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Defining EFH for Alaska Groundfish Species using Species Distribution Modeling 
 
Background: Species distribution models have been widely used in conservation biology and 
terrestrial systems to define the potential habitat for organisms of interest (Elith et al. 2011, etc.). 
The models themselves can take a number of forms, from relatively simple frameworks such as 
generalized linear or additive models to complex modeling frameworks such as boosted 
regression trees, maximum entropy models, two-stage models or other formulations. The models 
can be used to predict potential habitat, probability of presence or even abundance, but they all 
have some features in common. 
 

 the underlying data consists of some type of independent variables (predictors) and a 
dependent response variable (presence, presence/absence or abundance) 

 raster maps of independent variables are used to predict a response map (prediction) 
 confidence bounds on the predictions and partitioning of the data can produce test 

statistics useful for evaluating the model 
 
Approach: We are proposing to use a species distribution modeling framework to refine the 
descriptions of Essential Fish Habitat for Alaskan groundfish species. This will be attempted for 
each of the Alaska regions and for all groundfish species. The independent variables will consist 
of those variables (such as depth, slope, bottom temperature, current speeds, etc.) widely 
available from remote sensing or long-term monitoring programs at the AFSC. The dependent 
variables will be survey catches (primarily bottom trawl, but we will attempt to include pelagic 
surveys and ichthyoplankton surveys where available) of the Alaska FMP species. Where 
possible, the species will be divided by life history stage into egg/larval, juvenile and adult 
groups. 
 
Because of the anticipation of variable data distributions (from log-normal to highly zero-
inflated) a number of model frameworks will be considered, and the most appropriate for each 
species/life history stage will be used. An example analysis for Sablefish in the Eastern Bering 
Sea is shown in Appendix I. 
 
Products: A document (tech memo or part of EIS?) will be delivered that describes the 
individual species modeling results. ArcGIS coverages will also be provided for each species. 
Finally, a manuscript describing the general methodology and results will be produced for 
publication in a peer-reviewed journal. 
 
Timeline: We anticipate beginning this project in December 2014. Data compilation should take 
1-2 months, modeling should be completed in 4 months and the document could be produced in 
October 2015. The final manuscript would be completed by December 2015. 
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Appendix I: Sablefish Habitat Model in the EBS slope 
 
 Here I constructed a distribution model for sablefish (Anoplopoma fimbris) for the outer shelf 
and slope region of the eastern Bering Sea. The model is formulated as a two-stage (or hurdle) 
model, with the first stage producing estimates for probability of presence or absence and the 
second stage producing estimates of abundance. Bottom trawl survey data from EBS slope and 
shelf surveys (2002, 2004, 2008, 2010, and 2012) were used to construct the models.  
 
Habitat Variables. Independent variables for modeling included the standard suite of habitat 
variables typically collected on the bottom trawl survey as well as a few derived and modeled 
variables. Haul position and depth were collected during each bottom trawl haul. A start and end 
position for the vessel during the on-bottom portion of the tow were collected using the vessel-
mounted GPS receiver. Vessel position was corrected for the position of the bottom trawl itself 
by triangulating how far the net was behind the vessel (based on the seafloor depth and the wire 
out) and subtracting this distance from the vessel position in the direction of the bottom trawl 
haul. We assumed that the bottom trawl was directly behind the vessel during the tow and that all 
bottom trawl tows were conducted in a straight line from the beginning point to the end point. 
The mid-point of the start and end positions of the net was used as the location variable in the 
modeling. The longitude and latitude data for each tow (and all other geographical data including 
the raster layers described below) were projected into Alaska Albers Equal Area Conic 
projection (center latitude = 50° N and center longitude = -154° W) and degrees of latitude and 
longitude were transformed into 100 m by 100 m square grids of eastings and northings for 
modeling.  
 
The depth for each tow was estimated from a SeaBird SBE-39 microbathythermograph attached 
to the headrope of the net plus the measured net height. Mean depth during the tow was 
calculated for inclusion as an explanatory variable in the modeling. A bathymetry raster for the 
entire Aleutian Islands region was also produced for this analysis This raster was used for 
prediction, but not for parameterizing the models. Slope and rugosity were two habitat variables 
derived from the 100 m by 100 m bathymetry raster. Slope for each raster grid cell was 
computed as the maximum difference between the depth at a cell and its surrounding cells. The 
average summer water temperature at each site was estimated from data collected during 
Aleutian Islands bottom trawl surveys from 1996-2010. Bottom temperatures are collected 
during each bottom trawl tow using the SBE-39 attached to the headrope of the net. Mean 
bottom temperatures for each haul were interpolated to the 100 m by 100 m grid for the entire 
Aleutian Islands region. These data were interpolated using ordinary kriging (Venables & Ripley 
2002) with a spherical semi-variogram model.  This resulted in a single temperature raster layer 
that reflects the average temperature conditions in surveys from 1996-2011 (Fig. 2). When 
evaluated using leave-one-out cross-validation, the kriging model was a statistically significant 
fit to the observations (n = 2814, mean squared error = 0.19, R2 = 0.38), capturing the spatial 
trend in the temperature data. The temperature data used in our models were primarily designed 
to reflect long-term averages that could be compared spatially to the distribution of corals and 
sponges. Mean bottom temperature underneath each bottom trawl tow path was used as a habitat 
variable in the modeling. The 100 m by 100 m raster layers of average temperature were used for 
prediction. 
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Three measures of water movement and its potential interaction with the seafloor were used as 
habitat variables in modeling and prediction. The first variable was the maximum tidal speed on 
a 10 km2 grid. Tidal speeds were estimated for 368 consecutive days (January 1st, 2009 to 
January 3rd, 2010) using a tidal inversion program parameterized for the eastern Bering Sea 
(Egbert & Erofeeva 2002). This tidal prediction model was used to produce a time series of one 
year of tidal currents for spring and neap cycles at grid node. The mean values were then 
interpolated to a 100 m by 100 m grid using inverse distance weighting. The mean of the time 
series of predicted tidal current was then extracted for the position of each bottom trawl survey 
haul. This mean value was used as a habitat variable in the modeling.  
 
The second water movement variable was the predicted bottom water layer current speed from 
ROM’s model runs from 1970-2004.  This long-term current speed and direction were available 
as points on a 10 km by 10 km grid. The ROM’s model was based on a three-dimensional grid 
with 60 depth tiers for each grid cell. For example, a point at 60 m water depth would have 60 
depth bins at 1 m intervals, while a point at 120 m depth would have 60 depth bins at 2 m depth 
intervals, etc.). The current speed and direction for the deepest depth bin at each point (closest to 
the seafloor) was used in this analysis. This regularly spaced data was interpolated to a 100 m by 
100 m cell size raster covering the entire Aleutian Islands using inverse distance weighting. Then 
the values from this raster at each of the bottom trawl survey haul locations were extracted and 
the mean value computed for the path of each bottom trawl survey tow. The raster was also used 
for prediction. 
 
The final water current variable used in the modeling was the aspect of the seafloor relative to 
the mean current direction. The aspect of the seafloor (angle the seafloor faces) in degrees 
relative to north (0°) was computed using the raster package in R software. This data was 
produced on a 100 m by 100 m raster grid, the same as the bathymetry data. The current 
direction used was the mean current direction from the long-term model output from the ROMS 
model (Danielson et al. 2011). The absolute value of the difference between the current direction 
and the aspect of the seafloor at the position of each bottom trawl haul was used as a habitat 
variable in the modeling. This value ranged from 0° (where the currents were flowing in the 
same direction the seafloor was facing) to 180° (where the mean current was flowing directly 
opposite the aspect of the seafloor).  The raster grid of the aspect variable (on the 100 m by 100 
m grid) was used in the prediction.  
 
To reflect average ocean productivity (g C m-2 day-1) at each of the bottom trawl survey sites, we 
used MODIS ocean color data for five spring-summer months (May-September) that encompass 
the spring and summer phytoplankton blooms over eight years (2003-2011) for the eastern 
Bering Sea region. These data were downloaded from the Oregon State University Ocean 
Productivity website. These data were averaged by cell and by month and then averaged again by 
cell and by year (to account for differences in the number of samples within each cell). The 
averages were then interpolated to 100 m by 100 m raster grids using inverse distance weighting. 
The mean value in this grid underlying each bottom trawl survey tow was extracted from this 
raster. The raster was used for prediction. 
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Eastings (longitude) and northings (latitude) were very strongly correlated (R2 = 0.59) because of 
the geographical shape of the eastern Bering Sea slope and as such were included as a bivariate 
term (location) in the model. The remaining habitat variables used in the models were in a 
univariate form. 
 
Model Fitting. Two-stage models were fit to the bottom trawl survey catches for Sablefish. In 
the first stage, presence or absence was predicted using all bottom trawl survey hauls (n=1357) 
on the outer shelf and slope. In the second stage log(CPUE) was predicted using only bottom 
trawl hauls that captured sablefish (n = 483). Generalized additive models (Hastie & Tibshirini 
1990) using the mgcv package in R (Wood 2006) were used to predict the two dependent 
variables with the suite of untransformed habitat variables included, so that the full model was 
 
ݕ ൌ ሻ݊݋݅ݐܽܿ݋ሺ݈ݏ ൅ ሻ݄ݐ݌ሺ݀݁ݏ ൅ ሻ݁ݎݑݐܽݎ݁݌݉݁ݐሺݏ ൅ ሻ݁݌݋݈ݏሺݏ ൅ ሻݐ݊݁ݎݎݑܿ	݈ܽ݀݅ݐ	ሺ݉݁ܽ݊ݏ

൅ ሻ݀݁݁݌ݏ	ݐ݊݁ݎݎݑܿ	ሺ݉݁ܽ݊ݏ ൅ ሻݎ݋݈݋ܿ	݊ܽ݁ܿ݋ሺݏ ൅ ሻݐܿ݁݌ݏሺܽݏ ൅ ሻ݄݅݌ሺݏ ൅ ሻݐݎ݋ݏሺݏ
൅ ε 

 
where y was the dependent variable presence or absence of sablefish in bottom trawl hauls and s 
indicates a thin plate regression spline smoothing function (Wood 2006). In each case the basis 
degrees of freedom used in the smoothing function was limited to ≤ 4 for univariate variables 
and ≤ 30 for the bivariate term (location). For presence or absence models a binomial distribution 
was used for the fitting. The Gaussian distribution with log-transformed CPUE data and a 
constant of half of the smallest positive value proved to best approximate normality for the 
CPUE data for sablefish. 
 
A factorial analysis was used to reduce the number of variables in each model. Initially a full 
model containing the entire variable suite was fit to the data. Then the least significant variable 
was removed from the model, provided the GCV score for CPUE models or the UBRE score for 
binomial models was lower with the elimination of the variable, and then the reduced model was 
re-fit to the data. Stepwise variable removal was continued until a final best-fitting model was 
reached, where the removal of additional variables did not result in a lower value for GCV or 
UBRE. 
 
To test the performance of the best-fitting models, the predictions were compared to the 
observations. For presence and absence models the area under the curve (AUC) was computed to 
judge model performance. The AUC calculates the probability that a randomly chosen presence 
observation would have a higher probability of presence than a randomly chosen absence 
observation using rank data. We used the scale of Hosmer & Lemeshow (2005), where AUC 
value > 0.5 is estimated to be better than chance, a value > 0.7 is estimated to be acceptable, and 
values > 0.8 and 0.9 are excellent and outstanding, respectively. Confidence intervals for the 
AUC (95%) were calculated according to the methodology of DeLong et al (1988). For 
abundance and diversity models the performance was directly tested by correlating the 
predictions with the observations. 
 
Sablefish Model Results 
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The best fitting presence-absence model for sablefish included the location variable (bivariate 
term of latitude*longitude), bottom depth, seafloor slope, bottom temperature, tidal current, 
ocean color,  and the two measures of sediment character; sorting and phi (Figure 1). The model 
explained 68% of the deviation in the data set. The model fit very well, with an AUC of 0.97, 
which is considered “outstanding”. A threshhold probability for determining presence or absence 
was set at 0.5 (i.e. for trawl hauls with a probability of presence of sablefish >0.5, presence was 
designated). Using this threshhold resulted in about a 9% error rate for predicting presence or 
absence. 
 
The best fitting model of abundance (trawl survey log(CPUE)) included; location, depth, slope, 
bottom temperature, ocean color and phi (Figure 2). This model also fit the data well, explaining 
43% of the deviation in the data set (Figure 3). When a threshhold value of 0.08 was used to 
determine presence or absence (the threshhold value that balanced the error rate between 
predicted presence or absence), a map of abundance showed that occurred at medium depths 
(500-800 m) along the slope (Figure 4). Almost no sablefish were predicted to occur on the 
eastern Bering Sea shelf. Interestingly, most of the areas of high abundance of sablefish were 
predicted to occur in canyons (Bering, Pribilof and Zhemchug). 
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Figure 1. Response of sablefish probability of presence with significant variables in the best 
fitting model of sablefish presence or absence. 
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Figure 2. Response of sablefish log-transformed abundance with significant variables in the best 
fitting model of sablefish abundance. Data were only bottom trawl hauls with sablefish present.  
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Figure 3. Predicted (y-axis) and observed (x-axis) log-transformed sablefish catches from bottom 
trawl survey tows where sablefish were present. Predictions were made using the best fitting 
GAM model. 
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Figure 4. Predicted sablefish abundance (log-transformed) from the hurdle model using a 
threshhold value of 0.5, meaning that at grid cells where the probability of presence is predicted 
to be >0.5, sablefish abundance is predicted using the two-stage model. 
 
 
  


