |
| 101 | Log-fdev-Pot-Fishery-year-2004-season-3 | 0.3912 | 0.0385 |
| 102 | Log-fdev-Pot-Fishery-year-2005-season-3 | 0.6831 | 0.0391 |
| 103 | Log-fdev-Pot-Fishery-year-2006-season-3 | 0.4266 | 0.0385 |


| 104 | Log-fdev-Pot-Fishery-year-2007-season-3 | 0.7910 | 0.0385 |
| :---: | :---: | :---: | :---: |
| 105 | Log-fdev-Pot-Fishery-year-2008-season-3 | 0.9603 | 0.0406 |
| 106 | Log-fdev-Pot-Fishery-year-2009-season-3 | 0.7610 | 0.0418 |
| 107 | Log-fdev-Pot-Fishery-year-2010-season-3 | 0.6157 | 0.0414 |
| 108 | Log-fdev-Pot-Fishery-year-2011-season-3 | -0.0230 | 0.0398 |
| 109 | Log-fdev-Pot-Fishery-year-2012-season-3 | -0.0876 | 0.0384 |
| 110 | Log-fdev-Pot-Fishery-year-2013-season-3 | 0.1122 | 0.0381 |
| 111 | Log-fdev-Pot-Fishery-year-2014-season-3 | 0.4436 | 0.0383 |
| 112 | Log-fdev-Pot-Fishery-year-2015-season-3 | 0.5126 | 0.0400 |
| 113 | Log-fdev-Pot-Fishery-year-2016-season-3 | 0.5159 | 0.0441 |
| 114 | Log-fdev-Pot-Fishery-year-2017-season-3 | 0.4413 | 0.0508 |
| 115 | Log-fdev-Pot-Fishery-year-2018-season-3 | 0.2750 | 0.0589 |
| 116 | Log-fdev-Pot-Fishery-year-2019-season-3 | 0.2357 | 0.0657 |
| 117 | Log-fdev-Pot-Fishery-year-2020-season-3 | -0.1913 | 0.0682 |
| 118 | Log-fdev-Pot-Fishery-year-2021-season-3 | -4.6333 | 0.0676 |
| 119 | Log-fdev-Pot-Fishery-year-2022-season-3 | -4.7056 | 0.0674 |
| 120 | Log-fdev-Trawl-Bycatch-year-1976-season-5 | 0.1595 | 0.1129 |
| 121 | Log-fdev-Trawl-Bycatch-year-1977-season-5 | 0.6240 | 0.1100 |
| 122 | Log-fdev-Trawl-Bycatch-year-1978-season-5 | 0.6285 | 0.1084 |
| 123 | Log-fdev-Trawl-Bycatch-year-1979-season-5 | 0.7280 | 0.1096 |
| 124 | Log-fdev-Trawl-Bycatch-year-1980-season-5 | 1.4746 | 0.1131 |
| 125 | Log-fdev-Trawl-Bycatch-year-1981-season-5 | 1.2408 | 0.1256 |
| 126 | Log-fdev-Trawl-Bycatch-year-1982-season-5 | 2.5377 | 0.1227 |
| 127 | Log-fdev-Trawl-Bycatch-year-1983-season-5 | 2.2908 | 0.1131 |
| 128 | Log-fdev-Trawl-Bycatch-year-1984-season-5 | 3.5494 | 0.1125 |
| 129 | Log-fdev-Trawl-Bycatch-year-1985-season-5 | 2.3335 | 0.1119 |
| 130 | Log-fdev-Trawl-Bycatch-year-1986-season-5 | 1.2308 | 0.1123 |
| 131 | Log-fdev-Trawl-Bycatch-year-1987-season-5 | 0.7415 | 0.1099 |
| 132 | Log-fdev-Trawl-Bycatch-year-1988-season-5 | 1.4969 | 0.1053 |
| 133 | Log-fdev-Trawl-Bycatch-year-1989-season-5 | 0.0555 | 0.1041 |
| 134 | Log-fdev-Trawl-Bycatch-year-1990-season-5 | 0.4989 | 0.1042 |
| 135 | Log-fdev-Trawl-Bycatch-year-1991-season-5 | 0.9136 | 0.1056 |
| 136 | Log-fdev-Trawl-Bycatch-year-1992-season-5 | 0.7533 | 0.1057 |
| 137 | Log-fdev-Trawl-Bycatch-year-1993-season-5 | 1.2191 | 0.1084 |
| 138 | Log-fdev-Trawl-Bycatch-year-1994-season-5 | -0.5426 | 0.1052 |
| 139 | Log-fdev-Trawl-Bycatch-year-1995-season-5 | -0.8224 | 0.1036 |
| 140 | Log-fdev-Trawl-Bycatch-year-1996-season-5 | -0.7450 | 0.1037 |
| 141 | Log-fdev-Trawl-Bycatch-year-1997-season-5 | -1.1947 | 0.1035 |
| 142 | Log-fdev-Trawl-Bycatch-year-1998-season-5 | 0.1059 | 0.1041 |
| 143 | Log-fdev-Trawl-Bycatch-year-1999-season-5 | -0.1852 | 0.1039 |
| 144 | Log-fdev-Trawl-Bycatch-year-2000-season-5 | -0.9510 | 0.1033 |
| 145 | Log-fdev-Trawl-Bycatch-year-2001-season-5 | -0.1741 | 0.1031 |
| 146 | Log-fdev-Trawl-Bycatch-year-2002-season-5 | -0.4643 | 0.1028 |
| 147 | Log-fdev-Trawl-Bycatch-year-2003-season-5 | -0.5603 | 0.1025 |
| 148 | Log-fdev-Trawl-Bycatch-year-2004-season-5 | -0.3298 | 0.1025 |
| 149 | Log-fdev-Trawl-Bycatch-year-2005-season-5 | -0.6061 | 0.1024 |
| 150 | Log-fdev-Trawl-Bycatch-year-2006-season-5 | -0.4397 | 0.1021 |
| 151 | Log-fdev-Trawl-Bycatch-year-2007-season-5 | -0.3673 | 0.1023 |
| 152 | Log-fdev-Trawl-Bycatch-year-2008-season-5 | -0.3968 | 0.1026 |
| 153 | Log-fdev-Trawl-Bycatch-year-2009-season-5 | -0.7606 | 0.1028 |
| 154 | Log-fdev-Trawl-Bycatch-year-2010-season-5 | -0.9180 | 0.1027 |
| 155 | Log-fdev-Trawl-Bycatch-year-2011-season-5 | -1.3793 | 0.1023 |
| 156 | Log-fdev-Trawl-Bycatch-year-2012-season-5 | -1.8906 | 0.1024 |


| 157 | Log-fdev-Trawl-Bycatch-year-2013-season-5 | -1.1637 | 0.1024 |
| :---: | :---: | :---: | :---: |
| 158 | Log-fdev-Trawl-Bycatch-year-2014-season-5 | -1.7202 | 0.1026 |
| 159 | Log-fdev-Trawl-Bycatch-year-2015-season-5 | -1.3329 | 0.1032 |
| 160 | Log-fdev-Trawl-Bycatch-year-2016-season-5 | -0.7996 | 0.1045 |
| 161 | Log-fdev-Trawl-Bycatch-year-2017-season-5 | -0.3509 | 0.1063 |
| 162 | Log-fdev-Trawl-Bycatch-year-2018-season-5 | -0.3952 | 0.1084 |
| 163 | Log-fdev-Trawl-Bycatch-year-2019-season-5 | -0.2824 | 0.1107 |
| 164 | Log-fdev-Trawl-Bycatch-year-2020-season-5 | -0.3023 | 0.1124 |
| 165 | Log-fdev-Trawl-Bycatch-year-2021-season-5 | -1.2854 | 0.1127 |
| 166 | Log-fdev-Trawl-Bycatch-year-2022-season-5 | -2.2218 | 0.1141 |
| 167 | Log-fdev-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.1164 | 0.0682 |
| 168 | Log-fdev-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.6698 | 0.0682 |
| 169 | Log-fdev-Bairdi-Fishery-Bycatch-year-1977-season-5 | 1.2282 | 0.0682 |
| 170 | Log-fdev-Bairdi-Fishery-Bycatch-year-1978-season-5 | 1.0926 | 0.0682 |
| 171 | Log-fdev-Bairdi-Fishery-Bycatch-year-1979-season-5 | 1.3823 | 0.0682 |
| 172 | Log-fdev-Bairdi-Fishery-Bycatch-year-1980-season-5 | 1.4242 | 0.0682 |
| 173 | Log-fdev-Bairdi-Fishery-Bycatch-year-1981-season-5 | 0.9927 | 0.0682 |
| 174 | Log-fdev-Bairdi-Fishery-Bycatch-year-1982-season-5 | 0.4764 | 0.0682 |
| 175 | Log-fdev-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.9874 | 0.0682 |
| 176 | Log-fdev-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.5787 | 0.0682 |
| 177 | Log-fdev-Bairdi-Fishery-Bycatch-year-1987-season-5 | -1.0994 | 0.0682 |
| 178 | Log-fdev-Bairdi-Fishery-Bycatch-year-1988-season-5 | -0.2563 | 0.0682 |
| 179 | Log-fdev-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.9401 | 0.0682 |
| 180 | Log-fdev-Bairdi-Fishery-Bycatch-year-1990-season-5 | 1.4182 | 0.0682 |
| 181 | Log-fdev-Bairdi-Fishery-Bycatch-year-1991-season-5 | 3.2441 | 0.0755 |
| 182 | Log-fdev-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.2814 | 0.1067 |
| 183 | Log-fdev-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5526 | 0.1262 |
| 184 | Log-fdev-Bairdi-Fishery-Bycatch-year-1994-season-5 | -0.7679 | 0.0861 |
| 185 | Log-fdev-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1208 | 0.0741 |
| 186 | Log-fdev-Bairdi-Fishery-Bycatch-year-2007-season-5 | -2.9815 | 0.0995 |
| 187 | Log-fdev-Bairdi-Fishery-Bycatch-year-2008-season-5 | -2.4160 | 0.1181 |
| 188 | Log-fdev-Bairdi-Fishery-Bycatch-year-2009-season-5 | -3.5064 | 0.0754 |
| 189 | Log-fdev-Bairdi-Fishery-Bycatch-year-2013-season-5 | -0.8382 | 0.0963 |
| 190 | Log-fdev-Bairdi-Fishery-Bycatch-year-2014-season-5 | -0.1109 | 0.1203 |
| 191 | Log-fdev-Bairdi-Fishery-Bycatch-year-2015-season-5 | 1.0772 | 0.1481 |
| 192 | Log-fdev-Fixed-Gear-year-1996-season-5 | 0.5331 | 0.1033 |
| 193 | Log-fdev-Fixed-Gear-year-1997-season-5 | -0.1148 | 0.1024 |
| 194 | Log-fdev-Fixed-Gear-year-1998-season-5 | -0.3334 | 0.1031 |
| 195 | Log-fdev-Fixed-Gear-year-1999-season-5 | 0.5758 | 0.1023 |
| 196 | Log-fdev-Fixed-Gear-year-2000-season-5 | -1.8519 | 0.1017 |
| 197 | Log-fdev-Fixed-Gear-year-2001-season-5 | 0.1105 | 0.1013 |
| 198 | Log-fdev-Fixed-Gear-year-2002-season-5 | -0.1447 | 0.1009 |
| 199 | Log-fdev-Fixed-Gear-year-2003-season-5 | -0.9811 | 0.1008 |
| 200 | Log-fdev-Fixed-Gear-year-2004-season-5 | -0.8055 | 0.1006 |
| 201 | Log-fdev-Fixed-Gear-year-2005-season-5 | -0.5339 | 0.1005 |
| 202 | Log-fdev-Fixed-Gear-year-2006-season-5 | -0.5829 | 0.1002 |
| 203 | Log-fdev-Fixed-Gear-year-2007-season-5 | -0.0357 | 0.1002 |
| 204 | Log-fdev-Fixed-Gear-year-2008-season-5 | -0.7376 | 0.1006 |
| 205 | Log-fdev-Fixed-Gear-year-2009-season-5 | -1.7411 | 0.1004 |
| 206 | Log-fdev-Fixed-Gear-year-2010-season-5 | -2.5815 | 0.1000 |
| 207 | Log-fdev-Fixed-Gear-year-2011-season-5 | -1.0972 | 0.0996 |
| 208 | Log-fdev-Fixed-Gear-year-2012-season-5 | -0.5319 | 0.0995 |
| 209 | Log-fdev-Fixed-Gear-year-2013-season-5 | 0.6172 | 0.0994 |


| 210 | Log-fdev-Fixed-Gear-year-2014-season-5 | 1.4729 | 0.0995 |
| :---: | :---: | :---: | :---: |
| 211 | Log-fdev-Fixed-Gear-year-2015-season-5 | 1.1625 | 0.0998 |
| 212 | Log-fdev-Fixed-Gear-year-2016-season-5 | 0.3428 | 0.1005 |
| 213 | Log-fdev-Fixed-Gear-year-2017-season-5 | 1.9603 | 0.1017 |
| 214 | Log-fdev-Fixed-Gear-year-2018-season-5 | 2.2354 | 0.1028 |
| 215 | Log-fdev-Fixed-Gear-year-2019-season-5 | 1.0462 | 0.1041 |
| 216 | Log-fdev-Fixed-Gear-year-2020-season-5 | 0.8467 | 0.1057 |
| 217 | Log-fdev-Fixed-Gear-year-2021-season-5 | 0.8411 | 0.1068 |
| 218 | Log-fdev-Fixed-Gear-year-2022-season-5 | 0.3288 | 0.1090 |
| 219 | Log-foff-Pot-Fishery | -2.7555 | 0.0443 |
| 220 | Log-foff-Bairdi-Fishery-Bycatch | -0.1394 | 0.4864 |
| 221 | Log-fdov-Pot-Fishery-year-1990-season-3 | 1.9054 | 0.0841 |
| 222 | Log-fdov-Pot-Fishery-year-1991-season-3 | -0.7525 | 0.0833 |
| 223 | Log-fdov-Pot-Fishery-year-1992-season-3 | 1.9198 | 0.0846 |
| 224 | Log-fdov-Pot-Fishery-year-1993-season-3 | 1.7571 | 0.0860 |
| 225 | Log-fdov-Pot-Fishery-year-1994-season-3 | -0.4579 | 0.0846 |
| 226 | Log-fdov-Pot-Fishery-year-1995-season-3 | -0.2372 | 0.0824 |
| 227 | Log-fdov-Pot-Fishery-year-1996-season-3 | -3.7295 | 0.0813 |
| 228 | Log-fdov-Pot-Fishery-year-1997-season-3 | -0.3777 | 0.0822 |
| 229 | Log-fdov-Pot-Fishery-year-1998-season-3 | 1.3832 | 0.0830 |
| 230 | Log-fdov-Pot-Fishery-year-1999-season-3 | -2.8355 | 0.0821 |
| 231 | Log-fdov-Pot-Fishery-year-2000-season-3 | 1.1030 | 0.0811 |
| 232 | Log-fdov-Pot-Fishery-year-2001-season-3 | 0.8186 | 0.0810 |
| 233 | Log-fdov-Pot-Fishery-year-2002-season-3 | -1.9368 | 0.0805 |
| 234 | Log-fdov-Pot-Fishery-year-2003-season-3 | 1.1620 | 0.0804 |
| 235 | Log-fdov-Pot-Fishery-year-2004-season-3 | 0.3690 | 0.0807 |
| 236 | Log-fdov-Pot-Fishery-year-2005-season-3 | 0.8873 | 0.0803 |
| 237 | Log-fdov-Pot-Fishery-year-2006-season-3 | -1.2835 | 0.0796 |
| 238 | Log-fdov-Pot-Fishery-year-2007-season-3 | -0.2401 | 0.0796 |
| 239 | Log-fdov-Pot-Fishery-year-2008-season-3 | -0.5047 | 0.0800 |
| 240 | Log-fdov-Pot-Fishery-year-2009-season-3 | -0.7554 | 0.0802 |
| 241 | Log-fdov-Pot-Fishery-year-2010-season-3 | -0.2557 | 0.0800 |
| 242 | Log-fdov-Pot-Fishery-year-2011-season-3 | -1.1342 | 0.0791 |
| 243 | Log-fdov-Pot-Fishery-year-2012-season-3 | -1.8480 | 0.0786 |
| 244 | Log-fdov-Pot-Fishery-year-2013-season-3 | 0.1676 | 0.0784 |
| 245 | Log-fdov-Pot-Fishery-year-2014-season-3 | -0.2356 | 0.0785 |
| 246 | Log-fdov-Pot-Fishery-year-2015-season-3 | 0.8314 | 0.0789 |
| 247 | Log-fdov-Pot-Fishery-year-2016-season-3 | 0.2872 | 0.0802 |
| 248 | Log-fdov-Pot-Fishery-year-2017-season-3 | -0.3676 | 0.0824 |
| 249 | Log-fdov-Pot-Fishery-year-2018-season-3 | 0.9445 | 0.0855 |
| 250 | Log-fdov-Pot-Fishery-year-2019-season-3 | -0.1389 | 0.0880 |
| 251 | Log-fdov-Pot-Fishery-year-2020-season-3 | -0.6605 | 0.0886 |
| 252 | Log-fdov-Pot-Fishery-year-2021-season-3 | 2.9350 | 0.0886 |
| 253 | Log-fdov-Pot-Fishery-year-2022-season-3 | 1.2758 | 0.0893 |
| 254 | Log-fdov-Bairdi-Fishery-Bycatch-year-1975-season-5 | -0.0000 | 0.0962 |
| 255 | Log-fdov-Bairdi-Fishery-Bycatch-year-1976-season-5 | 0.0001 | 0.0962 |
| 256 | Log-fdov-Bairdi-Fishery-Bycatch-year-1977-season-5 | 0.0004 | 0.0962 |
| 257 | Log-fdov-Bairdi-Fishery-Bycatch-year-1978-season-5 | 0.0003 | 0.0963 |
| 258 | Log-fdov-Bairdi-Fishery-Bycatch-year-1979-season-5 | 0.0005 | 0.0963 |
| 259 | Log-fdov-Bairdi-Fishery-Bycatch-year-1980-season-5 | 0.0001 | 0.0963 |
| 260 | Log-fdov-Bairdi-Fishery-Bycatch-year-1981-season-5 | -0.0001 | 0.0963 |
| 261 | Log-fdov-Bairdi-Fishery-Bycatch-year-1982-season-5 | -0.0002 | 0.0962 |
| 262 | Log-fdov-Bairdi-Fishery-Bycatch-year-1983-season-5 | -0.0002 | 0.0962 |


| 263 | Log-fdov-Bairdi-Fishery-Bycatch-year-1984-season-5 | -0.0001 | 0.0962 |
| :---: | :---: | :---: | :---: |
| 264 | Log-fdov-Bairdi-Fishery-Bycatch-year-1987-season-5 | -0.0001 | 0.0962 |
| 265 | Log-fdov-Bairdi-Fishery-Bycatch-year-1988-season-5 | 0.0000 | 0.0962 |
| 266 | Log-fdov-Bairdi-Fishery-Bycatch-year-1989-season-5 | 0.0002 | 0.0962 |
| 267 | Log-fdov-Bairdi-Fishery-Bycatch-year-1990-season-5 | 0.0006 | 0.0963 |
| 268 | Log-fdov-Bairdi-Fishery-Bycatch-year-1991-season-5 | 1.4888 | 0.1574 |
| 269 | Log-fdov-Bairdi-Fishery-Bycatch-year-1992-season-5 | 1.7789 | 0.1284 |
| 270 | Log-fdov-Bairdi-Fishery-Bycatch-year-1993-season-5 | 0.5864 | 0.1476 |
| 271 | Log-fdov-Bairdi-Fishery-Bycatch-year-1994-season-5 | -3.4397 | 0.1113 |
| 272 | Log-fdov-Bairdi-Fishery-Bycatch-year-2006-season-5 | -2.1788 | 0.1729 |
| 273 | Log-fdov-Bairdi-Fishery-Bycatch-year-2007-season-5 | -0.8054 | 0.1313 |
| 274 | Log-fdov-Bairdi-Fishery-Bycatch-year-2008-season-5 | 0.0356 | 0.1372 |
| 275 | Log-fdov-Bairdi-Fishery-Bycatch-year-2009-season-5 | 0.3949 | 0.1026 |
| 276 | Log-fdov-Bairdi-Fishery-Bycatch-year-2013-season-5 | 0.9912 | 0.1735 |
| 277 | Log-fdov-Bairdi-Fishery-Bycatch-year-2014-season-5 | 0.2099 | 0.1572 |
| 278 | Log-fdov-Bairdi-Fishery-Bycatch-year-2015-season-5 | 0.9366 | 0.1832 |
| 279 | Rec-dev-est-1975 | 1.0654 | 0.2719 |
| 280 | Rec-dev-est-1976 | 0.5761 | 0.3021 |
| 281 | Rec-dev-est-1977 | 1.0385 | 0.2409 |
| 282 | Rec-dev-est-1978 | 1.6181 | 0.2072 |
| 283 | Rec-dev-est-1979 | 1.9094 | 0.2151 |
| 284 | Rec-dev-est-1980 | 1.1151 | 0.2591 |
| 285 | Rec-dev-est-1981 | 2.4188 | 0.1629 |
| 286 | Rec-dev-est-1982 | 1.4673 | 0.1771 |
| 287 | Rec-dev-est-1983 | 1.0970 | 0.1640 |
| 288 | Rec-dev-est-1984 | -0.7002 | 0.2420 |
| 289 | Rec-dev-est-1985 | 0.3619 | 0.1614 |
| 290 | Rec-dev-est-1986 | -0.7462 | 0.2364 |
| 291 | Rec-dev-est-1987 | -1.1849 | 0.2714 |
| 292 | Rec-dev-est-1988 | -0.9547 | 0.2228 |
| 293 | Rec-dev-est-1989 | -0.0177 | 0.1629 |
| 294 | Rec-dev-est-1990 | -0.4107 | 0.1801 |
| 295 | Rec-dev-est-1991 | -1.8625 | 0.3479 |
| 296 | Rec-dev-est-1992 | -0.8247 | 0.1953 |
| 297 | Rec-dev-est-1993 | -2.0244 | 0.4396 |
| 298 | Rec-dev-est-1994 | 1.0168 | 0.1455 |
| 299 | Rec-dev-est-1995 | -0.7559 | 0.2463 |
| 300 | Rec-dev-est-1996 | -1.5257 | 0.3410 |
| 301 | Rec-dev-est-1997 | -0.5389 | 0.1993 |
| 302 | Rec-dev-est-1998 | 0.4776 | 0.1539 |
| 303 | Rec-dev-est-1999 | -0.4692 | 0.2179 |
| 304 | Rec-dev-est-2000 | -0.5496 | 0.2486 |
| 305 | Rec-dev-est-2001 | 0.9119 | 0.1525 |
| 306 | Rec-dev-est-2002 | -0.5391 | 0.2577 |
| 307 | Rec-dev-est-2003 | -0.6361 | 0.2623 |
| 308 | Rec-dev-est-2004 | 0.6019 | 0.1556 |
| 309 | Rec-dev-est-2005 | -0.0446 | 0.1767 |
| 310 | Rec-dev-est-2006 | -0.4723 | 0.1851 |
| 311 | Rec-dev-est-2007 | -1.0287 | 0.2285 |
| 312 | Rec-dev-est-2008 | -0.8970 | 0.2303 |
| 313 | Rec-dev-est-2009 | 0.0019 | 0.1805 |
| 314 | Rec-dev-est-2010 | -0.4718 | 0.2206 |
| 315 | Rec-dev-est-2011 | -1.0404 | 0.2271 |


| 316 | Rec-dev-est-2012 | -1.3828 | 0.2206 |
| :---: | :---: | :---: | :---: |
| 317 | Rec-dev-est-2013 | -1.8718 | 0.2652 |
| 318 | Rec-dev-est-2014 | -1.4172 | 0.2196 |
| 319 | Rec-dev-est-2015 | -0.7717 | 0.1705 |
| 320 | Rec-dev-est-2016 | -1.5459 | 0.2395 |
| 321 | Rec-dev-est-2017 | -0.8862 | 0.1875 |
| 322 | Rec-dev-est-2018 | -1.6134 | 0.2764 |
| 323 | Rec-dev-est-2019 | -1.5518 | 0.2639 |
| 324 | Rec-dev-est-2020 | -1.7245 | 0.2887 |
| 325 | Rec-dev-est-2021 | -0.9439 | 0.2312 |
| 326 | Rec-dev-est-2022 | -1.3780 | 0.3455 |
| 327 | Logit-rec-prop-est-1975 | -0.1608 | 0.4299 |
| 328 | Logit-rec-prop-est-1976 | -0.8768 | 0.5400 |
| 329 | Logit-rec-prop-est-1977 | -0.2120 | 0.3590 |
| 330 | Logit-rec-prop-est-1978 | -0.3724 | 0.2657 |
| 331 | Logit-rec-prop-est-1979 | 0.2061 | 0.2559 |
| 332 | Logit-rec-prop-est-1980 | 0.3460 | 0.3378 |
| 333 | Logit-rec-prop-est-1981 | 0.4754 | 0.1419 |
| 334 | Logit-rec-prop-est-1982 | 0.5642 | 0.2366 |
| 335 | Logit-rec-prop-est-1983 | 0.0431 | 0.1742 |
| 336 | Logit-rec-prop-est-1984 | 0.4319 | 0.4365 |
| 337 | Logit-rec-prop-est-1985 | -0.4741 | 0.1642 |
| 338 | Logit-rec-prop-est-1986 | 0.1820 | 0.3971 |
| 339 | Logit-rec-prop-est-1987 | -0.1323 | 0.4462 |
| 340 | Logit-rec-prop-est-1988 | 0.3681 | 0.3805 |
| 341 | Logit-rec-prop-est-1989 | -0.0940 | 0.1687 |
| 342 | Logit-rec-prop-est-1990 | 0.1509 | 0.2312 |
| 343 | Logit-rec-prop-est-1991 | 0.7678 | 0.7176 |
| 344 | Logit-rec-prop-est-1992 | 0.2174 | 0.2805 |
| 345 | Logit-rec-prop-est-1993 | -0.3822 | 0.7006 |
| 346 | Logit-rec-prop-est-1994 | -0.3644 | 0.0889 |
| 347 | Logit-rec-prop-est-1995 | 1.2224 | 0.5970 |
| 348 | Logit-rec-prop-est-1996 | 0.3947 | 0.6409 |
| 349 | Logit-rec-prop-est-1997 | 0.4628 | 0.3239 |
| 350 | Logit-rec-prop-est-1998 | -0.0964 | 0.1388 |
| 351 | Logit-rec-prop-est-1999 | 0.2192 | 0.3493 |
| 352 | Logit-rec-prop-est-2000 | -0.5954 | 0.3990 |
| 353 | Logit-rec-prop-est-2001 | -0.5322 | 0.1235 |
| 354 | Logit-rec-prop-est-2002 | -0.4052 | 0.4114 |
| 355 | Logit-rec-prop-est-2003 | -0.0954 | 0.4314 |
| 356 | Logit-rec-prop-est-2004 | -0.4183 | 0.1416 |
| 357 | Logit-rec-prop-est-2005 | -0.1416 | 0.2216 |
| 358 | Logit-rec-prop-est-2006 | 0.4253 | 0.2757 |
| 359 | Logit-rec-prop-est-2007 | -0.1106 | 0.3550 |
| 360 | Logit-rec-prop-est-2008 | -0.4886 | 0.3493 |
| 361 | Logit-rec-prop-est-2009 | -0.7190 | 0.2040 |
| 362 | Logit-rec-prop-est-2010 | -0.4388 | 0.3068 |
| 363 | Logit-rec-prop-est-2011 | -0.5231 | 0.3371 |
| 364 | Logit-rec-prop-est-2012 | -0.1903 | 0.3312 |
| 365 | Logit-rec-prop-est-2013 | -0.3415 | 0.4245 |
| 366 | Logit-rec-prop-est-2014 | -0.3827 | 0.3189 |
| 367 | Logit-rec-prop-est-2015 | 0.2664 | 0.2078 |
| 368 | Logit-rec-prop-est-2016 | 0.5503 | 0.4402 |


| 369 | Logit-rec-prop-est-2017 | 0.6139 | 0.2785 |
| :--- | :--- | ---: | :--- |
| 370 | Logit-rec-prop-est-2018 | -0.1752 | 0.4562 |
| 371 | Logit-rec-prop-est-2019 | 0.2987 | 0.4500 |
| 372 | Logit-rec-prop-est-2020 | 0.5576 | 0.5287 |
| 373 | Logit-rec-prop-est-2021 | 0.1445 | 0.3443 |
| 374 | Logit-rec-prop-est-2022 | -0.1851 | 0.5640 |
| 375 | M-dev-est-par-1 | 1.4588 | 0.0312 |
| 376 | Survey-q-survey-1 | 0.9364 | 0.0259 |
| 377 | Log-add-cvt-survey-2 | -0.9702 | 0.2854 |

Table 9: Annual abundance estimates (mature males, legal males, and mature females in million crab), mature male biomass (MMB, 1000 t ), and total survey biomass ( 1000 t ) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 21.1b during 1975-2022. MMB for year $t$ is on Feb. 15, year $t+1$.

| Year | Males |  |  |  | Females$\begin{gathered} \text { Mature } \\ >89 \mathrm{~mm} \end{gathered}$ | Total <br> Recruits | Total Survey Biomass |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mature | Legal | MMB | sd |  |  | Model Est | Area-Swept |
|  | $>119 \mathrm{~mm}$ | >134mm | $>119 \mathrm{~mm}$ | MMB |  |  | $>64 \mathrm{~mm}$ | $>64 \mathrm{~mm}$ |
| 1975 | 55.562 | 28.226 | 83.241 | 8.278 | 54.555 |  | 236.240 | 199.640 |
| 1976 | 65.255 | 35.524 | 99.120 | 7.985 | 82.782 | 63.982 | 276.140 | 327.610 |
| 1977 | 72.454 | 41.313 | 113.059 | 6.920 | 109.948 | 40.854 | 297.510 | 371.220 |
| 1978 | 77.747 | 46.492 | 119.857 | 5.506 | 114.165 | 64.281 | 300.720 | 343.190 |
| 1979 | 68.365 | 47.442 | 100.081 | 3.875 | 109.369 | 114.835 | 289.340 | 165.450 |
| 1980 | 50.152 | 37.802 | 30.344 | 1.602 | 111.384 | 149.819 | 274.100 | 247.230 |
| 1981 | 14.450 | 8.024 | 6.525 | 1.049 | 48.904 | 67.521 | 109.420 | 131.140 |
| 1982 | 6.754 | 2.156 | 6.518 | 0.920 | 21.448 | 240.843 | 65.620 | 141.900 |
| 1983 | 6.126 | 2.156 | 7.336 | 0.667 | 14.125 | 92.745 | 58.090 | 48.480 |
| 1984 | 6.119 | 2.269 | 5.174 | 0.428 | 13.911 | 63.245 | 50.880 | 152.610 |
| 1985 | 7.516 | 1.868 | 9.597 | 0.643 | 9.624 | 10.201 | 34.910 | 34.140 |
| 1986 | 12.100 | 4.620 | 14.936 | 0.974 | 13.466 | 29.897 | 45.550 | 47.430 |
| 1987 | 14.263 | 6.644 | 20.227 | 1.174 | 16.795 | 9.403 | 51.270 | 69.240 |
| 1988 | 14.347 | 8.399 | 24.912 | 1.230 | 21.160 | 6.141 | 54.610 | 54.600 |
| 1989 | 15.441 | 9.681 | 27.758 | 1.177 | 19.980 | 8.005 | 57.240 | 55.140 |
| 1990 | 14.918 | 10.367 | 23.921 | 1.105 | 17.880 | 20.592 | 57.290 | 59.450 |
| 1991 | 11.459 | 8.585 | 18.239 | 1.043 | 17.276 | 13.011 | 52.200 | 83.890 |
| 1992 | 9.195 | 6.398 | 17.034 | 1.017 | 18.409 | 3.026 | 47.540 | 37.330 |
| 1993 | 10.407 | 6.096 | 15.635 | 1.090 | 17.138 | 8.983 | 47.080 | 52.910 |
| 1994 | 10.253 | 5.950 | 21.468 | 1.199 | 14.586 | 2.931 | 42.500 | 32.100 |
| 1995 | 10.767 | 7.824 | 24.613 | 1.200 | 13.514 | 58.611 | 48.550 | 38.070 |
| 1996 | 11.056 | 8.480 | 23.106 | 1.147 | 19.473 | 8.629 | 57.970 | 43.960 |
| 1997 | 10.515 | 7.721 | 21.871 | 1.126 | 28.434 | 4.438 | 64.140 | 84.030 |
| 1998 | 15.807 | 7.695 | 24.723 | 1.335 | 25.007 | 12.279 | 68.010 | 84.100 |
| 1999 | 16.848 | 9.668 | 28.419 | 1.478 | 21.160 | 33.294 | 66.560 | 64.750 |
| 2000 | 14.539 | 10.570 | 28.635 | 1.469 | 22.551 | 12.432 | 68.210 | 67.380 |
| 2001 | 14.363 | 10.134 | 29.029 | 1.432 | 25.582 | 12.741 | 71.860 | 52.460 |
| 2002 | 17.206 | 10.330 | 33.083 | 1.447 | 24.855 | 51.013 | 76.920 | 69.090 |
| 2003 | 18.043 | 11.974 | 32.654 | 1.411 | 30.410 | 11.665 | 83.120 | 115.760 |
| 2004 | 16.260 | 11.560 | 30.176 | 1.334 | 37.544 | 10.947 | 84.660 | 130.560 |
| 2005 | 18.143 | 10.777 | 30.730 | 1.300 | 34.825 | 39.195 | 85.630 | 105.730 |
| 2006 | 17.263 | 11.367 | 31.119 | 1.262 | 35.139 | 18.839 | 85.520 | 94.480 |
| 2007 | 15.562 | 11.121 | 26.125 | 1.185 | 39.030 | 12.822 | 87.140 | 103.330 |
| 2008 | 15.942 | 9.455 | 24.803 | 1.210 | 36.637 | 7.160 | 83.560 | 113.080 |
| 2009 | 15.795 | 9.411 | 25.676 | 1.254 | 32.149 | 8.149 | 77.560 | 90.550 |
| 2010 | 14.687 | 9.644 | 24.987 | 1.213 | 28.194 | 21.740 | 72.500 | 80.500 |
| 2011 | 12.433 | 9.111 | 24.717 | 1.136 | 27.772 | 12.643 | 68.080 | 66.410 |
| 2012 | 11.082 | 8.571 | 23.158 | 1.050 | 29.574 | 7.358 | 66.520 | 60.700 |
| 2013 | 11.003 | 7.831 | 22.113 | 0.982 | 28.019 | 5.348 | 63.850 | 62.220 |
| 2014 | 10.731 | 7.543 | 20.130 | 0.927 | 24.834 | 3.358 | 59.120 | 113.140 |
| 2015 | 9.213 | 6.873 | 17.157 | 0.885 | 21.303 | 5.406 | 52.330 | 64.170 |
| 2016 | 7.459 | 5.780 | 14.127 | 0.861 | 18.208 | 10.434 | 45.670 | 60.960 |
| 2017 | 5.912 | 4.682 | 11.538 | 0.842 | 16.633 | 4.631 | 40.780 | 52.930 |
| 2018 | 5.153 | 3.780 | 10.291 | 0.844 | 15.281 | 9.045 | 37.780 | 28.800 |
| 2019 | 5.894 | 3.504 | 11.182 | 0.951 | 13.527 | 4.518 | 36.330 | 28.540 |
| 2020 | 6.468 | 4.018 | 12.805 | 1.091 | 12.492 | 4.553 |  |  |


| 2021 | 7.386 | 4.623 | 16.198 | 1.265 | 11.346 | 4.016 | 35.170 | 28.480 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2022 | 7.968 | 5.744 | 18.523 | 1.403 | 10.100 | 8.641 | 35.990 | 36.200 |
| 2023 | 8.052 | 6.270 | 15.915 | 1.041 | 9.560 | 5.561 | 36.820 | 37.970 |

Table 10: Annual abundance estimates (mature males, legal males, and mature females in million crab), mature male biomass (MMB, 1000 t ), and total survey biomass ( 1000 t ) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 23.0a during 1975-2022. MMB for year $t$ is on Feb. 15, year $t+1$.

| Year | Males |  |  |  | Females <br> Mature $>89 \mathrm{~mm}$ | Total <br> Recruits | Total Survey Biomass |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mature | Legal | MMB | sd |  |  | Model Est | Area-Swept |
|  | $>119 \mathrm{~mm}$ | >134mm | $>119 \mathrm{~mm}$ | MMB |  |  | $>64 \mathrm{~mm}$ | $>64 \mathrm{~mm}$ |
| 1975 | 60.771 | 30.462 | 86.323 | 8.655 | 65.346 |  | 247.750 | 199.640 |
| 1976 | 71.028 | 38.070 | 102.157 | 8.289 | 97.117 | 89.398 | 288.150 | 327.610 |
| 1977 | 78.840 | 44.008 | 115.986 | 7.194 | 127.857 | 53.625 | 309.170 | 371.220 |
| 1978 | 84.071 | 49.366 | 122.423 | 5.785 | 131.396 | 83.102 | 310.310 | 343.190 |
| 1979 | 73.242 | 50.080 | 101.812 | 4.085 | 124.065 | 148.719 | 296.140 | 165.450 |
| 1980 | 53.545 | 39.708 | 26.709 | 1.379 | 125.299 | 200.649 | 279.860 | 247.230 |
| 1981 | 15.287 | 8.308 | 5.710 | 0.811 | 57.732 | 92.158 | 113.500 | 131.140 |
| 1982 | 7.179 | 2.241 | 5.454 | 0.630 | 26.494 | 330.901 | 64.250 | 141.900 |
| 1983 | 6.274 | 2.143 | 5.854 | 0.460 | 18.184 | 128.055 | 56.500 | 48.480 |
| 1984 | 6.389 | 2.155 | 4.131 | 0.344 | 18.225 | 88.720 | 49.350 | 152.610 |
| 1985 | 7.890 | 1.828 | 9.281 | 0.659 | 12.824 | 14.749 | 33.730 | 34.140 |
| 1986 | 12.895 | 4.733 | 14.913 | 1.039 | 17.593 | 42.710 | 45.100 | 47.430 |
| 1987 | 15.640 | 7.007 | 20.867 | 1.310 | 21.905 | 14.058 | 51.850 | 69.240 |
| 1988 | 15.898 | 9.078 | 25.827 | 1.394 | 27.518 | 9.086 | 56.080 | 54.600 |
| 1989 | 17.181 | 10.459 | 28.912 | 1.358 | 25.607 | 11.453 | 59.110 | 55.140 |
| 1990 | 16.472 | 11.223 | 25.097 | 1.283 | 22.557 | 29.306 | 59.120 | 59.450 |
| 1991 | 12.635 | 9.332 | 19.260 | 1.190 | 21.842 | 19.758 | 54.060 | 83.890 |
| 1992 | 10.315 | 6.986 | 17.998 | 1.147 | 23.544 | 4.599 | 49.670 | 37.330 |
| 1993 | 11.877 | 6.698 | 17.085 | 1.249 | 21.861 | 13.045 | 49.490 | 52.910 |
| 1994 | 11.966 | 6.791 | 23.139 | 1.379 | 18.422 | 3.954 | 45.250 | 32.100 |
| 1995 | 12.244 | 8.769 | 25.903 | 1.348 | 16.839 | 82.539 | 50.990 | 38.070 |
| 1996 | 12.240 | 9.229 | 23.944 | 1.254 | 25.238 | 13.868 | 59.600 | 43.960 |
| 1997 | 11.585 | 8.259 | 22.406 | 1.208 | 37.251 | 6.446 | 65.720 | 84.030 |
| 1998 | 17.670 | 8.230 | 25.963 | 1.506 | 32.055 | 17.403 | 69.950 | 84.100 |
| 1999 | 18.892 | 10.647 | 29.988 | 1.683 | 26.673 | 48.019 | 69.040 | 64.750 |
| 2000 | 16.136 | 11.618 | 29.811 | 1.637 | 28.676 | 18.526 | 70.680 | 67.380 |
| 2001 | 15.907 | 10.910 | 29.971 | 1.579 | 32.843 | 17.235 | 74.220 | 52.460 |
| 2002 | 19.218 | 11.091 | 34.290 | 1.627 | 31.470 | 74.107 | 79.320 | 69.090 |
| 2003 | 19.979 | 12.961 | 33.852 | 1.590 | 39.146 | 17.276 | 85.320 | 115.760 |
| 2004 | 17.876 | 12.468 | 31.098 | 1.485 | 48.938 | 15.759 | 87.110 | 130.560 |
| 2005 | 20.195 | 11.566 | 32.093 | 1.487 | 44.651 | 54.383 | 88.230 | 105.730 |
| 2006 | 19.119 | 12.390 | 32.360 | 1.445 | 44.764 | 28.419 | 88.040 | 94.480 |
| 2007 | 17.084 | 12.005 | 27.174 | 1.342 | 49.565 | 18.497 | 89.520 | 103.330 |
| 2008 | 17.732 | 10.210 | 26.202 | 1.402 | 46.081 | 10.587 | 86.170 | 113.080 |
| 2009 | 17.790 | 10.357 | 27.437 | 1.483 | 39.576 | 12.120 | 80.470 | 90.550 |
| 2010 | 16.661 | 10.726 | 26.943 | 1.447 | 34.174 | 29.824 | 75.360 | 80.500 |
| 2011 | 14.094 | 10.182 | 26.380 | 1.334 | 33.557 | 18.481 | 70.480 | 66.410 |
| 2012 | 12.425 | 9.439 | 24.378 | 1.201 | 35.601 | 10.485 | 68.260 | 60.700 |
| 2013 | 12.324 | 8.513 | 23.169 | 1.111 | 33.480 | 7.433 | 65.030 | 62.220 |
| 2014 | 11.994 | 8.206 | 21.128 | 1.034 | 29.208 | 4.570 | 59.820 | 113.140 |
| 2015 | 10.214 | 7.498 | 17.942 | 0.954 | 24.539 | 7.223 | 52.540 | 64.170 |
| 2016 | 8.176 | 6.260 | 14.623 | 0.887 | 20.616 | 13.742 | 45.340 | 60.960 |
| 2017 | 6.371 | 5.002 | 11.711 | 0.831 | 18.661 | 6.325 | 39.860 | 52.930 |
| 2018 | 5.497 | 3.953 | 10.237 | 0.809 | 16.978 | 12.186 | 36.450 | 28.800 |
| 2019 | 6.279 | 3.617 | 11.023 | 0.900 | 14.878 | 5.895 | 34.740 | 28.540 |
| 2020 | 6.855 | 4.137 | 12.508 | 1.022 | 13.670 | 6.276 |  |  |


| 2021 | 7.794 | 4.725 | 15.691 | 1.171 | 12.338 | 5.299 | 33.260 | 28.480 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2022 | 8.181 | 5.801 | 17.537 | 1.268 | 10.930 | 11.538 | 33.740 | 36.200 |
| 2023 | 8.055 | 6.155 | 14.317 | 0.882 | 10.377 | 7.449 | 34.100 | 37.970 |

Table 11: Annual abundance estimates (mature males, legal males, and mature females in million crab), mature male biomass (MMB, 1000 t ), and total survey biomass ( 1000 t ) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 24.0 during 1975-2022. MMB for year $t$ is on Feb. 15, year $t+1$.

| Year | Males |  |  |  | Females <br> Mature $>89 \mathrm{~mm}$ | Total <br> Recruits | Total Survey Biomass |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mature | Legal | MMB |  |  |  | Model Est | Area-Swept |
|  | $>119 \mathrm{~mm}$ | $>134 \mathrm{~mm}$ | $>119 \mathrm{~mm}$ | MMB |  |  | $>64 \mathrm{~mm}$ | $>64 \mathrm{~mm}$ |
| 1975 | 55.656 | 28.680 | 79.362 | 7.625 | 57.955 |  | 244.020 | 199.640 |
| 1976 | 65.679 | 35.626 | 94.513 | 7.338 | 88.377 | 77.130 | 285.230 | 327.610 |
| 1977 | 74.132 | 41.518 | 109.234 | 6.482 | 117.391 | 48.323 | 308.810 | 371.220 |
| 1978 | 79.587 | 47.354 | 116.450 | 5.240 | 121.908 | 74.030 | 313.710 | 343.190 |
| 1979 | 69.968 | 48.420 | 97.687 | 3.703 | 116.733 | 130.998 | 301.560 | 165.450 |
| 1980 | 51.308 | 38.589 | 25.357 | 1.228 | 118.798 | 167.758 | 284.720 | 247.230 |
| 1981 | 14.524 | 8.045 | 5.219 | 0.771 | 53.054 | 73.845 | 112.770 | 131.140 |
| 1982 | 6.705 | 2.126 | 5.157 | 0.648 | 23.410 | 270.647 | 71.710 | 141.900 |
| 1983 | 5.868 | 2.085 | 5.645 | 0.460 | 15.040 | 105.093 | 62.400 | 48.480 |
| 1984 | 5.944 | 2.116 | 3.902 | 0.317 | 14.895 | 71.930 | 54.010 | 152.610 |
| 1985 | 7.216 | 1.759 | 8.542 | 0.568 | 10.290 | 11.785 | 36.580 | 34.140 |
| 1986 | 11.702 | 4.455 | 13.435 | 0.858 | 14.355 | 33.860 | 48.100 | 47.430 |
| 1987 | 14.024 | 6.457 | 18.644 | 1.048 | 17.782 | 11.152 | 54.320 | 69.240 |
| 1988 | 14.168 | 8.274 | 23.241 | 1.100 | 22.418 | 7.126 | 57.890 | 54.600 |
| 1989 | 15.416 | 9.550 | 26.180 | 1.047 | 20.999 | 9.162 | 60.710 | 55.140 |
| 1990 | 14.920 | 10.302 | 22.559 | 0.983 | 18.683 | 22.813 | 60.590 | 59.450 |
| 1991 | 11.364 | 8.504 | 17.021 | 0.919 | 17.988 | 15.016 | 54.990 | 83.890 |
| 1992 | 9.097 | 6.254 | 15.837 | 0.890 | 19.163 | 3.736 | 50.100 | 37.330 |
| 1993 | 10.386 | 5.973 | 14.581 | 0.956 | 17.819 | 10.284 | 49.810 | 52.910 |
| 1994 | 10.266 | 5.915 | 20.267 | 1.057 | 15.094 | 3.291 | 44.940 | 32.100 |
| 1995 | 10.695 | 7.794 | 23.189 | 1.050 | 13.976 | 64.543 | 51.040 | 38.070 |
| 1996 | 10.894 | 8.337 | 21.545 | 0.993 | 20.319 | 11.195 | 60.440 | 43.960 |
| 1997 | 10.363 | 7.489 | 20.255 | 0.978 | 30.257 | 5.268 | 67.090 | 84.030 |
| 1998 | 15.655 | 7.504 | 22.886 | 1.164 | 26.423 | 14.112 | 71.840 | 84.100 |
| 1999 | 16.679 | 9.558 | 26.434 | 1.291 | 22.281 | 37.920 | 70.380 | 64.750 |
| 2000 | 14.251 | 10.417 | 26.542 | 1.281 | 23.838 | 15.031 | 71.710 | 67.380 |
| 2001 | 14.115 | 9.824 | 26.872 | 1.246 | 27.292 | 14.533 | 75.720 | 52.460 |
| 2002 | 17.121 | 10.055 | 30.887 | 1.265 | 26.512 | 58.708 | 81.700 | 69.090 |
| 2003 | 17.971 | 11.835 | 30.545 | 1.240 | 32.641 | 13.603 | 88.200 | 115.760 |
| 2004 | 16.113 | 11.401 | 28.125 | 1.167 | 40.657 | 13.704 | 90.010 | 130.560 |
| 2005 | 18.198 | 10.592 | 28.909 | 1.139 | 37.581 | 44.470 | 91.690 | 105.730 |
| 2006 | 17.257 | 11.346 | 29.309 | 1.109 | 38.183 | 18.337 | 91.330 | 94.480 |
| 2007 | 15.483 | 11.034 | 24.472 | 1.031 | 41.994 | 15.924 | 92.420 | 103.330 |
| 2008 | 15.735 | 9.314 | 23.007 | 1.040 | 38.246 | 8.732 | 88.520 | 113.080 |
| 2009 | 15.408 | 9.221 | 23.551 | 1.067 | 33.478 | 8.942 | 81.990 | 90.550 |
| 2010 | 14.355 | 9.350 | 22.909 | 1.013 | 29.141 | 22.967 | 76.100 | 80.500 |
| 2011 | 12.166 | 8.814 | 22.726 | 0.934 | 28.226 | 15.171 | 70.800 | 66.410 |
| 2012 | 10.791 | 8.261 | 21.181 | 0.847 | 29.940 | 7.518 | 68.630 | 60.700 |
| 2013 | 10.698 | 7.494 | 20.111 | 0.771 | 28.357 | 6.191 | 65.570 | 62.220 |
| 2014 | 10.459 | 7.223 | 18.244 | 0.703 | 24.883 | 3.726 | 60.290 | 113.140 |
| 2015 | 8.845 | 6.578 | 15.306 | 0.647 | 21.287 | 5.235 | 52.720 | 64.170 |
| 2016 | 6.947 | 5.413 | 12.192 | 0.611 | 17.953 | 10.897 | 45.300 | 60.960 |
| 2017 | 5.361 | 4.223 | 9.593 | 0.588 | 16.203 | 4.637 | 39.740 | 52.930 |
| 2018 | 4.536 | 3.289 | 8.257 | 0.582 | 14.762 | 9.512 | 36.340 | 28.800 |
| 2019 | 5.188 | 2.977 | 8.920 | 0.667 | 12.899 | 4.531 | 34.600 | 28.540 |
| 2020 | 5.668 | 3.440 | 10.274 | 0.787 | 11.810 | 4.713 |  |  |


| 2021 | 6.517 | 3.974 | 13.332 | 0.938 | 10.652 | 4.038 | 32.870 | 28.480 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2022 | 6.995 | 5.020 | 15.306 | 1.054 | 9.449 | 8.284 | 33.340 | 36.200 |
| 2023 | 6.983 | 5.435 | 13.353 | 0.812 | 8.898 | 5.247 | 33.690 | 37.970 |

Table 12: Annual abundance estimates (mature males, legal males, and mature females in million crab), mature male biomass (MMB, 1000 t ), and total survey biomass ( 1000 t ) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 24.0c during 1975-2022. MMB for year $t$ is on Feb. 15, year $t+1$.

| Year | Males |  |  |  | Females <br> Mature $>89 \mathrm{~mm}$ | Total <br> Recruits | Total Survey Biomass |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mature | Legal | MMB | sd |  |  | Model Est | Area-Swept |
|  | $>119 \mathrm{~mm}$ | $>134 \mathrm{~mm}$ | $>119 \mathrm{~mm}$ | MMB |  |  | $>64 \mathrm{~mm}$ | $>64 \mathrm{~mm}$ |
| 1975 | 66.099 | 32.842 | 95.639 | 6.640 | 66.522 |  | 261.080 | 199.640 |
| 1976 | 75.920 | 40.489 | 111.028 | 6.228 | 98.503 | 85.785 | 300.070 | 327.610 |
| 1977 | 82.618 | 45.981 | 123.054 | 5.445 | 129.748 | 52.592 | 318.530 | 371.220 |
| 1978 | 86.981 | 50.509 | 127.490 | 4.664 | 133.310 | 83.514 | 316.610 | 343.190 |
| 1979 | 74.892 | 50.504 | 104.265 | 3.802 | 125.671 | 149.090 | 299.850 | 165.450 |
| 1980 | 54.192 | 39.646 | 26.775 | 1.396 | 126.580 | 199.514 | 282.080 | 247.230 |
| 1981 | 15.426 | 8.396 | 5.769 | 0.828 | 57.820 | 90.162 | 113.930 | 131.140 |
| 1982 | 7.216 | 2.274 | 5.483 | 0.641 | 26.306 | 332.040 | 64.320 | 141.900 |
| 1983 | 6.229 | 2.159 | 5.810 | 0.459 | 18.037 | 128.228 | 56.440 | 48.480 |
| 1984 | 6.318 | 2.141 | 4.059 | 0.335 | 18.117 | 88.540 | 49.200 | 152.610 |
| 1985 | 7.797 | 1.809 | 9.134 | 0.640 | 12.716 | 14.677 | 33.520 | 34.140 |
| 1986 | 12.756 | 4.695 | 14.686 | 1.013 | 17.445 | 42.453 | 44.840 | 47.430 |
| 1987 | 15.476 | 6.949 | 20.591 | 1.282 | 21.728 | 14.017 | 51.560 | 69.240 |
| 1988 | 15.741 | 9.008 | 25.554 | 1.367 | 27.296 | 9.039 | 55.780 | 54.600 |
| 1989 | 17.042 | 10.389 | 28.661 | 1.334 | 25.405 | 11.379 | 58.820 | 55.140 |
| 1990 | 16.353 | 11.162 | 24.880 | 1.261 | 22.383 | 29.043 | 58.840 | 59.450 |
| 1991 | 12.534 | 9.277 | 19.072 | 1.170 | 21.673 | 19.605 | 53.780 | 83.890 |
| 1992 | 10.225 | 6.933 | 17.823 | 1.129 | 23.352 | 4.591 | 49.380 | 37.330 |
| 1993 | 11.773 | 6.652 | 16.893 | 1.229 | 21.679 | 12.959 | 49.200 | 52.910 |
| 1994 | 11.847 | 6.743 | 22.926 | 1.358 | 18.268 | 3.904 | 44.960 | 32.100 |
| 1995 | 12.133 | 8.714 | 25.701 | 1.329 | 16.700 | 81.717 | 50.680 | 38.070 |
| 1996 | 12.138 | 9.171 | 23.753 | 1.236 | 25.040 | 13.882 | 59.260 | 43.960 |
| 1997 | 11.495 | 8.202 | 22.228 | 1.192 | 36.949 | 6.429 | 65.350 | 84.030 |
| 1998 | 17.510 | 8.182 | 25.693 | 1.481 | 31.804 | 17.245 | 69.570 | 84.100 |
| 1999 | 18.716 | 10.582 | 29.684 | 1.655 | 26.463 | 47.657 | 68.640 | 64.750 |
| 2000 | 15.981 | 11.540 | 29.531 | 1.612 | 28.456 | 18.490 | 70.280 | 67.380 |
| 2001 | 15.766 | 10.827 | 29.706 | 1.555 | 32.598 | 17.062 | 73.820 | 52.460 |
| 2002 | 19.063 | 11.018 | 34.005 | 1.603 | 31.240 | 73.578 | 78.910 | 69.090 |
| 2003 | 19.831 | 12.894 | 33.581 | 1.567 | 38.860 | 17.242 | 84.920 | 115.760 |
| 2004 | 17.741 | 12.401 | 30.850 | 1.464 | 48.579 | 15.648 | 86.720 | 130.560 |
| 2005 | 20.046 | 11.502 | 31.829 | 1.465 | 44.334 | 53.969 | 87.850 | 105.730 |
| 2006 | 18.980 | 12.330 | 32.111 | 1.424 | 44.453 | 28.271 | 87.670 | 94.480 |
| 2007 | 16.960 | 11.944 | 26.948 | 1.323 | 49.228 | 18.433 | 89.150 | 103.330 |
| 2008 | 17.591 | 10.150 | 25.953 | 1.381 | 45.774 | 10.567 | 85.800 | 113.080 |
| 2009 | 17.644 | 10.295 | 27.179 | 1.462 | 39.316 | 12.054 | 80.130 | 90.550 |
| 2010 | 16.528 | 10.663 | 26.704 | 1.428 | 33.957 | 29.619 | 75.040 | 80.500 |
| 2011 | 13.984 | 10.121 | 26.176 | 1.318 | 33.349 | 18.443 | 70.180 | 66.410 |
| 2012 | 12.333 | 9.383 | 24.200 | 1.187 | 35.381 | 10.444 | 67.990 | 60.700 |
| 2013 | 12.240 | 8.463 | 23.004 | 1.098 | 33.282 | 7.416 | 64.790 | 62.220 |
| 2014 | 11.925 | 8.166 | 20.991 | 1.024 | 29.037 | 4.548 | 59.610 | 113.140 |
| 2015 | 10.159 | 7.468 | 17.834 | 0.945 | 24.398 | 7.166 | 52.370 | 64.170 |
| 2016 | 8.132 | 6.236 | 14.538 | 0.881 | 20.499 | 13.664 | 45.190 | 60.960 |
| 2017 | 6.334 | 4.981 | 11.638 | 0.826 | 18.557 | 6.300 | 39.720 | 52.930 |
| 2018 | 5.462 | 3.933 | 10.169 | 0.803 | 16.886 | 12.186 | 36.330 | 28.800 |
| 2019 | 6.240 | 3.601 | 10.952 | 0.895 | 14.800 | 5.889 | 34.630 | 28.540 |
| 2020 | 6.819 | 4.123 | 12.444 | 1.017 | 13.602 | 6.263 |  |  |


| 2021 | 7.770 | 4.717 | 15.651 | 1.168 | 12.280 | 5.269 | 33.220 | 28.480 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2022 | 8.165 | 5.802 | 17.520 | 1.267 | 10.881 | 11.503 | 33.710 | 36.200 |
| 2023 | 8.042 | 6.159 | 14.310 | 0.882 | 10.334 | 7.452 | 34.080 | 37.970 |

## Figures



Figure 2: Inferred selectvity estimated from the BSFRF data by year, with resulting GAM model fit.


Figure 3: Estimated NMFS trawl survey selectivities under models 21.1b.p7, 23.0a.p7, 24.0, and 24.0b. Models 24.0 and 24.0 b have one selectivity period ( $1975-2023$ ) that is plotted on both figures for comparison.


Figure 4: Estimated NMFS trawl survey selectivities under models 21.1b.p7, 23.0a.p7, 24.0c, and 24.0d


Figure 5: Comparison of estimated probabilities of molting for male red king crab in Bristol Bay for two periods - 1975-1979 and 1980-2022 - for models 21.1b.p7, 23.0a.p7, 24.0, and 24.0b, and one period for models 24.0 c and 24.0 d .


Figure 6: Comparisons of area-swept estimates of total male NMFS survey biomass and model predictions for model estimates in 2023 under models 21.1b.p7, 23.0a.p7, 24.0, 24.0b. The error bars are plus and minus 2 standard deviations of the area swept estimates.


Figure 7: Comparisons of area-swept estimates of total female NMFS survey biomass and model predictions for model estimates in 2023 under models 21.1b.p7, 23.0a.p7, 24.0, 24.0b. The error bars are plus and minus 2 standard deviations of the area swept estimates.


Figure 8: Comparisons of area-swept estimates of total male NMFS survey biomass and model predictions for model estimates in 2023 under models 21.1b.p7, 23.0a.p7, 24.0c, 24.0d. The error bars are plus and minus 2 standard deviations of the area swept estimates.


Figure 9: Comparisons of area-swept estimates of total female NMFS survey biomass and model predictions for model estimates in 2023 under models 21.1b.p7, 23.0a.p7, 24.0c, 24.0d. The error bars are plus and minus 2 standard deviations of the area swept estimates.


Figure 10: Comparisons of survey biomass estimates for males from the BSFRF survey and model predictions for model estimates in 2023 (models 21.1b.p7, 23.0a.p7, 24.0c, 24.0d). The error bars are plus and minus 2 standard deviations of the survey esimates. The BSFRF survey catchability is assumed to be 1.0 for all models.


Figure 11: Comparisons of survey biomass estimates for females from the BSFRF survey and model predictions for model estimates in 2023 (models 21.1b.p7, 23.0a.p7, 24.0c, 24.0d). The error bars are plus and minus 2 standard deviations of the survey esimates. The BSFRF survey catchability is assumed to be 1.0 for all models.


Figure 12: Estimated recruitment (million of individuals) time series during 1976-2022 with models 21.1b.p7, 23.0a.p7, 24.0, 24.0b (those models that remove BSFRF data and use it as a prior for NMFS q). Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.


Figure 13: Estimated recruitment (million of individuals) time series during 1976-2022 with models 21.1b.p7, 23.0a.p7, 24.0c, 24.0d (base models compared with models with 1 molt probability period). Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.


Figure 14: Comparison of natural mortality - either estimated or fixed depending on the model - for models 21.1b.p7, 23.0a.p7, 24.0, and 24.0b. Estimates for models 21.1 b and 23.0 a were identical to those labeled .p7 here.


Figure 15: Comparison of natural mortality - either estimated or fixed depending on the model - for models 21.1b.p7, 23.0a.p7, 24.0c, and 24.0d.


Figure 16: Comparison of estimated fishing mortality for models 21.1b.p7, 23.0a.p7, 24.0, and 24.0b. All other models are similar to base models shown here.


Figure 17: Estimated absolute mature male biomasses during 1975-2022 for models 21.1b, 23.0a, 21.1b.p7, and 23.0a.p7. Mature male biomass is estimated on Feb. 15, year+1 (i.e. 2022 value is Feb. 15 2023).


Figure 18: Estimated absolute mature male biomasses during 1975-2022 for models 21.1b.p7, 23.0a.p7, 24.0, and 24.0b. Mature male biomass is estimated on Feb. 15, year+1 (i.e. 2022 value is Feb. 15 2023).


Figure 19: Estimated absolute mature male biomasses during 1985-2022 for models 21.1b.p7, 23.0a.p7, 24.0c, and 24.0d. Mature male biomass is estimated on Feb. 15, year+1 (i.e. 2022 value is Feb. 15 2023).


Figure 20: Observed and model estimated length-frequencies of male BBRKC by year retained in the directed pot fishery for the base model and model scenarios 24.0 and 24.0 b .


Figure 21: Observed and model estimated length-frequencies of male BBRKC by year retained in the directed pot fishery for the base models and model scenarios 24.0c and 24.0d.


Figure 22: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay male (black) and female (gray) red king crab by year for the base models and model scenarios 24.0 and 24.0 b , which have changes in selectivity estimation.


Figure 23: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay male (black) and female (gray) red king crab by year for the base models and model scenarios 24.0 c and 24.0d, changes in molt periods.


Figure 24: Comparisons of length compositions by the BSFRF survey and the model estimates during 2007-2008 and 2013-2016 for most model scenarios (male (black) and female (gray) red king crab).


Figure 25: Residual line plot for male (left panel each year) and female (right panel each) size and year for the NMFS trawl survey size composition data sets for models 21.1 b and 23.0 a , along with 24.0 and 24.0 b (models with selectivity priors based on BSFRF).


Figure 26: Aggregated size comps over all years for the NMFS survey for males (black) and females (grey) for base models and selectivity models.


Figure 27: Mean size over all years for the NMFS survey for males under model 23.0a.p7 (2023 accepted model).


Figure 28: Bubble plot for residuals of size comps for males (1) and females (2) for the NMFS survey for males under model 23.0a.p7 (2023 accepted model).

