

Howard McElderry

Research Program

Archipelago Marine Research Ltd.

Presentation to SSC NPFMC

2 Fobruary 2015

EM Implementation Pathways

- Traditional Approach: Proof of Concept
 - Does it work?
 - Can it provide the same data as an observer?
 - (What does it cost?)
- Suggested Approach: EM Program Design
 - How can we make EM work recognizing that:
 - EM is not a 'plug and play' replacement for observers, and
 - An alternative to observers is needed.

EM Program Design is a Balancing Act

Information Needs:

- Quantity
- Quality
- Timeliness

EM Program Considerations:

- Technology
- Program Operations
- Vessel Obligations

Fishery Context:

- Available Funds
- Fishery Characteristics
- Other Information Sources

EM Program Considerations

- Technology
 - Feature Set and Functionality
 - Cost
 - Fleet Suitability
 - Availability
 - Scalability Across the Fleet
 - Performance
- EM Program Operations
 - Program Oversight
 - Data Services
 - Field Services
- Vessel Obligations
 - Duty of Care
 - Catch Handling Requirements
 - Supplementary Data

Alaska Fixed Gear Fishery Characteristics

< 40' Fleet

- Vessels ~490
- Landings ~2,500
- Days ~6,500
- Season June to Sept.
- Target Mostly Halibut
- # Ports 43
- Top Ports (50%) <u>Homer, Sitka,</u>
 Kodiak, St. Paul, Yakutat
- Fleet Activity (annual)
 - 80% make 4 trips or less
 - 75% fish 15 days or less

40' – 57.5' Fleet

- Vessels ~380
- Landings ~2,150
- Days ~9,400
- Season Jan to Oct.
- Target Halibut/ Sablefish
- # Ports 30
- Top Ports (50%) <u>Homer</u>, Juneau, <u>Sitka</u>
- Fleet Activity (annual)
 - 80% make 5 trips or less
 - 75% fish 20 days or less

AK Fixed Gear Fishery Catch Composition

Pacific Cod

- Top 5 Catch (90%)
 - Pacific Cod
 - Soft Snout Skate
 - Pollock
 - Yellowfin Sole
 - Halibut
- # Catch Profile*
 - ~150 Categories
 - 8 are Common
 - 56 are Uncommon
 - 91 are Rare

Sablefish

- Top 5 Catch (90%)
 - Grenadier
 - Sablefish
 - Thornyhead RF
 - Halibut
 - Rougheye RF
- # Catch Profile*
 - ~110 Categories
 - 10 are Common
 - 41 are Uncommon
 - 59 are Rare

Halibut

- Top 5 Catch (75%)
 - Halibut
 - Pacific Cod
 - Sablefish
 - Dogfish
 - Grenadier
- # Catch Profile*
 - ~100 Categories
 - 14 are Common
 - 37 are Uncommon
 - 64 are Rare

^{*} Common (>1.0% frequency); Uncommon (0.01 to 1%); Rare (<0.01%)

AK Fixed Gear Fishery Species Resolution for Management

FMP by Species

Common Species

- **✓** Halibut
- ✓ Pacific Cod
- ✓ Sablefish
- ✓ Longnose Skate
- **✓** Pollock
- ✓ Shortraker /Rougheye RF

Uncommon Species

- ✓ Atka Mackeral
- ✓ Big Skate
- Dusky RF
- Flathead Sole
- Northern Rockfish
- ✓ Pacific Ocean Perch
- ✓ Arrowtooth/Kamchatka

Rare Species

Rex Sole

FMP by Group

Common Species

- ✓ Thornyhead RF
- ✓ Sculpins
- **✓** Sharks
- ✓ Skates
- ✓ Grenadier

Uncommon Species

- ✓ Demersal Slope RF
- ✓ Rockfish
- ✓ DW Flatfish
- ✓ SW Flatfish

PSC-Protected Species

Uncommon

- King Crabs
- Tanner Crabs

Rare

- Coho Salmon
- Chum salmon
- Seabirds

<u>Timing – In Season - Critical</u>

Common Species

- ✓ Halibut
- ✓ Pacific Cod
- ✓ Longnose Skate
- ✓ Shortraker /Rougheye RF
- ✓ Thornyhead RF

Uncommon Species

- ✓ Big Skate
- ✓ Demersal Slope RF

Rare Species

- Laysan Albatross
- > S/T Albatross

EM Identifications:

- ✓ High
- **≻**Low or Unknown

Design Conclusions

- Many vessels, many landing ports, large geography, and low activity per vessel results in a complex fleet sampling design which will likely require several vessels across a number of ports.
- EM must be robust, easy to install and service, simple to operate, and portable for scalability.
- EM must have a very low failure rate <1% to avoid 'hidden bias'.
- Vessel obligations for EM success must be simple and have low operational impact (short learning curve).
- EM data should not be the same standard as observer data; outputs should meet management needs and be complimentary with observer data and other information sources.
- EM should be thought of as one element of an integrated fishery information system.

The Integrated Fishery Information System

2015 Field Program Objectives

1. Operational Testing and Capacity Building

- Regional Capacity Building in Two Ports (Sitka, Homer)
- Deployment of EM Systems 13 vessels, 3 fisheries
- EM 'Socialization' with fleet
- Testing EM Suitability Across a Spectrum of Vessel Attributes
- Develop Operational Specifications for Vessels and Port Operations.

2. Cost Analysis

- Oversight
- Technology
- Field Services
- Data Services
- Vessel Impact

3. Data Quality Assessment

- EM Data Recording Performance
- Species Identification
- Vessel Compliance

EM Technology

At Sea Data Recording System

Land Based EM Data Analysis System

Monitoring Options

	Monitoring Option				
Monitoring Obligation	# 1	# 2	# 3	# 4	# 5
At-Sea Observer	X				
Effort logbooks			X	X	X
Catch logbooks					X
Standard duty of care		X	X	X	X
Catch control points		X	X	X	X
Restricted discard location		X	X	X	X
Discard measurement grid				Х	

Enhanced EM Program Operational Overview

- 'Standard' EM System (3-4 cameras, hydraulic and winch sensor, GPS, control center)
- EM system recording sensor data 24/7 on fishing trip,
- CCTV records during setting and hauling only with views of:
 - Catch Retrieval at Rail and On Deck
 - Catch Discard Locations
 - Setting Operations for Seabird Streamer Performance.
- Participating Vessel
 - Duty of Care
 - Catch Control Points
 - Special Catch Handling Requirements
 - Effort Logs
 - EM Service Upon Landing
- Landings Monitoring (full RF retention trips only)

Enhanced EM Program Key Information Tactics

Primary Sampling Unit:

• Fishing Event (retrieval operation).

Discard Estimates:

- Catch are identified, enumerated and fate determined during retrieval operations.
- Weight of discarded species is estimated by applying piece counts with 'borrowed' average piece weights;
- Fishery level species discards are estimated by expansion of the samples to fleet grouping, area and fishery; and
- Expansions are based on hooks set from effort logs.

Trip Level Catch Estimates (Managed Species)

- Landings data provide the trip (vessel) and fleet level total landed catch;
 and
- IFQ and ACL data are summed from landings data.

Estimated Data Volumes

Port	2015 Participants	Other Potential
Sitka	8	0
Homer	5	3
Kodiak		3
Petersburg		2
Ketchikan		1
Haines		1

Port	Sitka	Homer	Total
Port-Months	6	6	12
EM Systems	8	5	13
Vessels	8	5	13
Total Trips	30	25	55
Total Hauls	240	200	440

Vessel Attributes

- Vessel Configuration
 - Fwd/Aft Wheelhouse, Shelter Deck, Side/Stern hauler
- Fishing Gear
 - Snap, Fixed, Autoline
- Deck Gear
 - Drum, Sheave, Autoline
- Cameral Locations
 - Outrigger Pole, Davit
- EM System Component Locations
- Fishing Characteristics
 - Lighting Conditions, Weather and Sea Conditions)

Project Team

Archipelago Marine Research Ltd.

- Equipment Provision
- Program Oversight
- EM System Installation
- Port Services Development
- Operational Data Gathering
- Operational Assessment Report

Port Services Contactors

- EM System Maintenance Services
- Landings Monitoring (w/ full retention RF trips)
- Local Data Analysis
- Participant Interviews

Pacific States Marine Fisheries Commission

- EM Data Processing
- Data Quality Assessment Report

North Pacific Fishery Management Council

- Fishery Characterization Data
- Historical Fleet Activity Data
- Cost Analysis Framework
- Cost Analysis Report

NMFS

- Fishery Characterization Data
- Management/Science Information Needs
- EM Fleet Sample Design
- Information Integration Roadmap

Alaska Longline Fishermen's Association

- Port and Fleet Logistics
- Fleet Suitability Assessemnt
- Operational Impacts Assessment

Participating Vessels

- Host EM Systems
- Duty of Care Responsibilities
- Onboard Catch Handling Measures
- Communication with Program Staff
- Landings Monitoring
- Exit Surveys

Project Timeline

- Program Set up (January/February, 2015)
 - Program design completed: January, 2015
 - Program presentation to SSC: February, 2015
 - Port Services Established: February, 2015
 - Vessel Installations Begin: Late February, 2015
- Operations (Late February to July, 2015)
 - Participant Vessels Monitored: (Late February to July, 2015)
 - Landings Monitoring: (Late February to July, 2015)
 - EM Data Analysis: (Late February to July, 2015)
- Program Reporting: (July to December 2015)

