Pribilof Islands Blue King Crab

William Stockhausen Alaska Fisheries Science Center

Changes From 2014 Assessment

- Same approach to OFL
 - Tier 4 status determination
 - Tier 5 OFL, ABC
- New survey smoothing method for survey MMB
 - Old: 3-year inverse-variance running average
 - New: Random effects/Kalman filter

- New Fishery Data for 2014/15
 - directed fishery
 - no catch
 - crab fishery bycatch
 - no catch
 - groundfish fisheries
 - 2013/14 updated
 - 2014/15 new
- New trawl survey data
 - new standardized dataset
 - abundance, biomass
 - size compositions by sex, shell condition, maturity

Management Area & Stock Definition

Management Performance

- Overfishing not occurring
- Stock is overfished
 - PIHCA closed to trawling in 1994
 - directed fishery closed in 1999
 - declared overfished 2002
 - rebuilding plan implemented 2004
 - 2009: NMFS determined it will not rebuild by 2014
 - 2014: Final EA for Amendments 43, 103 released
 - 2015: Secretary approves revised rebuilding plan
 - PIHCZ closed to P. cod pot fishing
 - rebuilding may occur w/in 50 years

Catch History

		Crab pot fisheries	Groundf	Groundfish fisheries		
Year	Non-retained legal male	Sublegal male	Female	Fixed gear	Trawl gear	
	(t)	(t)	(t)	(t)	(t)	
1991/1992	NA	NA	NA	0.03	4.96	
1992/1993	NA	NA	NA	0.44	48.63	
1993/1994	NA	NA	NA	0.00	27.39	
1994/1995	NA	NA	NA	0.02	5.48	
1995/1996	NA	NA	NA	0.05	1.03	
1996/1997	0	0.4	0	0.02	0.05	
1997/1998	0	0	0	0.73	0.10	
1998/1999	1.15	0.23	1.86	9.90	0.06	
1999/2000	1.75	2.15	0.99	0.40	0.02	
2000/2001	0	0	0	0.06	0.02	
2001/2002	0	0	0	0.42	0.02	
2002/2003	0	0	0	0.04	0.24	
2003/2004	0	0	0	0.17	0.18	
2004/2005	0	0	0	0.41	0.00	
2005/2006	0	0		0.18	1.07	
2006/2007	0	0		0.07	0.06	
2007/2008	0	0		2.00	0.11	
2008/2009	0	0		0.07	0.38	
2009/2010	0	0		0.11	0.17	
2010/2011	0	0.09		0.02	0.05	
2011/2012	0	0	1	0.06	0.01	
2012/2013	0	0	0	0.08	0.54	
2013/2014	0	0	0	0.03	0.00	
2014/2015	0	0	0	0.07	0.00	

Recent bycatch in the groundfish fisheries

Trawl Survey Results

<u>2015 Survey</u>

Stock	Number of tows	Tows with	Number of crab	Number of crab	Abundance (millions)		Biomass (mt)	
Component	in District	crab	measured	caught	estimate	95% CI	estimate	95% CI
Immature male	86	2	4	4	0.076	0.113	82	120
Mature male	86	8	13	13	0.234	0.168	622	480
Legal male	86	5	7	7	0.125	0.109	428	385
Immature female	86	0	0	0	0.000	0.000	0	0
Mature female	86	4	11	11	0.202	0.260	160	207

<u>2014 Survey</u>

Stock	Number of tows	Tows with	Number of crab	Number of crab	Abundance (millions)		Biomass	(mt)
Component	in District	crab	measured	caught	estimate	95% CI	estimate	95% CI
Immature male	86	3	5	5	0.091	0.105	83	102
Mature male	86	2	5	5	0.092	0.128	233	320
Legal male	86	2	5	5	0.092	0.128	233	320
Immature female	86	1	1	1	0.028	0.054	16	32
Mature female	86	3	4	4	0.074	0.088	91	108

Survey Densities: All Crab

in number/nm²

Survey Size Classes

• in number/nm²

Size compositions

Males

Females

Trawl Survey Trends

- New standardization
- Males

Trawl Survey Trends

- New standardization
- Females

Trawl Survey Trends

New standardization

Trawl Survey Trends: New vs. Old Datasets

Tier 4 Overfished Status Determination

- Raw Data
- IV: inverse variance averaging
- RE: Random Effects model
- B_{MSY} (proxy) is average MMB-at-mating over 1980-84 and 1990-97

$$MMB_{f_y} = MMB_{s_y} \cdot e^{-M \cdot t_{sf}}$$
 at fishing
$$MMB_{m_y} = [MMB_{f_y} - RM_y - DM_y] \cdot e^{-M \cdot t_{fm}}$$
 at mating

- "Current" B is MMB-at-mating for assessment year
 - uses smoothed estimate of MMB_{Sv} in assessment year
 - 1. "guess" a value for F_{OFL} , the directed fishing mortality rate that yields OFL $(F_{OFL_{max}} = \gamma \cdot M \text{ is used})$.
 - 2. determine the OFL corresponding to fishing at F_{OFL} using the following equations:
 - $MMB_f = MMB_s \cdot e^{-M \cdot t_{sf}}$
 - $RM_{OFL} = (1 e^{-F_{OFL}}) \cdot MMB_s \cdot e^{-M \cdot t_{sf}}$
 - $DM_{OFL} = \theta \cdot \frac{MMB_f}{p_{male}}$
 - $OFL = RM_{OFL} + DM_{OFL}$
 - 3. project MMB-at-mating from the "current" survey MMB and the OFL.
 - 4. use the harvest control rule to determine the F_{OFL} corresponding to the projected MMB-at-mating.
 - 5. update the "guess" in 1. for the result in 4.
 - 6. repeat steps 2-5 until the process has converged, yielding self-consistent values for F_{OFL} and MMB-at-mating.

Averaging methods

- Raw Data
- IV: inverse variance averaging

$$< MMB_{s}> = \frac{\left[\sum_{-1 \le i \le 1} w_{y+i} \cdot MMB_{s_{y+i}}\right]}{\sum_{-1 \le i \le 1} w_{y+i}} \Rightarrow w_{y} = \frac{1}{\sigma_{s_{y}}^{2}}$$

RE: Random Effects model

$$< ln(MMB_S) > = < ln(MMB_S) > + \varepsilon_y$$
, where $\varepsilon_y \sim N(0, \phi^2)$ State Eq. $ln(MMB_{S_y}) = < ln(MMB_S) > + \eta_y$, where $\eta_y \sim N(0, \sigma_{S_y}^2)$ Observation Eq.

$$\Lambda = \sum_{y} \left[\ln(2\pi\phi) + \left(\frac{\langle \ln(MMB_s) \rangle - \langle \ln(MMB_s) \rangle}{\phi} \right] + \sum_{y} \left(\frac{\ln(MMB_{s_y}) - \langle \ln(MMB_s) \rangle}{\sigma_{s_y}} \right)^2$$
 Objective Function

Averaging results (1)

Averaging results (2)

Averaging results (3)

Averaging results (3)

New Survey Standardization

quantity	units	Raw	IV	RE
Projected MMB	t	missing1	317.6040582	454.940123
B_{MSY}	\mathbf{t}	missing2	5012.1154242	5012.1154242
stock status			overfished	overfished
F_{OFL}	$year^{-1}$	missing3	0	0
RM_{OFL}	\mathbf{t}	missing4	0	0
DM_{OFL}	t	missing5	0.2560223	0.2986122
OFL	t	missing6	0.1280111	0.1493061

Туре	current survey MMB (t)	$B_{MSY_{proxy}}$ (t)	
Raw	621.7	5012.1	
IV	352.9	3274.9	
RE	505.5	4109.1	

Old Survey Standardization

quantity	units	Raw	IV	RE
Projected MMB	t	missing1	317.2714406	455.3479237
B_{MSY}	t	missing2	4002.4982102	4002.4982102
stock status			overfished	overfished
F_{OFL}	$year^{-1}$	missing3	0	0
RM_{OFL}	\mathbf{t}	missing4	0	0
DM_{OFL}	t	missing5	0.2558485	0.2987104
OFL	t	missing6	0.1279243	0.1493552

Status determination and OFL calculation

- The time series of MMB-at-mating to determine B_{MSY} for this stock was estimated using "raw" survey MMB to start the calculation
- The MMB-at-mating for 2015/16 was calculated by projecting an IV average of MMB-at-survey for this year and last year forward to mating, using a 3year average estimator for the ratio of bycatch mortality to MMB-at-fishery to estimate the projected bycatch mortality for 2015/16.
- Stock in Tier 4c: B/Bmsy ~ 6%
- SSC recommended Tier 5 approach to OFL based on average bycatch over 1999/2000-2005/06.

Basis for the OFL

Stock is overfished.

All weights in t.

Year	Tier	$B_{ m MSY}$	Current MMB _{mating}	B/B_{MSY} (MMB _{mating})	γ	Years to define B_{MSY}	Natural Mortality	P*
2011/12	4c	4,209	365	0.09	1	1975/76-1984/85 &1990/91-1997/98	0.18	10% buffer
2012/13	4c	4,494	496	0.11	1	1980/81-1984/85 &1990/91-1997/98	0.18	10% buffer
2013/14	4c	3,988	278	0.07	1	1980/81-1984/85 &1990/91-1997/98	0.18	10% buffer
2014/15	4c	4,002	218	0.05	1	1980/81-1984/85 &1990/91-1997/98	0.18	25% buffer
2015/16	4c	5,012	318	0.06	1	1980/81-1984/85 &1990/91-1997/98	0.18	25% buffer

All weights in million lbs.

Year	Tier	$B_{ m MSY}$	Current MMB _{mating}	B/B_{MSY} (MMB _{mating})	γ	Years to define B_{MSY}	Natural Mortality	Р*
2011/12	4c	9.28	0.80	0.09	1	1975/76-1984/85 &1990/91-1997/98	0.18	10% buffer
2012/13	4c	9.91	1.09	0.11	1	1980/81-1984/85 &1990/91-1997/98	0.18	10% buffer
2013/14	4c	8.79	0.61	0.07	1	1980/81-1984/85 &1990/91-1997/98	0.18	10% buffer
2014/15	4c	8.82	0.48	0.05	1	1980/81-1984/85 &1990/91-1997/98	0.18	25% buffer
2015/16	4c	11.05	0.70	0.06	1	1980/81-1984/85 &1990/91-1997/98	0.18	25% buffer

Management Performance

Overfishing is not occurring.

All units are tons of crab and the OFL is a total catch OFL for each year:

Year	MSST	Biomass (MMB _{mating})	TAC	Retained Catch	Total Catch Mortality	OFL	ABC
2011/12	2,247 ^A	365 ^A	0	0	0.36	1.16	1.04
2012/13	1,994 ^A	579 ^A	0	0	0.61	1.16	1.04
2013/14	2,001 ^A	225 ^A	0	0	0.03	1.16	1.04
2014/15	2,506 ^A	320^{A}	0	0	0.07	1.16	0.87
2015/16		318 ^B				1.16	0.87

All units are million pounds of crab and the OFL is a total catch OFL for each year:

Year	MSST	Biomass (MMB _{mating})	TAC	Retained Catch	Total Catch Mortality	OFL	ABC
2011/12	4.95 ^A	0.80 ^A	0	0	0.0008	0.003	0.002
2012/13	4.39 ^A	1.09 ^A	0	0	0.0013	0.003	0.002
2013/14	4.41 ^A	0.50^{A}	0	0	0.0001	0.003	0.002
2014/15	5.52 ^A	0.71^{A}	0	0	0.0002	0.003	0.002
2015/16		$0.70^{\mathrm{\ B}}$				0.003	0.002

- OFL based on average catch (1999/2000-2005/06)
- ABC based on 25% buffer (CPT rec'd, SSC approved 2014)

